itract

omplete type inference system.

ould be able o take an argument of type #; as well.

bject = [mass: real; ‘position:’ point,
: velocity: reall; oo
umber: string, mass: raal,
‘tion: point, velocity: reall:;
[id;numberi'integer,
availabla-missiles: integer,
Witer: country, - captain: person,
881 real, v L U
position: point, velocity: reall;
m = [id-nunber: integer,
vailable-missiles: ‘integer,
position: point]l; .

x.mass¥x.velocity;

) 1987 IEEE

We consider the problem of strong typing for a model of
-oriented programming systems. These systems permit val-
which are records of other values, and in which. fields inside !
ese records are retrieved by name. We propose a type system -

ichiallows us to classify these kinds of values and to classify
ams by the type of their result, as s usual in strongly-typed
ogramming languages. Our type system has two importait’
és: 1t admits multiple inheritance, and it has a syntacti-

iportant characteristic of object-oriented systems is in-
-in- which a.type ; is said.to inherit from type %o if it
terision ‘of 4y, that is, if it has all the fields of ip, plus
ome others, Any function that takes an argument of

- 'write our programs without having to include an

f objects as records with named fields. This gives
treatment of inheritafice: a function which expects a
ertain fields should be applicable to any record con-
fields:  For exatiiple; consider the following pseudo-

 work si ppgl_*.t:;éd.b}.ﬁhe National Science Foun-
ICS 8_303325, MCS_ 8304567, and DCR
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College of Computer Science
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Boston, MA 02115, USA

. - The function momentum should be applicable to both cars

and submarines. We can think of cars and submarines as in-
heriting from movable objects. This model also permits multiple
inheritance: asubmarine is both a movable object and a weapons

..Bystem, becanse any function applicable to a weapons system will

be applicable to a submarine.

iz Gardelli[Cardelli:84] has prbposed .a, type system (which we

call C84) that accounts for inheritance of this sort. He proved
the soundries_s_of a semantics for this system. Unfortunately, C84
sacrifices a useful property of the simply-typed lambda-caleulus
(as exemplified by, the ML, system [Gordon et al.. 78]): the solv-
ability of the type inference problem. That is, we would like to
& grams wit ; type informa-
tion, and then Tet thé Compiling system inifer ‘the' types of all the
botind vatlables, i ol T St BRI T

~

" Tn this paper, we present a variant of the simply-typed lambda
calenlus which handles simple objects, that is, records with named
fields, Following Cardelli, it also handles: variants with naied al-
ternatives. Qur version includes: some minor. variations on:C84,
which allow parameterized type inheritance and which permit a
more obvious serhantics, . _ bt el it o

. We then give a.complete type. inforence algorithm: fo¥" this
system, That is, we show that it is decidable whether a term has
a type in our system, and we furthermore generate the principal
type-of a term. The method for: proving the .completeness of
the type inference algorithm may be generalized to other type
inference problems. . - . TR

We close with some remarks about the differences between
our system and Cardelli’s, and on the applicability of this type-
checking scheme to practical ohject-oriented programuning sys-
tems. . ' :

2. The Type System

Records with named fields are a generalization of pairs, The
generalization of the simply typed lambda-caléulus to pairs and
binary unions is easy, and is shown in Figure 1. For produect
types, we have a pair operator and two projection operators. For
union types, we have two injection oparators {which conceptually
“add a tag bit”) and a selection operator, The selection operator
takes an element of 1y 4 13 and two functions, one of type 1y — 13
and one of type 7 — 75. It examines the first argument, strips
off the “tag bit”, and applics one or the other function to the
underlying datum. This can be expressed by the axioms

case(inka) fg= fa-
case(inRy)fg = gy
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It i_s__ea_sjr to show, using the techniques sketched in Section 4, that
the principal typing problem for this system is solvable. In fact,
imost existing jmplementations of simply typed lambda-calculus
(eg ML [Gordon et al. 78], 3PS fWand 84]) tacitly make this
O i oy L T T

