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Abstract, The fixed-point construction of Scott, giving a continuous lattice solution of equations
X =T(X) where T is an endofunctor on the category of conlinuous latlices, is exiended to
categories enriched by partial orderings on the morphism sets, The result aliows data siructures to
be reakized not only in the category of continucus lattices, but also in the category of complete
lattices, in the category of complete partial orders, or in any of several related categories of
partial orders.

1. Introduction

A key feature of lattice-oriented theories of computation is the specification of
objects as solutions of fixed-point equations X =T(X). When X ranges over the
elements of a complete lattice, a canonical solution is supplied by the Tarski
fixpoint theorem. Typical applications include languages [3, 26} and programs in
assorted variations {6, 11, 25]. Scott defined lattice-theoretic models of the lambda-
calculus {19, 21] and of several other structures [18, 20] by solving similar equa-
tions where X ranged over the class of continuous lattices. Reynolds {16} showed
the existence of canonical solutions for a large class of functors T, and Lawvere [19,
p. 129] pointed out that the result in the case T(X)=[X -» X]is a consequence of
the fact that certain direct and inverse limits coincided.

In this paper we extend these results from the category of complete lattices to any
category on which each morphism set has a well-behaved complete partial order-
ing. These inctude the original case of continuous lattices, complete lattices,
complete partial orders, powers of these categories, and the category of directed
complete relations. Thus many of the repetitious verifications of details are
“factored out” into the proof of the general theorem, leaving a smaller portion
which must be worked out for each category under consideration. By claifying and
separating the properties of the general construction from the properties of the
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individual categories, we hope to give a more elegant analysis of this class of
problems.

It is worthwhile to explore the analogy of the standard fixpoint construction, If L
is a complete lattice, f: L - L a continuous function, then one constructs

Xo= _L,
Xiv1 = fxg).

Then y =} xy is a fixed point of f, and it is **least’’ in the sense that if f(z)=< z, then
y =z To get the fixed-point property, we calculate

f)=fUx)=Ufla)=Uxn =Ll =y

The “least” property is obtained by showing that if f(z)=<z and then x, <z for
every k {by induction on k). If L is regarded as a category with L(x, y)={1}if x =y
and @ otherwise, then least upper bounds are colimits and f is an endofunctor which
preserves directed colimits,

Hence, to solve a fixpoint equation in some appropriate category, starting with an
inttial object a, one sets

Xp=a,
Xparp = Ty,

y = colim xy.

Then Ty = T{colim xe)=colim Tx =colim xp+ = ¥

The correctness of this construction, in the case where the category has colimits
and T preserves w-colimits, was shown by Smyth and Plotkin [14]. The main new
result of this paper, Theorem 3.1, gives a sufficient condition for the existence of
these colimits in terms of the existence of limits, which are generally easier to
supply. Again we have a “least” property, which says that if z is any object of the
category and there is a morphism Tz - z (analogous to T{z}=<z), then there is a
unique morphism y - z satisfying an appropriate diagram condition. This forces y
to be unique up to isomorphism. Last, in Section 4, we give some examples of
categories and functors included by the theory.

Our use of enriched categories is also worthy of note. One of the dogmas of
category theory is that all of the interesting structure in a category Hes in its
morphisms [8]. If we are interested in ordered structures, then it becomes plausible
to study categories with ordered morphism sets {2, Section 4E]." In this case, we
are then able to prove theorems about classes of categories rather than single
categories,

' See also [9), in which category-enriched categories are studied.
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2. Preliminaries

We presume familiarity with the standard notions of category, morphism,
functor, limit, colimit, and cone [10]. We denote categories with boldface type, e.g.,
K, KP, w. The set of morphisms from object x to object y in category C is denoted
C(x, y}. We compose morphisms from left to right: if feClx, y) and ge C{y, z),
then fg &€ Clx, 7). {This will eventually make the subscript conventions more tract-
able.) We write application from right to left: if T:C->D and I/:D-E are
functors, and k e C(x, y), then UTk € E(UTx, UTy); similarly, if ¢ is an /-indexed
family and7 € I, then i is the element corresponding to i, We will also use center
dot {- ) for composition and add parentheses as needed for clarity, We will say C
has D-(co-Yimits iff every T: D - C has a (co-)limit.

