
The Higher-order Aggregate Update Problem

Christos Dimoulas and Mitchell Wand

College of Computer and Information Science, Northeastern University,
360 Huntington Avenue, Boston, Massachusetts 02115

{chrdimo,wand}@ccs.neu.edu

Abstract. We present a multi-pass interprocedural analysis and trans-
formation for the functional aggregate update problem. Our solution
handles untyped programs, including unrestricted closures and nested
arrays. Also, it can handle programs that contain a mix of functional and
destructive updates. Correctness of all the analyses and of the transfor-
mation itself is proved.

1 Introduction

The update of aggregate data structures like arrays is expensive in a functional
language because it involves copying the whole data structure. Naively adding
destructive update to a functional language does not solve the problem, because
the combination loses the compositional properties of functional languages.

A series of papers [1, 4, 5, 7–9, 12] have pursued the idea of destructive update
transformation: an optimization that transforms functional updates into assign-
ments whenever a flow analysis reveals that the array value being updated is
dead following the update.

In this paper we present and prove the correctness of an algorithm for de-
structive update transformation that allows arrays to be nested in arrays and
stored in closures. It allows destructive updates and functional updates to coex-
ist in the source program if desired. Furthermore, it does not rely on any type
information from the underlying program. To our knowledge, this is the first
algorithm with all these features.

The transformation is based on a multi-pass inter-procedural program analy-
sis. We first perform a control-flow analysis, which is used to construct a reacha-
bility analysis. We then perform a liveness analysis. The results of these analyses
are combined to obtain a live variable analysis.

In section 2 we present a simple example to demonstrate the problem and
show the use of our method. In section 3, we give the syntax and the semantics
of our language. In section 4, we describe the architecture of our framework,
the intermediate layers of analyses and their properties. In section 5 we define
the transformation and sketch its correctness proof. Section 6 reviews previous
research results in the field.

2 Christos Dimoulas, Mitchell Wand

2 Examples

Consider the following program where each expression is marked with a unique
label, the NEW(n, v) operator creates a new array with n cells of value v and the
UPD(l, i, v) operator functionally updates the i-th cell of the array l with the new
value v.

0(1λx.2UPD(3x, 41, 5x)
6 (7λy.8UPD(9y, 101, 11444)

12 (13λf.14(15f 16333)
17λz.18NEW(194, 20z))))

By constructing the control-flow graph of the program, we observe that
the UPD-expression with label 8 is applied on l1 which is created by the NEW-
expression. At the time of the evaluation of the UPD-expression, l1 is is not
reachable from any closures or arrays in the continuation of the UPD-expression.
Also, l1 is not reachable from the new array l2 that the UPD-operation will re-
turn to the program. Thus l1 is not live after the execution of the UPD-operator.
So, replacing the functional update with a destructive one does not change the
semantics of the program.

The UPD-expression with label 2 is applied on variable y which is bound
to l2. The result of the UPD-operation l3 contains l2. Thus l2 is live after the
evaluation of the UPD-expression and the functional update cannot be replaced
by a destructive one. If the UPD-expression was replaced by a destructive update
then the original and the transformed program would not agree on the contents
of l2.

From the above, we can conclude that the original program can be trans-
formed to the following one without changing its semantics:

0 (1λx.2UPD(3x, 41, 5x)
6 (7λy.8UPD!(9y, 101, 11444)

12 (13λf.14(15f 16333)
17λz.18NEW(194, 20z))))

Each time we replace a functional update with a destructive update we avoid
copying the array, making our programs more efficient in terms of time. Our
framework aims to provide a method that can be used to detect such plausible
replacement points in programs by statically predicting if a program variable is
live or not.

3 The Language

Our language is a variant of the call-by-value untyped lambda calculus with
operators for array manipulation.

Every expression and value comes with a unique label θ. Values v are either
basic values c, function closures (λx.E, ρ), or memory locations l of arrays of val-
ues. Expressions include conditionals, primitive operators p, and array operators
g. See figure 1 for details. Our language is untyped, so it can express recursive
procedures. Our analysis would of course work if the language were restricted to
a typed subset.

