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new software engineering questions arise.
In the young field of multicore software en-

gineering, many fundamental questions are still 
open, such as what language constructs are use-
ful, which parallelization strategies work best, and 
how existing sequential applications can be reen-
gineered for parallelism. At this point, there is no 
substitute for answering these questions than to 
try various approaches and evaluate their effective-
ness. Previous empirical studies focused on either 
numeric applications or computers with distributed 
memory,1–3 but the resulting observations don’t 
necessarily carry over to nonnumeric applications 
and shared-memory multicore computers.

We conducted a case study of parallelizing a 
real program for multicore computers using cur-
rently available libraries and tools. We selected 
the sequential Bzip2 compression program for the 
study because it’s a computing-intensive, widely 
used, and relevant application in everyday life. Its 
source code is available, and its algorithm is well-
documented (see the sidebar “Bzip Compression 
Fundamentals”). In addition, the algorithm is non-

trivial, but, with 8,000 LOC, the application is 
small enough to manage in a course.

The study occurred during the last three weeks 
of a multicore software engineering course. Eight 
graduate computer science students participated, 
working in independent teams of two to parallelize 
Bzip2 in a team competition. The winning team re-
ceived a special certificate of achievement.

Competing Team Strategies
Prior to the study, all students had three months’ 
extensive training in parallelization with Posix 
Threads (PThreads) and OpenMP (see the side-
bar, “Parallel Programming with PThreads and 
OpenMP”) and in profiling strategies and tools. 
The teams received no hints for the Bzip2 paral-
lelization task. They could try anything, as long 
as they preserved compatibility with the sequential 
version. They could reuse any code—even from ex-
isting Bzip2 parallel implementations,4–6 although 
these implementations were based on older versions 
of the sequential program and weren’t fully com-
patible with the current version.

M ulticore chips integrate several processors on a single die, and they’re  
quickly becoming widespread. Being affordable, they make it possible 
for every PC user to own a truly parallel computer, but they also make 
parallel programming a concern for more software developers than ever 

before. Not only is parallel programming considered difficult, but experience with 
parallel software is limited to a few areas, such as scientific computing, operating sys-
tems, and databases. Now that parallelism is within reach for new application classes, 
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We asked the teams to document their work 
from the beginning—including their initial strat-
egies and expectations, the difficulties they en-
countered during parallelization, their approach, 
and their effort. In addition to these reports, 
we collected evidence from personal observa-
tions, the submitted code, the final presenta-
tions, and interviews with the students after their 
presentations.7

Because of space limitations, we omit a number 
of details here, but more information (including 
threats to validity) is available elsewhere.8

Team 1
The first team tried several strategies. They started 
with a low-level approach, using a mixture of 
OpenMP and PThreads. Then they restructured 
the code by introducing classes. As the submis-
sion deadline approached, they reverted to an 
earlier snapshot and applied some ideas from the 
BzipSMP parallelization.5

Team 1’s plan was to understand the code base 
(one week), parallelize it (one week), and test and 
debug the parallel version (one week). Actual work 
quickly diverged from the original plan. At the 

beginning, the team invested two hours to get a 
code overview and find the files that were relevant 
for parallelization. They spent another three to 
four hours to create execution profiles with gprof 
(www.gnu.org/software/binutils), KProf (http://
kprof.sourceforge.net), and Valgrind (http:// 
valgrind.org). 

The team realized that they had to choose in-
put data carefully to find the critical path and keep 
the data sizes manageable. They invested another 
two hours in understanding code along the criti-
cal path. Understanding the code generally and 
studying the algorithm took another six hours.9 

Thereafter, they decided that parallel processing 
of data blocks was the most promising approach, 
but they had problems unraveling existing data 
dependencies.

The team continued with a parallelization at 
a low abstraction level, taking about 12 hours. In 
particular, they parallelized frequently called code 
fragments with OpenMP and exchanged a sort-
ing routine for a parallel Quicksort implementa-
tion using PThreads. However, the speedup was 
disappointing.