Let @ denote the category whose objects are the nonnegative integers, with
wk, n)={{k, n)if k<=n and =0 otherwise,

Proposition 2.1, w is the category freely generated by the graph whose set of objecis is
w and whose edges are (k, k+ 1) for each k.

Let O be the category whose objects are partially-ordered sets X such that every
w-chain X, S X, & - S x, - of elements of X has a least upper bound and
whose morphisms are maps which preserve lub’s of w-chains. Let U be the
forgetful functor O — SETS. Clearly O has finite products under the componentwise
ordering,

Proposition 2.2, Let X and Y be two objects in O, let {x;} be an w-chain in X and let
fyi} be an w-chainin Y. Then in X X Y, (—;x, Ly =10 (xi ¥1).

Definition 2,3, A category K is order-enriched by giving, for each hom-set K(x, y),
arelation =, ,y such that (K(x, y), L.y} is an object of O and such that for each x, y,
z, the composition map K{x, y}xXK(y, z)}»> K(x, z) is a morphism in 0. We write
K(x, y) for both the hom-set and the object in O.

An order-enriched category is just an O-category in the sense of [7] or [10, pp.
180-181). This ordering requirement is weaker than one might expect, as we do not
even require that morphism sets have least elements, In fact, every category is
order-enriched under the ordering which makes every pair of distinct morphisms
incomparable. Our primary interest, of course, is in orders which are nontrivial.
Sull, O is sufficiently close to SETS that elementwise arguments are feasible:

Proposition 2.4, If fi c K(x, y) and g€ K(y, z) are w-chains of morphisms in an
order-enriched category, then (Ul fi ) Uk g )= Lix fage.
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Proof. Immediate from Proposition 2.2 and the continuity of composition.

Definition 2.5, Given an order-enriched category X, let KP denote the category
whose objects are the objects of K and whose morphisms are given by KP(x, y)=
Ky, y)x Ky, x), with {f, g) - (', gy={ff, g'g). The identity morphisms (1, 1} of
KP will be denoted 1. Let KR (the category of K-projections) be the subcatepory of
KP whose objects are those of K and whose morphisms KR(x, y) consist of pairs
(f, e K(x, y}xK{y, x)such that fg =1 and gf = 1.

If {f, g)e KR(x, y), we occasionally refer to f as the embedding and g as the
retraction of {f, g},

It K is a category of data types, a morphisim in KR(x, y} may be thought of as an
injection of the data type x into the “larger’ type y [20]. The name “‘projection”,
of course, conflicts with the standard notion of projection maps from a product to
its components, but the latter notion does not arise in this paper until Section 4. We
will occasionally write ““projection pair” instead of “'projection” for a morphism of
KR.

Proposition 2.6, ¢ is an isomorphism iff @ ={f, f~'} for some morphism f of K.

Proposition 2,7, (i} If {f, gy and {f", g) are projections, then f = f".
(ii) If {f, g) and {f, g') are projections, then g = g’

Proof, (i) /" = f'gf = £, and similarly f & ',
(i) g'=g'fe = g, and similarly g = g’

Proposition 2.7 (i) implies that KR is isomorphic to the sub-category of K whose
morphisms are “embeddings”, i.e. first elements of projections.” Most of our
concern is with K and KR; we use KP only occasionally. Dually, by Proposition 2.7
(ii}, KR is isomorphic to the subcategory of K* whose morphisms are *‘retrac-
tions,” i.e. second elements of projection pairs.2

Definition 2.8. If K,K' are order-enriched categories, a functor T:K-K is
continuous on morphism seis iff for each x, y € K, the map K(x, y) - K'(Tx, Ty) given
by f— Tf is a morphism of O.

This is another way of saying that T is an O-functor [7].

Proposition 2,9, If T: K > K' is continuous on morphism sets, and f; is a monoronic
w-chain of morphisms, then U Tfi = T(f:).

