
feature

70 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 6 . 0 0 © 2 0 0 9 I E E E

new software engineering questions arise.
In the young field of multicore software en-

gineering, many fundamental questions are still
open, such as what language constructs are use-
ful, which parallelization strategies work best, and
how existing sequential applications can be reen-
gineered for parallelism. At this point, there is no
substitute for answering these questions than to
try various approaches and evaluate their effective-
ness. Previous empirical studies focused on either
numeric applications or computers with distributed
memory,1–3 but the resulting observations don’t
necessarily carry over to nonnumeric applications
and shared-memory multicore computers.

We conducted a case study of parallelizing a
real program for multicore computers using cur-
rently available libraries and tools. We selected
the sequential Bzip2 compression program for the
study because it’s a computing-intensive, widely
used, and relevant application in everyday life. Its
source code is available, and its algorithm is well-
documented (see the sidebar “Bzip Compression
Fundamentals”). In addition, the algorithm is non-

trivial, but, with 8,000 LOC, the application is
small enough to manage in a course.

The study occurred during the last three weeks
of a multicore software engineering course. Eight
graduate computer science students participated,
working in independent teams of two to parallelize
Bzip2 in a team competition. The winning team re-
ceived a special certificate of achievement.

Competing Team Strategies
Prior to the study, all students had three months’
extensive training in parallelization with Posix
Threads (PThreads) and OpenMP (see the side-
bar, “Parallel Programming with PThreads and
OpenMP”) and in profiling strategies and tools.
The teams received no hints for the Bzip2 paral-
lelization task. They could try anything, as long
as they preserved compatibility with the sequential
version. They could reuse any code—even from ex-
isting Bzip2 parallel implementations,4–6 although
these implementations were based on older versions
of the sequential program and weren’t fully com-
patible with the current version.

M ulticore chips integrate several processors on a single die, and they’re
quickly becoming widespread. Being affordable, they make it possible
for every PC user to own a truly parallel computer, but they also make
parallel programming a concern for more software developers than ever

before. Not only is parallel programming considered difficult, but experience with
parallel software is limited to a few areas, such as scientific computing, operating sys-
tems, and databases. Now that parallelism is within reach for new application classes,

As multicore
computers become
mainstream,
developers need
to know which
approaches to
parallelism work.
Four teams
competitively
parallelized the
Bzip2 compression
algorithm. The
authors report
lessons learned.

Victor Pankratius, Ali Jannesari, and Walter F. Tichy, University of Karlsruhe

Parallelizing Bzip2:
A Case Study in
Multicore Software Engineering

p ar a l l e l pr o gr amming

 November/December 2009 I E E E S O F T W A R E 71

We asked the teams to document their work
from the beginning—including their initial strat-
egies and expectations, the difficulties they en-
countered during parallelization, their approach,
and their effort. In addition to these reports,
we collected evidence from personal observa-
tions, the submitted code, the final presenta-
tions, and interviews with the students after their
presentations.7

Because of space limitations, we omit a number
of details here, but more information (including
threats to validity) is available elsewhere.8

Team 1
The first team tried several strategies. They started
with a low-level approach, using a mixture of
OpenMP and PThreads. Then they restructured
the code by introducing classes. As the submis-
sion deadline approached, they reverted to an
earlier snapshot and applied some ideas from the
BzipSMP parallelization.5

Team 1’s plan was to understand the code base
(one week), parallelize it (one week), and test and
debug the parallel version (one week). Actual work
quickly diverged from the original plan. At the

beginning, the team invested two hours to get a
code overview and find the files that were relevant
for parallelization. They spent another three to
four hours to create execution profiles with gprof
(www.gnu.org/software/binutils), KProf (http://
kprof.sourceforge.net), and Valgrind (http://
valgrind.org).

The team realized that they had to choose in-
put data carefully to find the critical path and keep
the data sizes manageable. They invested another
two hours in understanding code along the criti-
cal path. Understanding the code generally and
studying the algorithm took another six hours.9

Thereafter, they decided that parallel processing
of data blocks was the most promising approach,
but they had problems unraveling existing data
dependencies.

The team continued with a parallelization at
a low abstraction level, taking about 12 hours. In
particular, they parallelized frequently called code
fragments with OpenMP and exchanged a sort-
ing routine for a parallel Quicksort implementa-
tion using PThreads. However, the speedup was
disappointing.