The Higher-order Aggregate Update Problem 3

E ::= θT

T ::= x | c | l | λx.E | (E1 E2) | g(E1, . . .) | p(E1, . . .)
| if E0 then E1 else E2

where x ∈ Var, θ ∈ Lab, c ∈ Scalar, p ∈ Prim, g ∈ {UPD, UPD!, NEW, REF}.

Fig. 1. Language Syntax.

S ::= 〈halted, v, Σ〉 | 〈α, ρ, G, K, Σ〉

G ::= E | v

R ::= θ(E θ[]) | θ(θ[] v)

| θg(v1, . . . , vi−1,
θ [], Ei+1, . . . , En) | θp(v1, . . . , vi−1,

θ[], Ei+1, . . . , En)
| θif θ[] then E1 else E2

K ::= halt | 〈α, ρ,R, K〉

v ∈ V ::= θc | θl | (θλx.E, ρ)

A ::= α.θ〈v1, . . . , vn〉

Loc ::= α.θ

where α, θ ∈ N∗, l ∈ Loc, ρ ∈ Var →−fin V , Σ ∈ Loc →−fin A.

Fig. 2. Machine Configurations.

We use small-step operational semantics with environments ρ, continuations
K, and stores Σ [2]. The configurations of our machine and the continuation
frames also include a structured computational address that serves as a time
stamp [12]. Time stamp α.i marks the beginning of the evaluation of the i-th
subexpression of the expression being evaluated at time stamp α. The body of an
n-ary procedure is evaluated at time α.(n+1). When a NEW operator is executed,
a new location is created using the time stamp. The new location is added in the
store domain and points to an array containing the specified values. The new
array has a label that is equal to the computational address of the new location.
This label has two parts: a dynamic one originating from the time-stamp and the
label of the NEW expression. The last one is also the label of the newly created
location, which is returned as the result of the operator. The REF operator is
also straightforward. The two update operators UPD and UPD! are the heart of

4 Christos Dimoulas, Mitchell Wand

〈α, ρ, θg(θ1T1,
θ2T2, . . . ,

θnTn), K, Σ〉

→ 〈α.1, ρ, θ1T1, 〈α, ρ, θg(θ1 [], θ2T2, . . . ,
θnTn), K〉, Σ〉

〈α.i, ρi, vi, 〈α, ρ, θg(v1, . . . , vi−1,
θi [], θi+1Ti+1,

θi+2Ti+2, . . . ,
θnTn), K〉, Σ〉

→ 〈α.(i + 1), ρ, θi+1Ti+1, 〈α, ρ, θg(v1, . . . , vi−1, vi,
θi+1 [], θi+2Ti+2, . . . ,

θnTn), K〉, Σ〉

〈α.2, ρ2, v, 〈α, ρ, θ
NEW(θnn, θv []), K〉, Σ〉

→ 〈α, ρ, θα.θ, K, Σ[α.θ → α.θ〈v, . . . , v〉]〉

〈α.2, ρ2,
θj j, 〈α, ρ, θ

REF(θl l, θj []), K〉, Σ〉
→ 〈α, ρ, vj , K, Σ〉

where Σ(l) = α′.θl〈v1, . . . , vn〉

〈α.3, ρ3, v, 〈α, ρ, θUPD(θl l, θj j, θv []), K〉, Σ〉

→ 〈α, ρ, θα.θ, K, Σ[α.θ → α.θ〈v1, . . . , vj−1, v, vj+1, . . . , vn〉]〉

where Σ(l) = α′.θl〈v1, . . . , vi−1, vi, vi+1, . . . , vn〉

〈α.3, ρ3, v, 〈α, ρ, θ
UPD!(θl l, θj j, θv []), K〉, Σ〉

→ 〈α, ρ, θl l, K, Σ[l → α.θl〈v1, . . . , vj−1, v, vj+1, . . . , vn〉]〉

where Σ(l) = α′.θl〈v1, . . . , vi−1, vi, vi+1, . . . , vn〉

Fig. 3. Machine Reduction Rules.