The team decided to refactor the code and  

Bzip uses a combination of techniques to compress data in 
a lossless way. It divides an input file into fixed-sized blocks 
that are compressed independently. It feeds each block 
into a pipeline of algorithms, as depicted in Figure A. An 
output file stores the compressed blocks at the pipeline’s 
end in the original order. All transformations are revers-
ible, and the stages are passed in the opposite direction for 
decompression.

 ■ Pipeline stage 1. A Burrows-Wheeler transformation 
(BWT) reorders the characters on a block in such a 
way that similar characters have a higher probability of 
being closer to one another.1 BWT changes neither the 
length of the block nor the characters.

 ■ Pipeline stage 2. A move-to-front (MTF) coding applies a 
locally adaptive algorithm to assign low integer values 
to symbols that reappear more frequently.2 The resulting 
vector can be compressed efficiently.

 ■ Pipeline stage 3. The well-known Huffman compression 

technique is applied to the vector obtained in the previ-
ous stage.

Julian Seward developed the open source implementa-
tion of Bzip2 that we used in our case study.3 It lets block 
sizes vary in a range of 100 to 900 Mbytes. A low-level 
library comprises functions that compress and decompress 
data in main memory. The sorting algorithm that’s part of 
the BWT includes a sophisticated fallback mechanism to im-
prove performance. The high-level interface provides wrap-
pers for the low-level functions and adds functionality for 
dealing with I/O.
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improve its readability by introducing classes. Af-
ter eight hours of work, the execution times didn’t 
differ much from the previous version, but the code 
was now easier to understand. The restructured 
code also made it easier to implement parallel-data-
block processing, which took about 12 hours. Only 
a few lines had to be changed to introduce paral-
lelism, but the team found it difficult to assess the 
impact of those changes.

Although the refactoring approach was prom-
ising, the group ran out of time as the deadline 
approached and decided to abandon this strategy. 
The team reverted to the version without classes 
and began to integrate some parallelization ideas 
from Bzip2SMP (two hours).5 Additionally, they 
spent three hours making the files ready for 
submission.

In the end, Team 1 reported that fine-grained 
parallelization was inappropriate. It would have 
required too much effort to restructure the code 
for higher speedups.

Team 2
The second team focused on extensive restruc-
turing of the sequential program before starting 
with the parallelization. Their plan was to ana-
lyze and profile the code (one week), refactor it 
(one week), and parallelize it (one week). The 
team spent about 2 × 50 hours of work in total. 

The first week went mostly to analyzing code and 
profiling the sequential Bzip2 with Valgrind and 
gprof. In the remaining time, they concentrated 
on restructuring and preparing the code for par-
allelization. Two days before submission, they 
were still refactoring. They performed the actual 
parallelization on the last day.

The team rewrote the entire Bzip2 library 
as well as the I/O routines using a producer- 
consumer pattern. Thereafter, they used PThreads 
to introduce parallelism. They realized early on 
that a fine-grained parallelization wouldn’t yield 
sufficient speedup, so they tried to achieve paral-
lelism on higher abstraction levels. Massive refac-
torings were indispensable to resolve data de-
pendencies and enable blockwise compression in 
their producer-consumer approach.

Although the team identified several other 
hotspots for parallelization, they didn’t have 
enough time to tackle them. For example, they 
had no time left for fine-tuning the parallel ver-
sion or for a plan to improve throughput with 
pipelining.

Team 2 reported that it drastically underes-
timated the time needed for refactoring. They 
found refactoring to be frustrating because it took 
a long time before an executable parallel version 
was available. Nevertheless, the team knew that 
drastic restructurings were indispensable.

PThreads and OpenMP add parallelism to C in two different 
ways. PThreads is a thread library, while OpenMP extends 
the language.

PThreads
Posix Threads (PThreads) is a threading library with an inter-
face specified by an IEEE standard. PThreads programming is 
quite low level. For example, pthread_create(...) creates a thread 
that executes a function; pthread_mutex_lock(l) blocks lock l. For 
details, David Butenhof has written a good text.1

OpenMP
OpenMP defines pragmas—that is, annotations—for insertion 
in a host language to indicate the code segments that might 
be executed in parallel. Effectively, OpenMP thus extends the 
host language. In contrast to PThreads, OpenMP abstracts 
away details such as the explicit creation of threads. However, 
the developer is still responsible for correctly handling locking 
and synchronization. 