Since we will spend a great deal of time manipulating limits, it is worthwhile to
review the relevant concepts,

z Isomorphic as categories, but not as order-enriched categories,
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H 7T is a functor D— K and x is an object of K, a cone from x o T is a family ¢ of
morphisms of K, indexed by the objects of D, such that for each object 4 of D,
¢d € K(x, Td), and for each morphism heD(d, d'), the following diagram in K

commutes:
X
+d y
Th

Td ——————t= Tl’

Typically D will be w or @, x is the apex of the cone.

If ¢ is a cone from x to T and ¢’ is a cone from y to T, then feK(x,y)}is a
mediating arrow from ¢ to ¢' iff for each object d of D, the following diagram
commutes:

#d

Y
‘#'d\g

Td

v is a limiting cone of T iff for any cone ¢ to T, there is a unique mediating arrow
from ¢ to y. We often write ¢* for this mediating arrow when T is clear from
context. We refer to the apex of a limiting cone as [im T. Limits are, of course,
unique up to isomorphism. The dual notion is a cone from T to x, and a colimit.

3. Results

The first theorem establishes a sufficient condition for the category KR to have
w-colimits, These colimits turn out to coincide with w®"-limits in K,

Theeorem 3.1, Let K be an order-enriched category with @ -limits. Then KR has
w -colimits,
The proof proceeds by definitions and lemmas.”

Definition 3.2, Let £={¢k k € w} be a family of morphisms in KR with common
codomain x. £ is said to have property p iff £k = {fi, g} and (i) gxfx = gx+1 few for
kewand (i) Lhvaefe = 1.

> The theorem is & refinement of one proved by the author under some additional assumptions about

the behaviour of limits in K, Gordon Plotkin showed that the additional conditions couid be removed;
the present arrangement of the proof is due to D, Lehmann,.
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Lemma 3.3, Let K be an order-enriched category with w°®-limits, and let L - w0 » KR
be any functor. Then there is an object L* of KR and a & from L to L* which has
property p. Furthermore, the cone formed by the retractions of £ is a limiting cone for
the functor L':@®®>XK obtained by keeping the retractions and forgetting the
embeddings.

Proof. Let L:w > KR be given by n— La; (1, # ) { fums &mn X =m) We will
construct colim L. Let L:w*">K be neLn, (m, n}> gon (m=n). Let L*=
tim L', with y: 1+ ga, the limiting cone. The cone y is shown in Fig, 1.

LOt———— ) ot——e |2 p—— - -+
91,0 82,1

Fig. |

We nust next supply arrows f,w: L1 - L* which will turn Fig. 1 into a cone from
L to L*, To supply an arrow f,e: Ln - L*, we construct a cone ¢, from Ln to L’;
then the mediating arrow will serve for f,e.

For each n, define

g k=n,

Y 4
¢ ~ frx n=k.

To show that ¢, is a cone in K from Lu 1o 7, we must show that if m=
k, (am ) gmi = dpuk. (Note that if m <k, there is no morphism in @° and hence
nothing to prove.) If si=m, then n=k and Butl * Bk = BBk = Bnx = bk, If
n=k, then m=n, $0 ¢t * g = fam@mk = fuk fomBmk = frrx = Puk. Since k = m, this
takes care of all values of n. So ¢, is a cone from L to T

Let f,,€K(Ln, L*} be the mediating arrow ¢, - y. Thus, fiofeor =@k In
particular f,c8wn = i,

Let &n = {fyc0, goon). To show that {&n:new}is a cone from I to L* we must
show that fow = fons1 faci . But for any &,

fn.n+1fn+l,00g00k :fn.n+l¢n+lk = q«.’nk zfﬂwgﬁok»

so the equality holds by unigueness of the mediating arrow.
For condition (i) of property p, we calculate;

Boonfroo= Bom+18n+imfuntt favie & goo,n+1ﬁ.+1,oo.
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For condition {ii) we show that Ligwrfr« i5 @ mediating arrow v -y, For any n,
(II] gwkfkoo)gcnn = |zl gookfkwgoo:: = kl;' BackBkn = Boons

Since | is also a mediating arrow y— v, the uniqueness property allows us to
conclude | Ji 2ok freo = 1. Consequently, gokfia = 1, and (frw, Bwk) 1s @ morphism
of KR.