' We extend the rules for binary anions and products to arbi-
trary labelled unions and:products as follows: e
“Let I be'a fixed couitable set of labél.s_a a1, agy It p:_D"—~>
X, where D is a finite subset of L, (that is'a farnily of elements
of X indexed by a finite subset of: 1) then we call'p a row of
.X’s. {This terminology is ‘stolen from: Algol 68); If we fix an
‘ordering ofi: I; then-any. row hiss's canonical finite representation
{(@igs T1 )y 5 s (@i Tn))y Where the a;; arein increasing ordei:”
In this paper, we use the word “type™ to refer to certain syn-
tactic objects, which may be thought of as expressions ot finite
trees in which rows are replaced by their canonical representa-
tions.. " S oo e
. Definition. ‘Theset of types T 15 the smallest set of expres-
sions such that: e
mr contains the hase types. o
(2) T is closed under the binary operation —. .
(3) ¥ p is a row of types, then Tp and Hp are in T,

Tt is easy to give semantics to tliese syntactic objects. Given
an assignment of ‘sets to the base types; we interpret’ — as the
function space (as usual), we intérpret Tp as the disjoint union
T aedoms P2}, and we interpret Tip as the product [Tocaomp pla).

. Let pla « ] denote the usual extension operation on partial
functions. - A . U : _

We can now give the syntactic ‘constructions dealing with
records and state their typing rules:

0 - null: I

e A case MN P:ra

o Piguve 1. Riulss for binary products and ﬁﬁic;ﬁs

3B

CAEM:lp AFN:T. e B
wo AR (M witha = NY:H(pfe— 7). =

- Ah'M:l’[paGdomp :
- AFMa:pe i

' 'The first rule creates a record with nio fields. The second]
rule allows s to extend an arbitrary record by adding a.
field or changing the valie of an existing field. (By contrast; {
allows only the creation of records of fixed length, This is.
only having the primitive 1ist instead of having cons and n
The last rule provides selection in the obvious way. '

We may write down the operations for labelled ‘unions. sim!
larly: : e -

L AbMiT
AFinjaM:Zpla & 7]

AL MIS) ccdomp AFNipla) w1 AFPiT
Ai_—_ifcaseaMNP:_r

These rules are simply extensions of the corresponding T
for binary unions. The first allows injection of a quantity in
arbitrary labelled union, The second selects one case of a lab
union: if the value of M arises from an injection along 1
then N is applied to the value; otherwise the value of the
expression is that of P. The intended semantics may be capti
by the axioms: L

ifcasea{injev)fy = fv :
ifc?.sea(injbv)fy =y (b# “')_ .

The typing rules are'obviouﬂy sound with respect
coproduct semantics for I, We thus avoid the rule for [

in C84, which causes the only semantic difficulties in that syst



3. The Type Inference Problem .

The type inference problem ma,y he stated as follows:
G’wen aterm M, for which A and 7 do we have Ak M T¥

Fol]owmg [Cazdelli 85] and [Mllner 78], we. solve tlus problem
by reducmg it to a unification problem. We do this by using type
_expreasions_to keep. track of the possible types that might oceur
at each node of the derivation tree. We then generate equations
between the type expressions which will ensure that the tree is a
legal derivation tree. Then the solutions to the equations are in
correspondence with all the possible derivation trees. To do this,
we mugt first state the appropriate notions of terms, equations,
and solutions.

; Since we niéed to represent both types and rows of types, we
defitie type expressmns ({TE)) and row- expressmns ((RE))

{TE) B (base type) | (type variable) | (TE) (T ) |
| ©(RE) | IL(RE)

: RE) n= emptyrow | {row variable) | (RE)[(la.bel) « {TE}]

the last production, (*[* — #]) is just a 3-place synta,ctm
ration, which we write using infix notation..