The team decided to refactor the code and

Bzip uses a combination of techniques to compress data in
a lossless way. It divides an input file into fixed-sized blocks
that are compressed independently. It feeds each block
into a pipeline of algorithms, as depicted in Figure A. An
output file stores the compressed blocks at the pipeline’s
end in the original order. All transformations are revers-
ible, and the stages are passed in the opposite direction for
decompression.

 ■ Pipeline stage 1. A Burrows-Wheeler transformation
(BWT) reorders the characters on a block in such a
way that similar characters have a higher probability of
being closer to one another.1 BWT changes neither the
length of the block nor the characters.

 ■ Pipeline stage 2. A move-to-front (MTF) coding applies a
locally adaptive algorithm to assign low integer values
to symbols that reappear more frequently.2 The resulting
vector can be compressed efficiently.

 ■ Pipeline stage 3. The well-known Huffman compression

technique is applied to the vector obtained in the previ-
ous stage.

Julian Seward developed the open source implementa-
tion of Bzip2 that we used in our case study.3 It lets block
sizes vary in a range of 100 to 900 Mbytes. A low-level
library comprises functions that compress and decompress
data in main memory. The sorting algorithm that’s part of
the BWT includes a sophisticated fallback mechanism to im-
prove performance. The high-level interface provides wrap-
pers for the low-level functions and adds functionality for
dealing with I/O.

References
 1. M. Burrows and D.J. Wheeler, A Block-Sorting Lossless Data Compression

Algorithm, tech. report 124, Digital Equipment Corp., 10 May 1994.
 2. J.L. Bentley et al., “A Locally Adaptive Data Compression Scheme,”

Comm. ACM, vol. 29, no. 4, 1986, pp. 320–330.
 3. J. Seward, Bzip2 v. 1.0.4, 20 Dec. 2006; www.bzip.org.

Bzip Compression Fundamentals

Input
�le

Compressed
output

�le

Burrows-Wheeler
transformation (BWT)

Move-to-front
 (MTF) coding

Huffman
compression

Stage 1 Stage 2 Stage 3

Figure A. The Bzip2 stages. The input
file is divided into fixed-block sizes
that are compressed independently in
a pipeline of techniques.

72 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

improve its readability by introducing classes. Af-
ter eight hours of work, the execution times didn’t
differ much from the previous version, but the code
was now easier to understand. The restructured
code also made it easier to implement parallel-data-
block processing, which took about 12 hours. Only
a few lines had to be changed to introduce paral-
lelism, but the team found it difficult to assess the
impact of those changes.

Although the refactoring approach was prom-
ising, the group ran out of time as the deadline
approached and decided to abandon this strategy.
The team reverted to the version without classes
and began to integrate some parallelization ideas
from Bzip2SMP (two hours).5 Additionally, they
spent three hours making the files ready for
submission.

In the end, Team 1 reported that fine-grained
parallelization was inappropriate. It would have
required too much effort to restructure the code
for higher speedups.

Team 2
The second team focused on extensive restruc-
turing of the sequential program before starting
with the parallelization. Their plan was to ana-
lyze and profile the code (one week), refactor it
(one week), and parallelize it (one week). The
team spent about 2 × 50 hours of work in total.

The first week went mostly to analyzing code and
profiling the sequential Bzip2 with Valgrind and
gprof. In the remaining time, they concentrated
on restructuring and preparing the code for par-
allelization. Two days before submission, they
were still refactoring. They performed the actual
parallelization on the last day.

The team rewrote the entire Bzip2 library
as well as the I/O routines using a producer-
consumer pattern. Thereafter, they used PThreads
to introduce parallelism. They realized early on
that a fine-grained parallelization wouldn’t yield
sufficient speedup, so they tried to achieve paral-
lelism on higher abstraction levels. Massive refac-
torings were indispensable to resolve data de-
pendencies and enable blockwise compression in
their producer-consumer approach.

Although the team identified several other
hotspots for parallelization, they didn’t have
enough time to tackle them. For example, they
had no time left for fine-tuning the parallel ver-
sion or for a plan to improve throughput with
pipelining.