Lemma 3.4, Let K be an order-enriched category, L :w » KR a functor, and £: L >
L* a cone with property p. Then

(i} ¢is a colimiting cone in KR,

(i1} the retractions of &€ are a limiting cone in K to L': w°" > K obtained from L by
keeping the retractions,

{iii) the embeddings of £ are & colimiting cone in K from L": @ - K obtained from
L by keeping the embeddings.

Proof. (i} and (iii) are dual; we prove (ii). Let &1 = {fieo, Boon), and let {gas, 111 € @)
be a cone in K from an object M to L. We claim the mediating arrow is
1l gaefreo. We must first show that the gag fee form an w-chain:

Eatkfieo = Ertkr1henkfikr1 furt,0 B Bkt fret .00

Hence the indicated lub exists. To verify that this is a mediating arrow we calculate,
for any n:

(U g.wkfkoo)goon =L gamfroofeon = L1 gamfrooLoon
k k k=n
:kt;;] ErkBkn

= BMin.

So this is a mediating arrow. For uniqueness, let & be any mediating arrow from
{grtm} 10 {geon}. Then

a=al=a- (LEEE gookfkw) = [IF a’guokfkm:l.ij 8rtx fraon

thus establishing uniqueness.
For (i), let {{ funs, 2asn) iR €} be a cone in KR from L to some object M. By (ii)
and (iii) then exist gao€ K(M, L*) and four € K(L*, M} which uniquely mediate
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the retractions and embeddings. Hence { fors, 8aco} 1S the unique mediating arrow
& > {{fuan gar )}, Tt remains only to show that {fanr, Zareo) is a morphism of KR.

fonigare = (LE‘ gockfkno)faoMgMuc(LEl gookfkno)
= Lkl Ewkfreo fomBrreoforfio (Proposition 2.4)
= II] Seok furiBatfrwo

= [EJ gnokfkco

=1,
&afoofeort = Barfion foofins  foOF any k

C gakcfins

1.

Lemmas 3.3 and 3.4 complete the proof of Theorem 3.1.

Theorem 3.5, Let K be an order-enriched category with ex°P-limits, and let T: KR~
KR preserve property p. Then T preserves w -colimits in KR,

Proof. Immediate from Lemma 3.4 (i),

Theorems 3.1 and 3.5 give us conditions on K and T which enable us to apply the
general fixed-point construction sketched in Section 1. Our account of this con-
struction follows that of Plotkin and Smyth [14]. If C is any category with initial
object and 7:C~ C is any functor, let PFP(T) denote the category whose objects
are diagrams in C:

b
M ~+— T™
and whose morphisms 7 - 5’ are those morphisms o € C{cod(n ), cod(n)) such that

Ll
M ———— TM

commutes.
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Theorem 3.6 [14]). Let C be a category with w-colimits and an initial object, and let
T: C- Cbe any functor that preserves w-colimits. Then PEP(T) has an initial object
Y TL® = L* which is an isomorphism in C.

Proof, Let xy be an initial object of C and let #y be the unigue morphism in
Clxo, Te). Define L:w = Cby

LO= Yo, L(O, 1 ): Hu,
Lik+1Y)y=TLk, Lk, k+1)=08,=T8,_,.
Let L* = colim L with ¢ the colimiting cone. Next construct a cone p from TL to L*
by setting pk = £(k + 1), Since T preserves w-colimits, TL* is a colimit of TL, with
colimiting cone T£. So we have a unique arrow o € C(TL*, L*) mediating between
T¢ and g, that is, for any k, Ték - o = £k + 1), We claim  is the desired initial
object,
Let n e C(TM, M) be any object of PFP(T). Define a cone » from L to M by
v(0)=a, the unique morphism in C{xg, M),
plk +1)y=Tvk - n.
To show that » is a cone, we verify by induction that 8, v(n+1}=wn: For

n=0,8p vli=8;-Tvd n==0y Ta - n=0a =v0. Assume the identity holds for
# =k. Then

Groy - v{k +2Y=T(6) Tk +1) -9 (definitionof 8, »)
=T{th vk +1))-n  {Tisalfunctor)
=Trvk 5 {by induction hypothesis)
=p{k+1) {definition of v).