With OpenMP, you parallelize a loop with independent it-
erations by inserting a pragma before the loop. The following 
example illustrates a parallel vector addition:

#pragma omp parallel for //OpenMP annotation
 for(i=0; i<N; i++) { //usual C code
  c[i] = a[i]+b[i];
 }

In this example, OpenMP creates several threads that handle 
iterations of the loop in parallel. The example also illustrates 
OpenMP’s idea of incrementally parallelizing a sequential 
program by inserting one pragma after the other in the code. 
When a sequential host compiles the code, it simply ignores 
the pragmas and runs the code as a sequential version. In our 
real-world study, OpenMP had limited applicability (see the 
lessons learned in the main text, under the subhead “Incre-
mental Parallelization Doesn’t Work”).

OpenMP is standardized and available for C and For-
tran.2 Porting OpenMP to other languages is ongoing.
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Team 3
The third team started with a fine-grained par-
allelization strategy using OpenMP and aban-
doned it later in favor of a master-worker ap-
proach using PThreads.

The team initially planned to begin with pro-
gram and algorithm understanding, followed 
by parallelization with OpenMP. They reported 
working six or more hours a day. During the first 
10 days, they spent two to three hours a day on 
understanding code and algorithms and trying 
out OpenMP directives. They profiled the se-
quential code with gprof to find performance 
bottlenecks.

After trying different ways of fine-grained 
parallelization with different OpenMP directives 
(for example, parallel for), the team realized that 
the speedups weren’t promising and that changes 
would have to be much more invasive. However, 
they didn’t want to make large modifications to 
the Bzip2 library, so they decided to focus on par-
allelism at a higher abstraction level and imple-
mented a master-worker approach in which they 
compressed different file blocks independently. In 
this design, the master fills a buffer with blocks, 
while workers take blocks from the buffer to com-
press them.

The team had difficulties with the thread-
synchronization mechanism between master and 
workers. They used sequence diagrams to design 
the mechanism and conditional variables and 
locks to implement it. Another difficulty was the 
file output, which required a sequence adjustment 
of the compressed blocks to obtain the original 
order.

Unfortunately, Team 3 didn’t finish the paral-
lel version by the deadline, so they were excluded 
from the final competition. The main reason was 
a trivial bug in an I/O routine, but the team said 
they were too tired to find and fix it. However, 
they submitted a working version one week after 
the deadline, which we used for benchmarking.

Team 4
This team used a trial-and-error approach for 
parallelization, working from the bottom up. 
Their plan was to create execution profiles of the 
sequential code with gprof and KProf, find the 
critical path, and parallelize the code along this 
path. They chose OpenMP as a means for par-
allelization, which they considered to be simpler 
and superior to PThreads.

Team 4 reported that its actual work was dom-
inated by trying out spontaneous ideas, which 
was why they didn’t accurately log their effort in 

terms of person hours. During the post-competi-
tion interview, they estimated to have spent about 
70 percent of their time implementing and debug-
ging ideas and only 30 percent actually reading 
and understanding the sequential code. They per-
ceived program understanding as one of the most 
difficult tasks. The team misunderstood large 
parts of the code during their first parallelization 
attempts, and they failed to gain a thorough un-
derstanding of the compression algorithm.

Another difficulty was that many parts of the 
sequential code weren’t parallelizable right away, 
due to data dependencies, function-call side ef-
fects, and sequential-execution optimizations. In 
addition, the sequential version implemented many 
loops in a while(true){...} style that didn’t permit en-
closing them with the parallel loops of OpenMP. 
Consequently, the team started to refactor the 
loops. They focused on loops with no function 
calls, thus avoiding side effects in the parallel case. 
They unraveled data dependencies, which led to 
code that could be wrapped by parallel OpenMP 
loops. Unfortunately, this effort resulted in only 
minor speedups.