Team 2 reported that it drastically underes-
timated the time needed for refactoring. They
found refactoring to be frustrating because it took
a long time before an executable parallel version
was available. Nevertheless, the team knew that
drastic restructurings were indispensable.

PThreads and OpenMP add parallelism to C in two different
ways. PThreads is a thread library, while OpenMP extends
the language.

PThreads
Posix Threads (PThreads) is a threading library with an inter-
face specified by an IEEE standard. PThreads programming is
quite low level. For example, pthread_create(...) creates a thread
that executes a function; pthread_mutex_lock(l) blocks lock l. For
details, David Butenhof has written a good text.1

OpenMP
OpenMP defines pragmas—that is, annotations—for insertion
in a host language to indicate the code segments that might
be executed in parallel. Effectively, OpenMP thus extends the
host language. In contrast to PThreads, OpenMP abstracts
away details such as the explicit creation of threads. However,
the developer is still responsible for correctly handling locking
and synchronization.

With OpenMP, you parallelize a loop with independent it-
erations by inserting a pragma before the loop. The following
example illustrates a parallel vector addition:

#pragma omp parallel for //OpenMP annotation
 for(i=0; i<N; i++) { //usual C code
 c[i] = a[i]+b[i];
 }

In this example, OpenMP creates several threads that handle
iterations of the loop in parallel. The example also illustrates
OpenMP’s idea of incrementally parallelizing a sequential
program by inserting one pragma after the other in the code.
When a sequential host compiles the code, it simply ignores
the pragmas and runs the code as a sequential version. In our
real-world study, OpenMP had limited applicability (see the
lessons learned in the main text, under the subhead “Incre-
mental Parallelization Doesn’t Work”).

OpenMP is standardized and available for C and For-
tran.2 Porting OpenMP to other languages is ongoing.

References
 1. D.R. Butenhof, Programming with Posix Threads, Addison-Wesley, 2007.
 2. B. Chapman et al., Using OpenMP: Portable Shared Memory Parallel

Programming, MIT Press, 2008.

Parallel Programming with PThreads and OpenMP

 November/December 2009 I E E E S O F T W A R E 73

Team 3
The third team started with a fine-grained par-
allelization strategy using OpenMP and aban-
doned it later in favor of a master-worker ap-
proach using PThreads.

The team initially planned to begin with pro-
gram and algorithm understanding, followed
by parallelization with OpenMP. They reported
working six or more hours a day. During the first
10 days, they spent two to three hours a day on
understanding code and algorithms and trying
out OpenMP directives. They profiled the se-
quential code with gprof to find performance
bottlenecks.

After trying different ways of fine-grained
parallelization with different OpenMP directives
(for example, parallel for), the team realized that
the speedups weren’t promising and that changes
would have to be much more invasive. However,
they didn’t want to make large modifications to
the Bzip2 library, so they decided to focus on par-
allelism at a higher abstraction level and imple-
mented a master-worker approach in which they
compressed different file blocks independently. In
this design, the master fills a buffer with blocks,
while workers take blocks from the buffer to com-
press them.

The team had difficulties with the thread-
synchronization mechanism between master and
workers. They used sequence diagrams to design
the mechanism and conditional variables and
locks to implement it. Another difficulty was the
file output, which required a sequence adjustment
of the compressed blocks to obtain the original
order.

Unfortunately, Team 3 didn’t finish the paral-
lel version by the deadline, so they were excluded
from the final competition. The main reason was
a trivial bug in an I/O routine, but the team said
they were too tired to find and fix it. However,
they submitted a working version one week after
the deadline, which we used for benchmarking.

Team 4
This team used a trial-and-error approach for
parallelization, working from the bottom up.
Their plan was to create execution profiles of the
sequential code with gprof and KProf, find the
critical path, and parallelize the code along this
path. They chose OpenMP as a means for par-
allelization, which they considered to be simpler
and superior to PThreads.

Team 4 reported that its actual work was dom-
inated by trying out spontaneous ideas, which
was why they didn’t accurately log their effort in

terms of person hours. During the post-competi-
tion interview, they estimated to have spent about
70 percent of their time implementing and debug-
ging ideas and only 30 percent actually reading
and understanding the sequential code. They per-
ceived program understanding as one of the most
difficult tasks. The team misunderstood large
parts of the code during their first parallelization
attempts, and they failed to gain a thorough un-
derstanding of the compression algorithm.