Define a model to be a map from type- and row- va.rxa,bles to

nd row-expressions, as types aid rows, interprefing —, X,
in the obvious way, emptyrow as the empty row, and
pretmg (#[* « #%]) as function extension. This gives us a
ng for p ]= E, where F is a set of equations between type-
row-expressmns (We call these just sets of equations, for

We als need to consider substitutions, which 518 maps from
yw-. variables to type- and row-expressions.: A sub-
'ca.lled a ground substitution if its range consists of
without variables. Clearly each ground substitution

model, and each model determines a ground sub-
nobt ;ned by. using the canonical representation for each
 will therefore use models and ground substltutlcms in-
' below.

iposition of substitutions is defined in the usual way: oot
ani o U dom 7, and (oo 7){v) is (v) for v € dom o,
Jr otherwise.

ma 'S’ub&titution Lemrna): Let E be a set of equa-
odel,. v_a _variable, and t an expression, such that
he u}:E{v{—t] iff[ve—tlopkEF.
iction on the structule of terms.

bstitutioiis, we say o < riff there exists
psuckthat 7 = o o pi We say that o is more

Fequations, and o is 4 substitution; we say
eral unifier of E iff for-all models M wrth
LR < p.
b o is 4t least as genéral as any model of E.
ectly that's unifies £, as we do in the usual case
d'wé require that the result of performing
ledves s’ with a valid set of équations: one
‘& solution, This leads us to the definition

and rows, respectively. Given a model u, we can interpret
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We then have:

_ Theﬁrenﬁ. The language of type- and rew-expressions hae a
decidable most general unification problem..

.. Proof: We present an algorithm which has as its'input a set
Ey of equations and has as its output either a’most general unifier
for Ep or a signal that Iy has no solutions. The algorithm has
two variables, a set E of equations and a substitution o, The
algorithm will satisfy the following invariant:

INVARIANT : . .
OV Bo = (@)(v EEAgos= n)) -
(2)(Ve)(n k= E A dom(p) = vars(E) = oot |= Bo) |

The algorithm is given as follows:

Initialization: Set E = Fy and o to be the identity substitu-
tion on vars(Eq).

Loop Step: If E is empty, then halt and return o. Otherwise,
choose an equation from F and tra,nsform E according to an
algorithm to be given later.

Clearly, the initialization establishes the invariant, If E is
empty and the invariant holds, then we claim that o is a most
general unifier of Ep. The first clause in the invariant guarantees
that o is at least as general as any model of Eq. To'get the
converse implication, assume that u is a model such that o < p.
Then there is a substitution p. suach that o o =y Since u
is a model, we can choose i’ o be a model also. Now, since
Fis empty, ¥ EE, so, by’ the second” cliuse in the inivariant,
cou E Eo. But aop = g, 50 We ha.ve I |= Eg, as des1red

It remains to give the loop step, ‘to show that it preserves
the invariant, and to show that the algorithm halts, The halting
measure will be the lexicographic ordering (number of variables
in ¥, number of symbolsin F ), as in the conventional unification
a.lgonthm We now give each poss1b1hty We begm with the cases
for equations between type expressions. These are eiffectively the
same as ini the case of ordinary unification; we write them out in
detail to illustrate the use of the nvariant.

(1) The equation is of the foim {base type) = (base type). If
the two sides are identical, delete the equation. If they are not
identical, halt: there is no solution. Since there is no sclution for
E, by the first clause of the invariant there is no solution for Ep.

(2). The equation is of the form #; — #3. = 43 — ug. Delete
this equation from E and-add:the two equations ¢; = uy and
t2 = uy. This is the usual step in the conventional case. .

This clearly decreases the halting measure. To'check the
preservation of the first clause of the invariant, let E’ denote
the new set of equations, and let y be a solut;on of Eg. By the
first clanse, there is a model » such that gopy = g and v |= E,
But cleazly ¥ |= E' as well. To check that the second clause is
preserved, lot g be a solution of E’. Then p is cleatly a.solution
to E. Hence, by the invariant, o o u'|= Eo, and the invariant is
preserved

(3) The equatlon is of the. form Ep = Ep or IIp = IIp In

either case, replace the equation by g = p'. The proof is as in
the preceding case.

(4) The equation is of the form v = t or + =, where »
is a type varlable. If v appears in ¢, halt: there is no solution.
Otherwise, replace o by.o o v — ¢], delete the equation from E,
and then substitute ¢ for all occurrences of v in the resulting set
of equations.