Team 4 explained that they thought OpenMP 
would be a good, scalable approach for parallel-
ization in general. However, parallelizing Bzip2 
would have required a much more fine-grained 
synchronization between individual threads to 
preserve data dependencies. The use of OpenMP 
required massive refactorings to make the sequen-
tial code parallelizable. This work was difficult to 
complete within the given time. Given the oppor-
tunity to start over, they said they would have re-
sorted to PThreads instead.

Quantitative Comparisons
Quantitative comparisons of the parallel Bzip2 
code produced by the four teams reveal some 
interesting points. Table 1 shows the total LOC 
without blank lines and comment lines, along 
with the number of lines containing parallel con-
structs, such as pthread_create, pthread_mutex_lock, 
and #pragma omp. Compared to sequential Bzip2, 
the LOC of the parallel versions vary about ±15 
percent. Only a few lines—less than 2 percent— 
express parallelism.

Although the total LOC doesn’t vary widely, the 
number of modified lines is quite high in the case 
of Team 1 (49 percent). Teams 2 and 3 modified 
12 and 17 percent of the original code, also a sig-
nificant refactoring effort. Team 4 modified about 
3 percent of the original code, but failed to produce 
a speedup.

Team 2 won the competition by obtaining an 
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impressive 10.3 speedup using 51 threads on a Sun 
Niagara T1 (8 processors, 32 hardware threads in 
total). Speedups greater than the number of cores 
on the Niagara are possible, as the Sun T1 proces-
sor provides four hardware threads per core and the 
machine switches to a different hardware thread if 
an active thread waits for data. In general, it can 
pay off to have many more software than hard-
ware threads—that is, more than 32 threads—to 
keep the processors busy.

Figure 1 compares performance results for the 
four teams. We compiled the benchmarked pro-
grams with the Gnu Compiler Collection (GCC) 
4.2, using a 900-Mbyte block size and eclipse-
java-europa-fall2-linux-gtk.tar (79 Mbytes) as an 
input file. We executed each algorithm five times 
and averaged the results. The figure shows that 
Team 4 achieved a speedup of less than 1. Their 
execution time was about 15 percent slower than 
the sequential program. Moreover, their pro-
gram’s design allowed only 1, 2, 4, 8, or 16 paral-
lel threads.

Lessons Learned
We offer eight lessons learned from our experience.

Don’t Despair While Refactoring
Parallelizing a sequential program might not be 
possible right away. It might require massive refac-
torings to prepare the code for parallelization. 
Refactorings improve code modularity, eliminate 
function-call side effects, and remove unnecessary 
data dependencies.

Team 1 refactored almost half the code, while 
Teams 2 and 3 refactored 12 and 17 percent, re-
spectively (see Table 1). Team 4 refactored only 3 

percent, but compared to a mere 0.2 percent paral-
lelization constructs in its code, the refactoring is 
still significant.

Although Teams 1, 3, and 4 favored OpenMP 
at first, they soon realized that it required more 
refactoring than PThreads. Teams 1 and 3 turned 
to PThreads instead, trading more explicit (and 
potentially more error-prone) thread program-
ming for less refactoring. The teams chose a sub-
optimal parallelization strategy because of the 
high refactoring cost that they would incur to do 
it right.

Team 2 reported that refactoring for parallel-
ization was frustrating because it took a long time 
to see the results. However, refactoring was im-
portant for winning the competition. Team 1 also 
felt frustrated by refactoring and stopped doing it 
under time pressure.

Obviously, developers need some tools to help 
prepare sequential programs for parallelization. 
Automated support tools could increase produc-
tivity and reduce error rates. At the same time, 
tools could relieve stress and help developers fo-
cus on parallelization issues. Further research 
must define the typical refactoring tasks for paral-
lelization and how to automate them.