We must show that there is a unigue morphism o such that

commutes. We will show that o makes the diagram commute iff & mediates
between the cones £ and . Since the mediating arrow exists and is unigue, this will
complete the proof of initiality,
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First, assume o is the mediating arrow from £ to », that is, £k - & = vk. Since TE s
a colimiting cone, it will suffice to show that for any k, T¢k - o - o = Ték - To - m:

(Teky-o=¢k+1)- o (mediating property of ¢)
=plk+1) (mediating property of @)
=Tk 7 {definition of »)
=Tk o) 1 (mediating property of )
=T¢k - To - (T isafunctor).
Last, assume o makes the square commute. We must show that & - o = vk. We

proceed by induction on k. For k = 0, the equation holds by initiality of xo. Assume
(¢k)Y: o = pk. Then

Ek+1)-o0=T¢k -0  (mediating property of ¢)
=Ték - Tor - (since the square commutes)
=Ttk - o) - (T isafunctor)
=Tvk ' n (by induction hypothesis)
=uvlk+1).

Last, we construct an inverse for ¢ as follows. Define a cone » from L to TL* via

v =the unique morphism x,-» TL¥,

vlk+1)= Ték.

Let 8 be the mediating arrow from ¢ to ¢, so & - 8 = vk, Then

Ek+1)- 0 -d=vk - y=Tek p=¢k+1)

and
Ték - 0=¢k+1) 8=v(k+1)=Ték.

Since £ and T¢ are both colimiting cones, we deduce 0y = 1 and 6 = 1.

4, Applications

The framework of the previous section says that one should construct domains as
follows: Choose a category K of domains with w®®-limits, and a p-continuous
functor T:KR -~ KR which describes the self-referential properties of the desired
data types. One then solves the domain equation X = T{X) using Theorem 3.6 (by
Theorem 3.1 the colimit object is constructed as an e ®-limit in K): the solution
obtained is canonical,
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This section is devoted to listing some categories K with @ °"-limits and some
p-continuous functors T, The choice of K and T for a particular application is often
a delicate decision which is beyond the scope of this paper; our aim is merely to
indicate some of the possibilities,

Example 4.1, A complete lattice is a partial order (L, =} with the property that if
S< L, then S has a least upper bound in L. We say D < L is directed if D #@ and
any pair of members of D has some upper bound in D. Let CLD denote the
category of complete lattices with morphisms chosen to be the maps that preserve
lubs of directed sets, CLD is order-enriched under the ordering feg iff
(Vx)[f(x) = g(x)]. Then CLD has w°P-limits.

Proof. Let G:w® > CLD. Denote G(n, k) by gu(n=k). Let Loo={(xo, x1,...):
eGi & (Vnew)lVkcwln = k=>g.(x,)= x:1} under the'ordering (xo, x1,...)C
()’u, Y. ) iff (VE-E Cd)[.l’.' = y,-].

To show L. s a complete latiice, let S<le Let &=
{ve: (xg, Xy, ..., Xk ...} S}S Gk, Then for each k, S, has a least upper bound
8% e Gk. Let yi =tnor g (S¥). We claim that y = (yo, y1,...) is the least upper
bound of §. We must first show that ye L. If k<n, note S¥ =4 {x.:xeS}=
Li{gnk(xn)ix € 812 gt {xn i x € S = g (SF). Therefore, if m=n=k, then
8nk (%) 2 8uk (8 (SH) = i (SH), s0 the terms in the construction of y, are an
w-chain.  Hence, if n=k, then  yr=Unsk 8ok (SH)=Umon gk (SE)=
Uims=n 8nk (gnm(sn*u))= gnk()’n)- So y= (YO» Yis .. ')E Le.