- -

Let E- denote the set of equations after the setected: equa- Let A denote the set of labels {a;} and B denote the set-of labels
tion has ‘been deleted: Then the riew set of equations s E = {b;}. In any model of this equation, the domain of the row is
Erly et} Sincew does miot appeat i t, it does niok appear in exactly 4, so in order to have a solution we must have BC A. K
the new set of éduation Thereforé this step decroases the num- this condition is not met, halt and report no solution. Otherwise,

g measure. To without loss of generality assume thatay = b, 89 = b, Delete
from E-and-add to B the equations 1; = i,

and _'ﬁliér'efo:re' decreases the haltin
i firs ¢ invariant is pie

s of fh served; let pt

ber of variables,

:F such that

rwhete dQ_m(!;l.'.)".-_ . Herite 't
“that =9 o [w e the o' oyl and [v et E~. Since
L ¢ dom(¥'); by the substitution lemma We Lave ' = ETlv = i,
e

) B To conﬁrm that the s.ec.ond clanse of the invariant is pre-
© gerved, let il be. a model. such that W = B and dom(p') =
-~ vars(E'). Sinice, v, does. not appear in f, We know that v ¢
vars(E') = dom(p'). Hence we can use the substitution lemma
" to reason af follows: . o i
: L1 :;.._p,,_ l=-” -E, iy
S EEl-
S g FE
Lo BE s '
= golv e tion [
. 0"’0 “_l‘ ‘=E{) g ot

. (5) Any:other equation between type-

Tution. Halt and report 1o solution BEETEA kL ;
U The remalning possibility s thak fhe chosen equaion I8 2%
éqnaﬁibﬁ"_bétw'éeﬂ__ Tow-exptessions. 1o this case; the first: step is
to-tféﬂsfcfm"eaéﬁ'expre'ssi'dii into the form o

expressions has 1o 8O-

L
wheré 1o {5 either a TO "Q_\_}z{ri:able' ot ‘tie 'c:_c_fﬁstai;if. emptyrow,
aid the a; are distinct, using the familiar jdentities: © . s
g deu=plesd ST P
R (Rl WL g . ..
gidert e‘-poésibilitié‘s, depending on whettier each
ns with-a& variable or a constants :

of the form p = t, ‘wheré plisa TOW
t, then halt and report 10 solution, as
unsatisfiable. Otherwisey proceed as in

S )
U el oS

. We DOW COIL
side: of the-equation b i
() The equation is
variable, 1f p appeais in
before, as this egnation is
step 4 above. -~ .

it ('?).The-equation is of the form

emptyr.m\.r[c.l.y_if ). lan e—i,,] :
.= emptyrowlbi < aye [bm ]
a solution only if 7 = im-and each @i = bi) since
gheray and: b completely determine the domains of the TowWs. his
this condition i8 not met, halt and report nO solution. Otherwise,
dele!_:_e':'t_h_is -equation: from E. and: add the equations t; = u; for

e ed in the same Way 2§ case (2)

This Gquation has

FRDON P This siep. 18 justifi

above.; .
L A(8) ’I_‘he,-equation is of the form
emptyrow[aq l.c—-'tf.] volan - tn) = pibi < P} is Abin i)

. the current equation
for 1 < & < pand

:H.gfl_c_é' t_l_gei.‘_e is 4 solution v $0:
ontains v 5 £ vomust.be of the form  31]vs.[an & ta]: This step is justifie
here exists ¥/ such (2) above. " - TS e

' (9) The equation ia of the form

Again, let A deno
set of labels {bi},
a1 = by, oty
are distinct.

the term must be a super
must be'of the form

where po is a fres
gide of the first equation or ¢’ appears on

of the second equation,
erwise, delete the current. equation from:

$y = Uty -

_tution, it preserves the inw

L L e s 2 ot

p= emptyrowlapi1 <

also the equation
& in the same wWay as case

T =}'Il[ﬂyi' P tll e .[ﬂ.n — tn] = p’Uu(—' tl] . ..U)m — tm]

te the set of labels {a;} and B depote the
and assume without loss of generality, that
, = by, and all lalels appearing to the right of these
In any solution p of this equation, the domain of -
set of AU B. Therefore, any golution

= PPU’p»I-l — Upa] - Abin = U]

o = polaprt — tpra)e [0 & tn]
1f p appears ot the right-hand
the right-hand side
then halt and report no solution:: Oth-
E, add the equations
vy by = Ups and perform the gubstitution : - o

1 row- variable:

Tl e palbpat < pr) oo = |
[an = gl

p+ poltpir i} L

on the resulting set of equé,tions.
Since-this stepisa combinati

(2):and (4) above. It decreases
eliminates two variables p-and o
variable pgj thus decreasing
-+ » Thesa are all the possible cases, 50 th
QED.

4, Reducing Type Inference to Unification” '
We next tutn to the reduction of type inference to u
‘We next give the algorithm, in two Jevels of refinemnen
give its control structure and state the invariant which It
loop must maintain. We then. state the actions of the inn
ond show that, they maintain this invariant. The presentath
similar to that for the unification. algorithm above: : Ing
analyzing a set B of equations and producing 2 substituti
the reduction algorithm analyzes a set & of subgoal
{ype-ezpression asserlions, and produces 2 set

Eof equatic
I M is a term, Alis aset of type hypotheses who

is the set of free variables of M, and t is a type &%

' call the tuple (A, M, t)a type-ea:pression assertion.:T.
“expression assertions are the basic quantities manipula
reduction algorithm. .- L e
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. Typing Rules:
CAR st (Al@)=T1)

' Alz —mlF Miny

AF(QzMyin -

AbFM:iTy 1y

A.I- Nim

{A,z,ty=>

(4, (Ao M), 1) =

(A, (M W),

‘heorem Gliven angf (Ap, Mo, to), we ean effectively con-
set B of equations such that far an.y set B of type gs-
and: ny type t,

EM:te @uEEAB = A-(,-g A't = tojt)

0 t) 1ﬂ'A,ul—Mt,u, and if G is a set of
assert ns, we write wE Qi u |= (A M, t) for

» We seé that o [= (E,G) 1ff,u. is a solution

rovable typmg for each subgoal in G.

AONE’MD tou) it
EN= (E,G)AB.= Aw At= tu,u)

AF(M Ny

Action Rules:

(Al = n]ary My ) -
- {71, 7y fresh)

Figure 2. Typing and Action Rules for Simple Types

t=A_(x) FERs

t=T1—>1"2

(AM, M,n— 1)
(AN,N T1)
(‘rl flesh)

The first clause states that any solution for (B, &) generates
only correct typings for (Ao, Mo, ) (soundness), and the sec-
ond clause states that every typing of My is generated by some
solution for (£, G) (completeness), This is'not quite an if-and-
only-if, since (E, G) ma,y mvolve type va.ua.bles not in the initial
assertion.

We may now state the top-level structure of the algorithm:

Imtzalazatzon Set E=0 and G = {(Ao,Mg,to)} variables,

Loop Step: 1-G = 0 thex halt-and return E. Otherwise,
choose a subgoal (A, M, 1) from G, delete it from G, and add to

E and G new verification conditions and subgoa.ls, as spe(:lﬁed in
an actmn table (to.be supplled la,ter)

The mvanant is clea.rly estabhshed by our mltlahzatmn step.
At termmat:on, when G ﬂ we ha,ve B

(1) (Ve E = Aop Mo tmu)
(2) BFMo:t= Gu)uFEAB=AouAt="to) .

so that the solutions of E'giire the typings'bf My, as de'si're'd '

We next turn to the creation of the action table. Flgure
2 illustrates the typing rules and actjons for’ the mmply—typed
Jambda-calculus. (Here Aps denotes A restricted’ to the free vari-
ables of M). Since therules always decrease the size of the terms
M, they’ are guaranteed to termmate._

- 'We next must show that these action rules preserve the in-
variant. - We repeat the argument from [Wand 87]:: If: i 8asy
to show that the algorithm generates-only carrect typings: {the
first clause of the invariant). We therefore only consider “the
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RO (A, M witha =

{A,ifcase t_l,_MN-P, )

Figure 3.