our problem. The UPD primitive is similar to the NEW primitive and creates a new
location and a new array. The only difference is that the content of the new array
is the updated content of the old array. The UPD! primitive does not create a new
location. It updates the contents of the array to which the location points and
returns the location and its label unchanged. But the label of the array that the
location points to changes: the dynamic part of the label is modified to match
the time-stamp of the machine state. This way, we can discriminate between two
destructive updates to the same array. Figures 2 and 3 present the details of the
behavior of the most interesting operators of our language. The rest follow the
standard semantics of left-to-right call-by-value evaluation.

Throughout the rest of this paper, we work within a finite universe of expres-
sions U closed under subexpressions and containing the initial program E0. The
initial configuration 〈ǫ, ∅, E0, halt, ∅〉 consists of the initial program in the empty
environment and store. Reachable configurations are those reachable from this
initial configuration. Note that if E0 ∈ U , then in any reachable configuration,
every expression that appears in the configuration will be drawn from U .

4 The Analysis

Our goal is to identify expressions of the form UPD(x, E1, E2) and replace them
with UPD!(x, E1, E2), if we can prove that this does not affect the semantics of
the program. A sufficient correctness condition is that there is no alias to x that

The Higher-order Aggregate Update Problem 5

is subsequently accessible from other parts of the program. The existence of
higher-order functions and nested arrays in our language implies that closures
and arrays can hide aliases of locations from the context. For this purpose we
use a reachability analysis, which tracks how variables, closures and locations
are connected with each other. To build the reachability analysis, we begin with
a flow analysis [10].

4.1 The Control Flow Analysis

0-CFA is an analysis for constructing the flow graph of a program with higher
order functions based on standard abstract interpretation techniques. Each ex-
pression is assigned a unique label. These labels are used as abstract values V̂ .

The result of the 0-CFA analysis is a function φ from labels of expressions
and variables to sets of abstract values, i.e. labels of the possible results and
bindings. However, the existence of stores demands the extension of the analysis
to predict the possible contents of each location in the store. We accomplish
that by developing another prediction function σ that describes the shape of the
store.

Definition 1 (Store Shape Analysis). A store shape analysis is a map σ:
Lab →−fin P(V̂), mapping a label for an array to a set of abstract values.
We say σ describes a store Σ, σ |= Σ, iff ∀l ∈ dom(Σ). (Σ(l) = α.θ〈v1, . . . , vn〉
=⇒ ∀0 ≤ i ≤ n. lab(vi) ∈ σ(θ)).

Definition 2 (Control Flow Analysis). A control flow analysis is a map φ:
(Lab ∪ Var) →−fin P(V̂), from labels and variables to a set of abstract values.
We say φ describes an environment ρ, φ |= ρ, iff ∀x ∈ dom(ρ). lab(ρ(x)) ∈
φ(x) ∧ (ρ(x) = (θλy.E, ρ′) =⇒ φ |= ρ′)
We say 〈φ, σ〉 describes an expression θT ∈ U , 〈φ, σ〉 |= θT , iff for all ρ, Σ, if
φ |= ρ, σ |= Σ, 〈α, ρ, θT, K, Σ〉 is a reachable configuration and 〈α, ρ, θT, K, Σ〉
∗

→ 〈α′, ρ′, v, K, Σ′〉 , then
1. lab(v) ∈ φ(θ)
2. if v = (θ′

λx.E, ρ′′), then φ |= ρ′′

3. φ |= ρ′

4. σ |= Σ′

We say 〈φ, σ〉 is sound for U iff ∀E ∈ U , 〈φ, σ〉 |= E.

Note that in this definition, in the reduction 〈α, ρ, θT, K, Σ〉
∗

→ 〈α′, ρ′, v, K, Σ′〉,
K is the same in both sides. This reduction represents the evaluation of θT to
the value v.