To show that y is the least upper bound of S, we first observe from the definition
of ye that yx 2 SE. If x = (xg, x1,.. .)€ S, then for each k, xx € S, 50 X, = 87 &y
Hence y is an upper bound for § in La. Next, let z = (zg, z1, .. .) be another upper
bound for § in L. Then for every n, 8§ = z,. Now z € Lo, s0 for every n =k, z, =
gnk(zn)- So Zp = Unzs gr:k(zn)Q L gnk(si):yb So Yz, and y is the least
upper bound. (This construction is of course due to Scott.)

The maps geow: Lo Gk:{xo, x1,...)>x, form a cone and preserve lubs of
directed sets. To verify the limit property, let n+ guy, be a cone from M to G. Then
form e M, (gar,(m), . . ., gare{i), .. )€ Lo since the gus, form a cone, and gue: 11—
{ga{m), .., game{p1), .. .} is also a morphism in CLD,

So gasw is a mediating arrow. The uniqueness of gy is assured by the fact that
the underlying set of Ly is a limit in SETS.

As was pointed out by Scott, L is a subset and sub-poset of [[; Gk, but not a
sublattice; lubs of w-chains, however, are formed componentwise,

Example 4.2, O, CPC {the full subcategory of objects of O with bottom element), and
CPC* (CPC restricted to bottom-preserving maps) [12] all have w°"-limits,
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Proof. Mutatis mutandis from the previous proof.
Example 4.3. Any finite product of categories with «°"-limits has o °P-limits.

Thus we can solve systems of several mutually recursive simultaneous domain
equations. Another example is Reynolds’ category of directed complete relations
[17):

Example 4.4, Let RCL denote the category whose objects are triples (L, R, L")
where L and L’ are complete lattices and R < L XL’ has the property that if
Ac L' is directed and 4 <R, then lub A€ R; the morphisms (L, R, L")~
(M, 5, M) of RCL are pairs (f, g) where fe CLD(L, M), g€ CLD(L', M") and for
all (x, y)e Lx M, if (x, y)e R, then (f(x), g{y))e § (Reynolds’ category & is RCL-
R). Then RCL has w°"-limits.

Proof. Let G:w®">RCL. Denote Gk by {Li, Ry, Lt} and G(n, k) by G =
(gnr 24k ). Let Lo, Lo be limits of the L, and L), respectively (i.e. of the appropriate
functors @ -+ RCL - CLD) constructed as in Example 4.1, with limiting cones
Eeons gémz, and let Gen = (gmn: g:JOn) Let

Re={(x, ¥} LooX Lt : (¥ X Gonlx, y)e R}

We claim that (Lo, R, L% ) is a limit, with the cone given by the G,

We must first show that this construction makes (L, Rw, L&) an object of RCL,
Let 4 < LoXLa be directed and 4 ¢ R... We must show that lub A e R, Let
Ar ={xe, x11: (38 € AN Goor{8Y= (3, £%)1}. Bach 4y is directed and 4, = R,, so
A¥ =lub A, € R, Recalling the construction of lubs in Example 4.1, and using the
fact that lubs in product lattices are constructed componentwise, we see that
Geor{lub A)= Uyor G (A% ). Now A% € R, 50 G (45 )e Ry Hence G (lub A)is
a lub of an w-chain in Lgx L}, each of whose elements belongs to R So
Goox{lub d)e Ry, for each k. So lub 4 € R.. Thus R has the required property.

To verify the limit property, let (M, §, M"Y be an object of RCL and let (ganm, 2am)
form a cone from (M, §, M} to G. Since Lo and Ll were constructed as limits,
there exists a unique pair (gasew, £arw) Of morphisms which will mediate be-
tween the morphisms of the cones. It remains only to show that (g,
a1 ) ERCLUM, S, M), (Lo, Reo, L&), Let (m,mYe8. Then for each £,
{(gan{mm), gan(m')) € R, But (gan(m), gan (1)) = {geor(garealt)}, glor (§hrea (1)) =
Gt {(gatonlin ), 8o (MINE Ry, S0 (Gares(t), ghtoe (N € Koo, as desired.