Another difficulty was that many parts of the
sequential code weren’t parallelizable right away,
due to data dependencies, function-call side ef-
fects, and sequential-execution optimizations. In
addition, the sequential version implemented many
loops in a while(true){...} style that didn’t permit en-
closing them with the parallel loops of OpenMP.
Consequently, the team started to refactor the
loops. They focused on loops with no function
calls, thus avoiding side effects in the parallel case.
They unraveled data dependencies, which led to
code that could be wrapped by parallel OpenMP
loops. Unfortunately, this effort resulted in only
minor speedups.

Team 4 explained that they thought OpenMP
would be a good, scalable approach for parallel-
ization in general. However, parallelizing Bzip2
would have required a much more fine-grained
synchronization between individual threads to
preserve data dependencies. The use of OpenMP
required massive refactorings to make the sequen-
tial code parallelizable. This work was difficult to
complete within the given time. Given the oppor-
tunity to start over, they said they would have re-
sorted to PThreads instead.

Quantitative Comparisons
Quantitative comparisons of the parallel Bzip2
code produced by the four teams reveal some
interesting points. Table 1 shows the total LOC
without blank lines and comment lines, along
with the number of lines containing parallel con-
structs, such as pthread_create, pthread_mutex_lock,
and #pragma omp. Compared to sequential Bzip2,
the LOC of the parallel versions vary about ±15
percent. Only a few lines—less than 2 percent—
express parallelism.

Although the total LOC doesn’t vary widely, the
number of modified lines is quite high in the case
of Team 1 (49 percent). Teams 2 and 3 modified
12 and 17 percent of the original code, also a sig-
nificant refactoring effort. Team 4 modified about
3 percent of the original code, but failed to produce
a speedup.

Team 2 won the competition by obtaining an

Team 2 won
the competition

by obtaining
an impressive
10.3 speedup

using 51
threads
on a Sun

Niagara T1.

74 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

impressive 10.3 speedup using 51 threads on a Sun
Niagara T1 (8 processors, 32 hardware threads in
total). Speedups greater than the number of cores
on the Niagara are possible, as the Sun T1 proces-
sor provides four hardware threads per core and the
machine switches to a different hardware thread if
an active thread waits for data. In general, it can
pay off to have many more software than hard-
ware threads—that is, more than 32 threads—to
keep the processors busy.

Figure 1 compares performance results for the
four teams. We compiled the benchmarked pro-
grams with the Gnu Compiler Collection (GCC)
4.2, using a 900-Mbyte block size and eclipse-
java-europa-fall2-linux-gtk.tar (79 Mbytes) as an
input file. We executed each algorithm five times
and averaged the results. The figure shows that
Team 4 achieved a speedup of less than 1. Their
execution time was about 15 percent slower than
the sequential program. Moreover, their pro-
gram’s design allowed only 1, 2, 4, 8, or 16 paral-
lel threads.

Lessons Learned
We offer eight lessons learned from our experience.

Don’t Despair While Refactoring
Parallelizing a sequential program might not be
possible right away. It might require massive refac-
torings to prepare the code for parallelization.
Refactorings improve code modularity, eliminate
function-call side effects, and remove unnecessary
data dependencies.

Team 1 refactored almost half the code, while
Teams 2 and 3 refactored 12 and 17 percent, re-
spectively (see Table 1). Team 4 refactored only 3

percent, but compared to a mere 0.2 percent paral-
lelization constructs in its code, the refactoring is
still significant.

Although Teams 1, 3, and 4 favored OpenMP
at first, they soon realized that it required more
refactoring than PThreads. Teams 1 and 3 turned
to PThreads instead, trading more explicit (and
potentially more error-prone) thread program-
ming for less refactoring. The teams chose a sub-
optimal parallelization strategy because of the
high refactoring cost that they would incur to do
it right.

Team 2 reported that refactoring for parallel-
ization was frustrating because it took a long time
to see the results. However, refactoring was im-
portant for winning the competition. Team 1 also
felt frustrated by refactoring and stopped doing it
under time pressure.