We can find a sound analysis for a universe of expression U by solving
the set constraints C[U] presented in figure 4. These constraints are all Horn
clauses, and so are solvable by standard techniques. The most interesting are
the constraints that apply to the UPD, UPD! operators. Given a UPD expression
θUPD(θaTa,

θj Tj ,
θvTv), if θ′ ∈ φ(θa), then the new array contains all the values

6 Christos Dimoulas, Mitchell Wand

θλx.E ∈ U

(θ ∈ φ(θ)) ∈ C[U]
(a)

θl ∈ U

(θ ∈ φ(θ)) ∈ C[U]
(b)

θc ∈ U

(θ ∈ φ(θ)) ∈ C[U]
(c)

θ
x ∈ U

(φ(x) ⊆ φ(θ)) ∈ C[U]
(d)

θ(θ1T1
θ2T2) ∈ U θ′

λx.θλTλ ∈ U

(θ′ ∈ φ(θ1) =⇒ (φ(θ2) ⊆ φ(x))) ∈ C[U]
(θ′ ∈ φ(θ1) =⇒ (φ(θλ) ⊆ φ(θ))) ∈ C[U]

(e)

θif θ0T0 then θ1T1 else θ2T2 ∈ U

((φ(θ1) ∪ φ(θ2)) ⊆ φ(θ)) ∈ C[U]
(f)

θp(θ1T1, . . . ,
θnTn) ∈ U

(θ ∈ φ(θ)) ∈ C[U]
(g)

θ
NEW(θnTn, θv Tv) ∈ U

((φ(θv) ⊆ σ(θ) ∧ θ ∈ φ(θ)) ∈ C[U]
(h)

θ
REF(θaTa, θaTa) ∈ U

(θ′ ∈ φ(θa) ⇒ (σ(θ′) ⊆ φ(θ))) ∈ C[U]
(i)

θ
UPD(θaTa, θj Tj ,

θv Tv) ∈ U

(θ′ ∈ φ(θa) ⇒ (σ(θ′) ⊆ σ(θ) ∧ φ(θv) ⊆ σ(θ) ∧ θ ∈ φ(θ))) ∈ C[U]
(j)

θ
UPD!(θaTa, θj Tj ,

θv Tv) ∈ U

(θ′ ∈ φ(θa) ⇒ (φ(θv) ⊆ σ(θ′) ∧ θ′ ∈ φ(θ))) ∈ C[U]
(k)

Fig. 4. Set Constraints for 0-CFA Analysis 〈φ, σ〉.

that are possibly contained in the old array, (σ(θ′) ⊆ σ(θ)), plus possible results
of the last operand (φ(θv) ⊆ σ(θ)). Since the result of the operation is a new loca-
tion with static label θ, the label is added to the possible results of the operation,
(θ ∈ φ(θ)). On the other hand, given a UPD! expression, θUPD!(θaTa, θj Tj,

θvTv),
no new location is created so the constraints just have to add the possible values
of the third operand to the possible values of the existing array , (φ(θv) ⊆ σ(θ′))
and add the static label of the updated location to the possible results of the
operation (θ′ ∈ φ(θ)).

Theorem 1 (Soundness of 〈φ, σ〉). If 〈φ, σ〉 satisfies the constraints C[U] in
figure 4 then 〈φ, σ〉 is sound for U .

Proof: Following [13], we extend the constraints from constraints on expres-
sions to constraints on configurations S. The most interesting new constraints
are presented in figure 5. We write X ∈ S iff X occurs in S. lab[](R) de-
notes the label of the hole of R, lab(R) denotes the label of the expression of
the frame R, and lab[](K) denotes the label of the hole of the top frame of

The Higher-order Aggregate Update Problem 7

K. We show that if S → S′, the constraints for S imply the constraints for
S′. Then we obtain the desired result by induction on the length of reduction
〈α, ρ, θT, K, Σ〉

∗

→ 〈α′, ρ′, v, K, Σ′〉.