This category is typically used for comparing different semantic schemes [17]
rather than for constructing domains. Plotkin’s SFP [13] also appears to have the
required properties.
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To catch the category of continuous lattices, we need an embedding theorem:

Proposition 4.5, Let C be any category with an initial object and w-colimits, and let
T:C~C be a functor which preserves a-colimits. Let C' be a full subcategory of C
sitch that
(i) C' is closed under isomorphic copies of objects;

(ii) C'is closed under T;

{iti) Colim T'is an object of C'.
Let T' denote the restriction of T1o C'. Then PEP(T") has an initial object which is an
isomorphism in C.

Proof. PFP({T") is a full subcategory of PFP(T)} which, by (iii), inctudes the initial
object of PFP(T).

Example 4.6, Let CONTL be the full subcategory of CLD whose objects are the
continuous lattices {19). Let T : CLDR - CLDR be a p-preserving functor such that
CONTL is closed under T, and let T’ denote the restriction of 7" to CONTL. Then
PFP(T") has an initial object which is an isomorphism in CONTL.

Proof, By Theorem 3.1, colim T is the limit of the retractions of T, by [19,
Proposition 4.1], colim T is a continueous lattice,

For a starting point in the construction, we usually choose an initial object of KR:

Proposition 4.7, For any of the categories K of Examples 4.1-4.3 the one -point order
is initial in KR,

For some constructions, however, the initial object is not the appropriate starting
place. The following proposition ensures that we can start with any xq so long as we
can provide a starting morphism xg - Txg:

Proposition 4,8 (Plotkin). Let C be any category with w-colimits, and let x be any
object of C. Let D denote the category whose objects are morphisms « of C whose
domain is x, and whose morphisms a - o' are those morphisms o e Clcod(e),

cod{a')) such that

Y e
o

commuies, Then D has w -colimiis, and the forgetful functor B » C preserves them,
Furthermore, the identity morphism on x is an initial object of .
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Given a functor T: C~ C and a morphism : x » Tx, we can extend T to functor
T":D-~>Dvia T'a = 8y Ta. This, in effect, starts the iterative construction at X

We may now start to consider, for some fixed suitable K, some functors KR -» KR
which are p-preserving,

Proposition 4.9, The class of p-preserving functors T:KR->K'R is closed under
composition and includes the projection functors K"R > KR,

Proposition 4.10, Let OC be the graph whose objects are small order-enriched
categories K, with OC(K, L) the set of p-preserving functors KR > LR, Then OC is
@ calegory.

The usefulness of this proposition is limited by the fact that most of the interes-
ting categories K are not small.

Proposition 4.11. If T'KP~LP is continuous on morphism sets, and has the

property that if T((f, g))=(f", &', then T({g, N ={g’, f"), then the restriction of Tto
KR is a p-preserving functor KR~ LR.

Proof. Let (£, g) be a projection, and let T((f, g)}={f", g". Then
&f.e'fy={e" ) {f.8)=T«e ) TS 2)
=T{g /) (£ eh=T(ef efN=TEL )= L.
(e f'ey={fg"- & =T e Ts
=T(f 8 & fN=T(fe fe))=T{, )= 1.

Let ¢={{fw, gc):k €w} be family of morphisms with property g. Let T¢k =
(/1 gk). We must show that the gif% form an w-chain with a lub of 1.
For the w-chain, we calculate:

(gfio 85f1) =T (g i)+ T fr, g))
E T{gk+1, frr 1)) T firrs 8k+1))

=(g;€+lf;c+h 8;<+1f;:+1)-

S0 gifk = gi+1[%+1. For the limit, we calculate similarly:

L];I(Séfi, gifi) =1I’ T{(gu fid) T{fes 8x))
= %1 T{gefo gefe))

= T(LEJ {gxfe gkfk))

=T(1)
=1,




Fixed -point consiructions in order-enriched categories 27
Our major tool for constructing p-preserving functors is the following:

Theorem 4,12, Let Ky, . .. K, K be order-enriched categories and let T K % -+« X
K,.—» K be a functor continuous on the morphism sets and covariant in some
arguments and contravariant in the others. Then we can construct a covatriant
p-preserving functor T (Ky X+« XK, )R = KR with the same object function as T and
which is given on morphisins by

s fadlgrs e 8=
(Tlkyy oo ka), T L LY
where
b= { fi if Tiscovariant in its ith argument,
& otherwise
and

. { g if Tiscovariant in its ith argument,

" f otherwise.