Obviously, developers need some tools to help
prepare sequential programs for parallelization.
Automated support tools could increase produc-
tivity and reduce error rates. At the same time,
tools could relieve stress and help developers fo-
cus on parallelization issues. Further research
must define the typical refactoring tasks for paral-
lelization and how to automate them.

Incremental Parallelization Doesn’t Work
A purported strength of OpenMP is its enabling
of incremental parallelization, which means you
can start with sequential code and parallilize it by
simply adding pragmas, one by one. This might
be possible for simple cases, but we have yet to en-
counter a real program where the incremental ap-
proach works. Real programs like Bzip are full of
side effects, data dependencies, optimizations for

Table 1
LOC comparisons for Sequential Bzip2 and four team efforts to parallelize its code

Program
Total
LOC

Total LOC without com-
ments or blank lines

LOC from previous column
with parallelism constructs

LOC
modified

LOC
added

LOC
removed

Total effort in
person-hours

Sequential
Bzip2

8,090
(100%)

5,102 0 — — — —

Team 1 7,030
(87%)

4,228 49 (1.2%) 2,476
(49%)

801
(15.7%)

1,675
(32.8%)

~2∗50†

Team 2 8,515
(105%)

5,356 48 (0.9%) 600
(12%)

427
(8.4%)

173
(3.4%)

~2∗50†

Team 3 9,270
(115%)

5,915 82 (1.4%) 861
(17%)

837
(16.4%)

24
(0.5%)

~2∗30†

Team 4 8,207
(101%)

5,170 8 (0.2%) 156
(3%)

112
(2.2%)

44
(0.9%)

N/A

†~2∗x represents the effort of two people working for x hours each.

 November/December 2009 I E E E S O F T W A R E 75

sequential execution, and tricky code. Significant
refactoring is necessary.

PThreads might require less refactoring than
OpenMP because it supports more explicit par-
allel programming, but the effort can still be
significant.

On the basis of this and other case studies,10
we believe the idea that sequential code can be
parallelized without significant modification is a
myth.

Look beyond the Critical Path
Some parallel programming textbooks advo-
cate using a profiler to find the critical execu-
tion path and parallelizing along that path.11
This advice sounds reasonable, but with hind-
sight, we don’t think that it’s a good approach.
Parallelizing the critical path worked for none
of the four teams in this study, nor for our
other case studies.10

Profiling sequential code certainly provides in-
formation about performance bottlenecks. How-
ever, these bottlenecks might be closely related
to the way the sequential version implements the
specification. A sequential implementation typi-
cally involves design choices that preclude others
representing degrees of freedom that effective par-
allelization might require. It’s not enough to study
the sequential implementation. You must also
study the specification as well and consider alter-
native, parallel algorithms for the parallel version.
This is why we gave the students an article that in-
cluded Bzip’s specification.9

Fine-Grained Parallelization
Isn’t the Only Choice
Parallelizing loops, even if they’re on the critical
execution path, yielded only minor speedups (see
the results for Teams 1 and 4). Successful paral-
lelizations constructed larger tasks for parallel
execution.

Replacing a sequential sorting routine with a
parallel version didn’t significantly improve per-
formance either, as Team 1’s experience showed.
We don’t have enough data at this time, but we
suspect that replacing standard library routines
with parallel versions might not generate signifi-
cant speedups for some real applications. If this is
true, developing parallel libraries might remain an
interesting exercise with little effect on practice.

Evaluate High-Level Parallelism’s Potential
The most successful teams tackled parallelization
on high abstraction levels by introducing a pro-
ducer-consumer pattern (Team 2) or master-worker
pattern (Team 3).

You might assume that high-level parallelization
would be easier because it would involve less detail.
In our experience, the opposite is true. The origi-
nal program had nonlocal data dependencies to un-
ravel, and the functions had side effects to under-
stand before any changes could be made. Team 4
modified the code at loop level, which was actually
easier but less successful. High-level improvements
affected more parts of the program and were much
more difficult to realize, as documented by Team
2’s refactoring effort.

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360

No. of threads

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Sequential version

0

1

2

3

4

5

6

7

8

9

10

11

12

Sp
ee

du
p

Team 2

Team 1

Team 3

Team 4

Team 2

Team 1

Team 3

Team 4

1 16 31 46 61 76 91 106 121
No. of threads

1 16 31 46 61 76 91 106 121
Team 2

(a) (b)

Figure 1. Performance comparisons for the four teams: (a) execution times and (b) speedups for the parallelized Bzip2
programs. All data points are averages of five total executions including I/O.