£ the invariant (completeness). Tn each case, wWe
(2) holds before the action is talken, and we

To do this, assume that
we know that

gecond clause ©
assume that clause
need, to show that it holds afterwards.
Bt Mo:t BY the induction hypothesis,

S R D )

'.a..ﬁ:c.l_ we n.eedl_i:;.(:) .éﬂqw_f]ié,t - i .
A e @) AB = Aol At=to) .

where (B, G") is the state after ¢tie action step. In each case, let
Gy denote G after the selected goal has been deleted;” Then we
know-that 4 & E,pE Gyiand B B wheré’ g is:the: selected
subpgoal.. We consider each-case of tlie action table in turn.
A (1) The selected subgoal is of the form ('A:,:?,t); where # isa
variable. Then & (A, 2, 1) Herice Ap b7 <ty By the typing
rules, it Taust be true that Ap(z) =t hence i = Az) = 1. So
L f the form (A, (M N),t). Hence
Ap b (M N : . By the typing rules, there mmst be some
type'f_.l such that Ap - M th Ly tye and Ap Nt So let
1y be'a fresh type variable {not in’the domain of #), and Jet o'
be defined by p' = ulry « t1]. Then i = (AMm = 1) and
i (AN, 73), 90 i e G, s desired. S
“7(3) The selected subgoal is of the form_(A,'(A:m_.M),'t). Hence
Auk(Az.M): 11, By the typing rules, thiere must be some types
74 and 75 be frosh type variables, and tot ' = pin iz 13].
Then i/ | ({(Ale + ), Myr) and W E 1= 7y Tay B8
les for records and

desired.
We can now proceed o give the action T
3. Here A ranges over type-

variants. These ‘are shown in Figure
15, M, N, P range ovel terms, ¢ Tanges OVer
d type. variables. as

(2) The selected subgdé.l:i.s o

expression assumptions, M
type, expressions, and p, T -are

fresh 1OW. an
they 'a'ré_introduced._ P .

W) e T(ple = 1D
{Am, M 1_HP)
{AN': N, 1").

(p, 7 fresh)

{A null,t) =1 =10 én;ptyrow. .
(4, M) = (4, MiTole = D)
(p, 7 fresh)
(Ajinja M) =t = Blole =D
: e AMTY
(p, T fresh)
= (A4, M, Sple « 71)
(AN T 1)

(A, Pt}
. (p, 7 fresh) -

Action Rules for Labelled Recor

ds and Variants

The reasoning for these rules is analogous o those for th
simple case, comparing Figure 3 with the typing rules in Section:
9. The only trick is in the rules for field selection and ifcase
where we have written ple — 7] to require that ¢ be in the dom
of the row in question and o have a placeholder 7 for theval
of a ,:9w7a.pplica.tion pa.. Again, termination is guaranteed, sl
the rules always replace a term by some of its subterms. QED

~We ca.n_'now state the ‘solution for the type inference prcﬂﬂe

Theorem. Given a term M,

any A and 7 such that AV M +. Firthermore, _
can effectively produce @ set’Ag of typéch'j}patheées,'d substit
o and a variable o € doma such that for any set B. of
assurhptions and any type t, : St T

B-i‘M:t{#’_(aﬂ)(a'ﬂpl\B=Ag[.&Ai=foﬂ)"

Proof:.Let. Ag bind each free vatiable of M to 4 fro
variable, and let to-be 2 {resh’ type variable. We then:
r_e_:duc_tiqn_a,lgorithih to produce a set of equations. Fstc

U BEM:te @Au)(p EEAB=AopAt= N
Wi can Without 1oss of generality assume that dom(g
We thei use the unification algorithm to produce the sub
asuchthat g E G$o<p QED. R