Incremental Parallelization Doesn’t Work
A purported strength of OpenMP is its enabling 
of incremental parallelization, which means you 
can start with sequential code and parallilize it by 
simply adding pragmas, one by one. This might 
be possible for simple cases, but we have yet to en-
counter a real program where the incremental ap-
proach works. Real programs like Bzip are full of 
side effects, data dependencies, optimizations for 

Table 1
LOC comparisons for Sequential Bzip2 and four team efforts to parallelize its code

Program
Total 
LOC

Total LOC without com-
ments or blank lines

LOC from previous column 
with parallelism constructs

LOC  
modified

LOC 
added

LOC  
removed

Total effort in 
person-hours

Sequential 
Bzip2

8,090 
(100%)

5,102 0 — — — —

Team 1 7,030  
(87%)

4,228 49 (1.2%) 2,476  
(49%)

801  
(15.7%)

1,675  
(32.8%) 

~2∗50†

Team 2 8,515 
(105%)

5,356 48 (0.9%) 600  
(12%)

427  
(8.4%)

173  
(3.4%)

~2∗50†

Team 3 9,270 
(115%)

5,915 82 (1.4%) 861  
(17%)

837 
(16.4%)

24  
(0.5%)

~2∗30†

Team 4 8,207 
(101%)

5,170 8 (0.2%) 156  
(3%)

112  
(2.2%)

44  
(0.9%)

N/A

†~2∗x represents the effort of two people working for x hours each.
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sequential execution, and tricky code. Significant 
refactoring is necessary.

PThreads might require less refactoring than 
OpenMP because it supports more explicit par-
allel programming, but the effort can still be 
significant.

On the basis of this and other case studies,10 
we believe the idea that sequential code can be 
parallelized without significant modification is a 
myth.

Look beyond the Critical Path
Some parallel programming textbooks advo-
cate using a profiler to find the critical execu-
tion path and parallelizing along that path.11 
This advice sounds reasonable, but with hind-
sight, we don’t think that it’s a good approach. 
Parallelizing the critical path worked for none 
of the four teams in this study, nor for our 
other case studies.10

Profiling sequential code certainly provides in-
formation about performance bottlenecks. How-
ever, these bottlenecks might be closely related 
to the way the sequential version implements the 
specification. A sequential implementation typi-
cally involves design choices that preclude others 
representing degrees of freedom that effective par-
allelization might require. It’s not enough to study 
the sequential implementation. You must also 
study the specification as well and consider alter-
native, parallel algorithms for the parallel version. 
This is why we gave the students an article that in-
cluded Bzip’s specification.9

Fine-Grained Parallelization  
Isn’t the Only Choice
Parallelizing loops, even if they’re on the critical 
execution path, yielded only minor speedups (see 
the results for Teams 1 and 4). Successful paral-
lelizations constructed larger tasks for parallel 
execution.

Replacing a sequential sorting routine with a 
parallel version didn’t significantly improve per-
formance either, as Team 1’s experience showed. 
We don’t have enough data at this time, but we 
suspect that replacing standard library routines 
with parallel versions might not generate signifi-
cant speedups for some real applications. If this is 
true, developing parallel libraries might remain an 
interesting exercise with little effect on practice.

Evaluate High-Level Parallelism’s Potential
The most successful teams tackled parallelization 
on high abstraction levels by introducing a pro-
ducer-consumer pattern (Team 2) or master-worker 
pattern (Team 3).

You might assume that high-level parallelization 
would be easier because it would involve less detail. 
In our experience, the opposite is true. The origi-
nal program had nonlocal data dependencies to un-
ravel, and the functions had side effects to under-
stand before any changes could be made. Team 4 
modified the code at loop level, which was actually 
easier but less successful. High-level improvements 
affected more parts of the program and were much 
more difficult to realize, as documented by Team 
2’s refactoring effort.
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We need further research on how to give de-
velopers parallelization support at appropriate ab-
straction levels. For example, we need to identify 
useful parallel patterns, as Timothy Mattson and 
his colleagues have done,12 and make these pat-
terns configurable. We also need techniques to 
simplify the integration of such patterns into exist-
ing code.