Proof, As defined, T' is evidently a covariant functor (K;x. - -xXK,}P->KP,
continuous on the morphism sets, with the symmetry property of Proposition 4.11.

We can now list examples of functors T, continuous on the morphism sets, to
which Theorem 4.12 may be applied. In each case, K may be any of the categories
of Examples 4.1-4.3,

{(t) The Cartesian product functor X:KxK- K,

(i1) The coproduct functor {or any of the related “union” functors)+: KxK-» K
{See Fig. 2).

(iit} The internal hom-functor Hom:K°"XK-=K given by Hom(L,M)=
(LM} if feX(L, M) and g e K(N, P), then Hom(/, g)e K({IM > N),{L- P} is
given by Hom{f, g)(h)= fhg.

{iv) The diagonal functor 4 : K-> K%K given by 4 (x}={x, x), 4()=(f, f).

{v) All of the functors K" » K™ obtained as products of projections K" - K {this
includes 4 as a special case).

We may now display the functors associated with some typical data structures. In
each case, we may realize the structure in any category K to which the given functor
and Theorem 3.6 apply. Unless otherwise noted, we choose x = {1}

{a) Let A be an object of “atoms”, Let T(L)Y={1}+(A % L). L* is the object of
stacks of A’s. The image of {1} is the empty stack.

(b) Let A be an object of “atoms”, Let T(L)=A+{LxL). L* is the object of
lists accessed by “car’ and “cdr™.

{c) If we wish the null list to be distinguishable, then we may set T(L)=
{1}+A + (L x L). The choice of T depends on the use to be made of the data type,
the ‘operations desired, and the type of partial information needed. Note that
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Fig. 2. Coproducts in several categories of orders (b} and (d) are weak coproducts).

{3+ A+ L), {13+ A)+(LxL), and {1}+(A +(L = L}) are distinet, non-iso-
morphic lattices [1].

(d) Let {2, r) be a ranked set [4]. Let T(L)=3{L":5e Q). Then L* is the
object of ranked Q-trees {23, 24]. In this case there is a compact representation of
L* as a set of trees [6, 26].

(e) Let  T=Homed, thus T(L)=[L->L] and T/, g))=(Hom(g, f),
Hom(f, g)). Choose x={1, L} and #¢ KR(x, Tv), and use Proposition 4.8,
Il K= CONTL, then L* is one of Scott's original models of the lambda-
caleulus [19].,

{(f) Let D be an object of K, let T(L)= D +{L~ L], T({f, g))= {1, + Hom(g, ),
lp +Hom(f g)). Then L* is a model for a typed lambda-calculus based on the
primitive data type D.

(g} Hierarchical graphs (similar to [15]). Let G be a fixed set of unlabelled
graphs. A hierarchical graph graph is to be a graph from G whose nodes are
labelled with atoms A or other hierarchical graphs. For g ¢ G, let |g] be the number
of nodes in g. So a hierarchical graph is either an atom or a graph g with |g| other
hierarchical graphs as the node labels. So we have T(Ly=A +E{L'g':ge G}. This
gives a representation of these objects as trees,

5. Conclusions and open problems

We extend Scott’s fixed-point construction to categories enriched by an ordering
on the morphism sets. This allows data structures to be realized in an assortment of
categories of orders,
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This construction corresponds to the construction of domains at language-
definition time; by contrast, Scott’s construction of domains via projections of a
‘universal’ domain [22] seems to correspond to the construction of domains at
run-time via simulation in a fixed underlying type.

An open problem is an adequate account of the various limit-colimit coincidences
that arise in these constructions.
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