: Let us do a short example to illustrate this.. €
ferin A2 % (wa), We trace the algorithm by g
Each line in the table consists of two entries.” The fi

¢urrent set G of subgoals. At each step we apply thie ac
to the first subgoal in the current goal list. This i
1ist in the next line and some equations, which are:
the second entry of the next line. Interspersed are
the actions performed. ~ © S i
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We will need to expand the algorithm slightly to deal with
integers. To do this, we will assume the existence of a constant
twice of type int - int, We thereiore set the initial type environ-
ment Ag to {(twice : (int — int))}. When we begin, the goal list
consiste of a single goal, consisting of the type assumption Ag,
the term to be typed, and a single type variable,

1mt1a.1 conﬁgura,tmn
f({twice : (int — int)}, Au.twice (u a,) tg)}
- analyzing A
{((w.: 1, twice : (int — int)), twice (. a) iz)},
plitting combination
{((twice : (int — int)), twice, t3 — ), ((u : tl),u a, 13)}
eting goal for twice
: tl)g . d ta)}, ty — tz = int — mt
analy "ng selection

to=1 — 13

I ‘“—tai)—t; L

Ctpmt sty
ta =ty =int— int - -
ple — ta]) = t;

ng these equations using the algorithm of the previous
ion yields
Ii{pla « int]} — int

ncipal type of the term, as desired.
phlc Definitions . - "
tem as described so far is entirely monomerphic:
eImis inay have more than one type, the only binding
la.mbda, -binding, which, just as in the simiply-typed

allows only monomorphic valués to be passed.
way to take advantage of the ‘polymorphism in

'b = true] + twacea[a = 4,bi= ?}

Nab evmtes nul}w:tha 1= M w:th b:
t ned principal type H{p[e «— int])
i two: different instances of p: with p
with' p = II((a, int), (b, int)).

nododi

This is how polymorphism allows us to deal with inheritance:
twicea may be applied to any object (that Is, any recbrd) contain-
ing an @ component which is an integer. Thus fwicea is applicable
to any descendant of Il{(a,int)). .

One might wish to rewrite the typing rule for definitions as

AF M[N/x):T
At (z=N; M):r

While this rule gives the same f;ypmgs in this systens, it is not
equivalent in general. The issue is whether the type system
provides enough types to abstract the possible ises of z; Te-
expanding each occurrence of &, as if it were a macro, prevents
any sort of séparate compxIa.tlon of M and prevents us from ad-
dressing this issue at all. In the next section, we shall see. how
this makes a dlﬁ'erence : :

This mechanism for mtmducmg polymorp}usm has been used
successfully by ML [Gordon et al. 78] and by SPS [Wand 84].
In pra,ctlce, it seems quite adequate for ordinary, programming,
More comphca.ted situations, such as separate compilation of
polymorphic modules, require full- fledged quantified types, for
which type inference is a long standmg open problem.

_ 6. Cdmbefieoﬂ with_ Cardelli’s Syetei‘n_ . )

The system B84 uses the same types as ours, It dées not
use type expressions to express polymorphism; but instead adds
a subtype relation between types, which is defined as follows:

<= dom p; C dom pj
A (Ya € dom pi)pre < paa)
i T1<T1AT2<T2
= p<y
= p<p

m < pz:

=<t
' Zp < Bp'
Hp(l'lp

C84 uses exp11c1t types on all la.mbda variables (Az:7.M in-
stead of Az.M). Polymorphism is obtained by altermg the rule
for typing of individual variables to read;

ARz (ARy=S T,y

To see how this deals with inheritance, let us consider again
the program we wrote before:

twicea = Au.? X (u.a);
twicea[a':= 3, b 1= true} + twiceala == 4, b := 7]
This program is'We]l'-t'yped; we assign {wicea the_type
H{(a,int)} —int . .-

and we use it at the two types II((a,int), (b, boal)} — mt a.nd
I{{a,int), (b,int)) — int, each of which is grea.ter than the origi-
nal type.