Trial and Error Is Risky
Team 3 started with trial and error in OpenMP 
and quickly realized that it wasn’t the way to go. 
Team 4 didn’t extricate themselves from this 
mode. It became difficult to measure progress 
or decide whether to abandon certain choices. In 
short, this approach failed.

It’s easy to be seduced into a trial-and-error 
mode when working with code, but it’s espe-
cially dangerous when parallelizing because you 
face many new choices and unknowns. Instead, 
you need a plan of attack. First, figure out the 
“big picture.” Then develop some hypotheses 
about where parallelization might yield speedups. 
Then start identifying the most promising choices 
and eliminating poor ones. Some back-of-the- 
envelope calculations might help.

Parallel Programming Isn’t a Black Art
Most people still think of parallel programming 
as a black art. However, our graduate students 
had only one semester’s experience with parallel 
programming and didn’t find it overwhelming.

Dealing with parallelism requires new con-
cepts, new algorithms, and special attention to 
new types of defects. However, we believe that 
parallel system design and parallel programming 
aren’t black arts that only the elite can master. 
We’re hopeful that, with appropriate concepts, 
languages, tools, and training, competent pro-
grammers will handle multicore system chal-
lenges just fine. Given some time, the professional 
community will identify the engineering princi-
ples to support general-purpose, parallel software 
and the ways to teach and apply these principles 
successfully.

Other Issues
Beyond this study, the following advice might be 
helpful.

Consider Multiple Levels for Parallelization
Jon Louis Bentley identified different levels to 
consider when writing efficient, sequential pro-
grams:13 “In most systems there are a number of 
design levels at which we can increase efficiency, 

and we should work at the proper level to avoid be-
ing penny-wise and pound-foolish.” This is excel-
lent advice for parallelization as well.

If You Start from Scratch ...
When you’re writing a new sequential program 
from scratch, ask whether it might be parallelized 
in the future. If so, write it in a way that saves 
future refactoring work. For example, keep com-
putational tasks modular and free of side effects 
so that individual threads can execute them. You 
should parameterize functions right away to sim-
plify the division of work. This controls the parts 
of data to which the functions apply and enables 
domain decomposition. It’s also important to 
write functions in a thread-safe manner that al-
lows many instances to run simultaneously.

It might help to think in terms of parallel de-
sign patterns when writing a multicore program 
from scratch.12 For example, the master-worker 
pattern manages independently running, parallel 
computations, while the pipeline and producer-
consumer patterns break computations into phases 
that can be overlapped. You can combine parallel 
patterns—for instance, the master-worker pattern 
combines with the domain decomposition pat-
tern—and you can split individual worker com-
putations in pipeline fashion. Ideally, you would 
design all computational steps so that they can be 
packaged into threads. We recommend trying out 
prototypes early to check feasibility and perfor-
mance. Prototypes are useful because you might 
not know cache effects or overhead costs of various 
building blocks (such as thread creation, commu-
nication, or I/O) ahead of time. These effects and 
costs might also deviate from what you expect.

Practical Training
None of the students experienced difficulties in 
creating small parallel programs from scratch. 
However, things changed when they had to par-
allelize Bzip2. Despite intensive training in par-
allelization, the students reported a big differ-
ence between parallelizing small “toy” programs 
and a real-world application. They couldn’t 
readily apply concepts such as loop paralleliza-
tion or data partitioning. Bzip2 was not only 
more complex but also heavily optimized for se-
quential performance, making parallelization a 
difficult task.

It’s well known that computer science stu-
dents need exposure to real systems, and multi-
core in no way diminishes this need. Fortunately, 
many students are excited about the current shift 
to parallel computation and eager to learn and 
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explore. They are further motivated by the pros-
pect of a virtual job guarantee from being able to 
work with multicore/manycore software.

M ulticore software isn’t merely a matter 
of programming in the small. Many 
aspects of classical software engineer-

ing apply and must be adapted, such as design 
patterns, performance modeling, prototyping, 
refactoring, and tool support. Multicore software 
engineering is an area that seeks to build a core of 
systematic, empirically validated engineering prin-
ciples for general-purpose, parallel software. We 
hope this limited study helps open the door to this 
research.
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