76 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

We need further research on how to give de-
velopers parallelization support at appropriate ab-
straction levels. For example, we need to identify
useful parallel patterns, as Timothy Mattson and
his colleagues have done,12 and make these pat-
terns configurable. We also need techniques to
simplify the integration of such patterns into exist-
ing code.

Trial and Error Is Risky
Team 3 started with trial and error in OpenMP
and quickly realized that it wasn’t the way to go.
Team 4 didn’t extricate themselves from this
mode. It became difficult to measure progress
or decide whether to abandon certain choices. In
short, this approach failed.

It’s easy to be seduced into a trial-and-error
mode when working with code, but it’s espe-
cially dangerous when parallelizing because you
face many new choices and unknowns. Instead,
you need a plan of attack. First, figure out the
“big picture.” Then develop some hypotheses
about where parallelization might yield speedups.
Then start identifying the most promising choices
and eliminating poor ones. Some back-of-the-
envelope calculations might help.

Parallel Programming Isn’t a Black Art
Most people still think of parallel programming
as a black art. However, our graduate students
had only one semester’s experience with parallel
programming and didn’t find it overwhelming.

Dealing with parallelism requires new con-
cepts, new algorithms, and special attention to
new types of defects. However, we believe that
parallel system design and parallel programming
aren’t black arts that only the elite can master.
We’re hopeful that, with appropriate concepts,
languages, tools, and training, competent pro-
grammers will handle multicore system chal-
lenges just fine. Given some time, the professional
community will identify the engineering princi-
ples to support general-purpose, parallel software
and the ways to teach and apply these principles
successfully.

Other Issues
Beyond this study, the following advice might be
helpful.

Consider Multiple Levels for Parallelization
Jon Louis Bentley identified different levels to
consider when writing efficient, sequential pro-
grams:13 “In most systems there are a number of
design levels at which we can increase efficiency,

and we should work at the proper level to avoid be-
ing penny-wise and pound-foolish.” This is excel-
lent advice for parallelization as well.

If You Start from Scratch ...
When you’re writing a new sequential program
from scratch, ask whether it might be parallelized
in the future. If so, write it in a way that saves
future refactoring work. For example, keep com-
putational tasks modular and free of side effects
so that individual threads can execute them. You
should parameterize functions right away to sim-
plify the division of work. This controls the parts
of data to which the functions apply and enables
domain decomposition. It’s also important to
write functions in a thread-safe manner that al-
lows many instances to run simultaneously.

It might help to think in terms of parallel de-
sign patterns when writing a multicore program
from scratch.12 For example, the master-worker
pattern manages independently running, parallel
computations, while the pipeline and producer-
consumer patterns break computations into phases
that can be overlapped. You can combine parallel
patterns—for instance, the master-worker pattern
combines with the domain decomposition pat-
tern—and you can split individual worker com-
putations in pipeline fashion. Ideally, you would
design all computational steps so that they can be
packaged into threads. We recommend trying out
prototypes early to check feasibility and perfor-
mance. Prototypes are useful because you might
not know cache effects or overhead costs of various
building blocks (such as thread creation, commu-
nication, or I/O) ahead of time. These effects and
costs might also deviate from what you expect.

Practical Training
None of the students experienced difficulties in
creating small parallel programs from scratch.
However, things changed when they had to par-
allelize Bzip2. Despite intensive training in par-
allelization, the students reported a big differ-
ence between parallelizing small “toy” programs
and a real-world application. They couldn’t
readily apply concepts such as loop paralleliza-
tion or data partitioning. Bzip2 was not only
more complex but also heavily optimized for se-
quential performance, making parallelization a
difficult task.

It’s well known that computer science stu-
dents need exposure to real systems, and multi-
core in no way diminishes this need. Fortunately,
many students are excited about the current shift
to parallel computation and eager to learn and

The students
reported a

big difference
between

parallelizing
small “toy”

programs and
a real-world
application.