One can.still ask abnut type mference however when is an

uﬁtyped term M the image under type-erasing of a typed term?
One can then begin to compare the properties of the two systems.
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.. The original version of €84 incliided soine thifigs which are
not relevant 16 otr current concerns (stich as Té rsive: type defi-
sitiond); and Had asomewhat different treatment of record con-
stiuction and case selection (as noted in Section 2):/In"order to
be precise; for: tli¢ remainder of this: section; we will'define C84

 to be-our system with the iile for typing identifiers modified as
-shown.. This - wilt allow s &b arately fair comparison between

" the sys iiis and their treatment: of polymorphism.

R eins (without definitions), the terms typed
ubsét of ‘thiose typed by C834. To show the

mply consider. . . wl g}

)+ (0 = 4,0 ) b

the pure sys

_ typed]ﬁ"CSri\'(é;ss'ig?ﬁ Jthe type H((a,'int))'~+>'int),
well-typed: in the current systern; since the two ‘in-
f téquire different:values oftp in TI(pfa «int]) — int.
“Yarn to & comparison of the systems’ with poly-
spliic définitions. Since CR4 provides no type expressions, we
't Tnterpret definitions ‘ds simple lambdabindings, as fol-
oA M Ale e N phoil
Av(z=M;N):r
The polymorphism is provided by the standard identiﬁerulqokup
mechanism. s
This is not equivalent to using the “macro-expansion” rule
for definitions. The interesting issue is precisely whether there is
a type T which allows forall the usesof # in: N; macroigxpanding
.each oCCurrence, of ¢ avoids the issue completely. .-, oo
2.+ For/the systems with: definitions; there-are programs which
‘are, well-typed inithe'the ciirrent system-but which have no:-type
in C84. Consider, for example

doublea = Xu.__u__wi-th @:=2% (wa).. ..
© ¢ (doublea[a 1= 1ib.a=2])b -+ {doubleala i= Jici= 4)).e
This is we]l—typéd'in'. the '_t:urrén{':.'__systén.l, since doublea has
principal type R
([ = int]) = T{pla < int])
l;_ut 1t is notwell—typed in (384 To 'sé_é .ﬂxis., coﬂéidéf the types of
the two occurrences of doublear .35 R

({0 int) (b int)) — T, 09, (b,
md D .
i ;"n’('(a,int),'(c,’int)) _;-»’I'I((a;'i'nt),_(c,iﬁfc))
The greatest lower bound of these two types is
L I(eyint) — T ), (0,0 (8

which is not a possible type for doublea. Hence this program has
eyt o
“Hetice the systems with polymorphic definition are incompa-
rable. " s
7 We can sharpen these observations somawhat by considering
the' puite expressiveness of the two kinds of polymorphism. Let
s say a set S of types is definable in our system iff there'exists a
type ¢-such that u & § iff w is a substitution instance of t. Say a
set S of types ig definable in CB4 iff there exists a type ¢ such that
w € 8 iff < u: ‘Then the definitional power of the two systems

is incomparable. The previous example shows that there is a set
of types which is definable in the current systern but not in C84.
Similaly, the set of types defined. in C84 by : :

L Ti((agind), (b, int) (i), (Gin))

is not definable in the current system, since it has no way to spec-
ify a class of rows containing fewer elements than ({g,int), (b, int))
using only a single principal type. . o .

It is straightforward to add inclusions to the afgorithm which
generates the verification conditions, but it is no longer obvious
that the resulting set of equalities and inclusions has a decidable
satisfiability problem. LR

The system e have proposed seems adequate for use in pro-
gramming systems relying on “structural” inhéritaice through
shared field names. On the other hind, it is by no means clear
that this is an appropriate model of inheritanée Tor othet object-
oriented systems, For example, in sur introdidtory example,
there is no guarantee that the id-number fields for subinarines .
and weapons systems will be compatible. Hence a function that
manipulates the id-number field might not really be applicable :
to both submarines and weapons-systems: “Many rea} object- :
oriented programming systems use name inheritance, in which
the inheritance can be more tightly controlled. This leads to a ::
somewhat different theory, which we hope to present elsewhere.
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