 November/December 2009 I E E E S O F T W A R E 77

explore. They are further motivated by the pros-
pect of a virtual job guarantee from being able to
work with multicore/manycore software.

M ulticore software isn’t merely a matter
of programming in the small. Many
aspects of classical software engineer-

ing apply and must be adapted, such as design
patterns, performance modeling, prototyping,
refactoring, and tool support. Multicore software
engineering is an area that seeks to build a core of
systematic, empirically validated engineering prin-
ciples for general-purpose, parallel software. We
hope this limited study helps open the door to this
research.

Acknowledgments
We thank our student assistant Kai-Bin Bao and the
course students for their support. We also appreciate
the support of the excellence initiative at the Univer-
sity of Karlsruhe.

References
 1. D. Szafron and J. Schaeffer, “An Experiment to Mea-

sure the Usability of Parallel Programming Systems,”
Concurrency: Practice and Experience, vol. 8, no. 2,
1996, pp. 147–166.

 2. L. Hochstein et al., “Parallel Programmer Productivity:
A Case Study of Novice Parallel Programmers,” Proc.
2005 ACM/IEEE Conf. Supercomputing, IEEE CS
Press, 2005, p. 35.

 3. L. Hochstein and V.R. Basili, “The ASC-Alliance
Projects: A Case Study of Large-Scale Parallel Scientific
Code Development,” Computer, vol. 41, no. 3, 2008,
pp. 50–58.

 4. N. Werensteijn, Smpbzip2, May 2003; http://home.
student.utwente.nl/n.werensteijn/smpbzip2.

 5. Bzip2smp v. 1.0, Dec. 2005; http://bzip2smp.
sourceforge.net.

 6. J. Gilchrist, Parallel Bzip2 v. 1.0.2, 25 July 2007; http://
compression.ca/pbzip2.

 7. R.K. Yin, Case Study Research: Design and Methods,
3rd ed., Sage Publications, 2002.

 8. V. Pankratius et al., “Parallelizing Bzip2: A Case
Study in Multicore Software Engineering, tech. report,
IPD Inst., Univ. of Karlsruhe, Apr. 2008; www.
multicore-systems.org/research.

 9. M. Tamm, “Data Compression with the BWT Algo-
rithm,” C’t, vol. 16, 2000, pp. 194–201 (in German).

 10. V. Pankratius et al., “Software Engineering for Multi-
core Systems: An Experience Report,” Proc. 1st Int’l
Workshop Multicore Software Eng. (IWMSE 08), ACM
Press, 2008, pp. 53–60.

 11. S. Akhter and J. Roberts, Multi-Core Programming,
Intel Press, 2006.

 12. T.G. Mattson et al., Patterns for Parallel Programming,
Addison-Wesley, 2004.

 13. J.L. Bentley, Writing Efficient Programs, Prentice Hall,
1982.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Victor Pankratius is the head of the young investigator group on multicore
software engineering at the University of Karlsruhe. In multicore software engineering, his
interests include autotuning, language extensions, debugging, empirical studies, and mak-
ing multicore programming accessible to many developers. Pankratius has a Dr.rer.pol. from
the University of Karsruhe. He’s a member of the IEEE Computer Society, the ACM, and the
German Computer Science Society. Contact him at pankratius@ipd.uka.de.

Ali Jannesari is a PhD student in the University of Karlsruhe’s Multicore Software
Engineering group. His interests include debugging parallel programs. He received a
master’s degree in computer science from the University of Stuttgart. Contact him at
jannesari@ipd.uka.de.

Walter F. Tichy is a professor of computer science at the University of Karlsruhe.
He’s also director of the Forschungszentrum Informatik, a technology transfer institute. His
primary research interests are software engineering and parallelism. Tichy has a PhD in
computer science from Carnegie Mellon University. He’s a cofounder of ParTec, a company
specializing in cluster computing, and a member of the IEEE Computer Society, the ACM, and
the German Computer Science Society. Contact him at tichy@ipd.uka.de.

Subscribe to CiSE online at http://cise.aip.org
and www.computer.org/cise

Top-flight departments in each issue!

Book Reviews

Computer Simulations

Education

News

Scientific Programming

Technologies

Views and Opinions

Visualization Corner

MEMBERS $47/year
for print and online

The magazine
of computational
tools and methods
for 21st century
science.