ρ ∈ Σ x ∈ dom(ρ)

(φ(lab(ρ(x))) ⊆ φ(x)) ∈ C[S]
(l)

Σ ∈ S l ∈ dom(Σ)
Σ(l) = α.θ〈v1, . . . , vn〉 ∈ Σ

(∀i ≤ n.φ(lab(vi)) ⊆ σ(θ)) ∈ C[S]
(m)

〈α, ρ, R, K〉 ∈ S

(φ(lab(R)) ⊆ φ(lab[](K))) ∈ C[S]
(n)

〈α, ρ, E, 〈α′, ρ′, R, K〉, Σ〉 ∈ S

(φ(lab(E)) ⊆ φ(lab[](R))) ∈ C[S]
(o)

Fig. 5. Extended Set Constraints for Constraints 0-CFA Analysis 〈φ, σ〉.

Consider the example from section 2. The only constraints relevant to φ(y)
are: 18 ∈ φ(18) ⊆ φ(14) ⊆ φ(12) ⊆ φ(y). So the smallest solution for φ gives
φ(y) = {18}. Similarly, in the smallest solution σ(18) = {20}, φ(8) = {8},
φ(x) = {8} and φ(2) = {2}.

4.2 The Reachability Analysis

The control flow analysis does not describe how values and expressions are as-
sociated through the store. In order to describe this relation we use the notion
of reachability.

Definition 3 (Reachable Value). A value w is reachable from a value v in a
store Σ, reach(w, v, Σ), iff either:

1. v = w, or
2. v = θl′ and Σ(l′) = α.θ〈v1, . . . , vn〉 and ∃i s.t. reach(w, vi, Σ), or
3. v = (θλx.θ

′

T , ρ) and ∃y ∈ fv (λx.θ
′

T) s.t. reach(w, ρ(y), Σ).

Following the same path as before, we build an analysis that returns a func-
tion R that associates an expression with the labels of all values reachable from
its value.

Definition 4 (Reachability Analysis). A reachability analysis is a map
R: (Lab ∪ Var) →−fin P(V̂), mapping each label or variable to a set of abstract
values.
We say R describes a store Σ, R |= Σ, iff ∀l ∈ dom(Σ).(Σ(l) = α.θ〈v1, . . . , vn〉 =⇒
∀0 ≤ i ≤ n.(reach(w, vi, Σ) =⇒ lab(w) ∈ R(θ))).
We say R describes an environment ρ under a store Σ, R |=Σ ρ, iff ∀x ∈
dom(ρ). (reach(w, ρ(x), Σ) =⇒ lab(w) ∈ R(x)).
We say R describes an expression θT ∈ U , R |= θT , iff for all ρ, Σ, if R |=Σ

8 Christos Dimoulas, Mitchell Wand

ρ, R |= Σ, 〈α, ρ, θT, K, Σ〉 is a reachable configuration and 〈α, ρ, θT, K, Σ〉
∗

→
〈α′, ρ′, v, K, Σ′〉, then

1. reach(l, v, Σ′) implies lab(l) ∈ R(θ)
2. if v = (θ′

λx.E, ρ′′), then R |=Σ′

ρ′′

3. R |=Σ′

ρ′

4. R |= Σ′

We say R is sound for a universe of expressions U , iff ∀E ∈ U , R |= E.

In order to build a sound R, we use a sound control flow analysis to compute
the possible values that an expression may be evaluated to or a variable may
be bound to. Then, we perform a sort of transitive closure operation inside the
environments and the store.

Theorem 2 (Soundness of R). Given a sound control flow analysis 〈φ, σ〉 for
U , define R to be the smallest function (in the partial function ordering) that
satisfies the equations

– R(t) = φ(t) ∪M(t) ∪ N (t)
– M(t) = {θ′|θ′′ ∈ σ(t) ∧ θ′ ∈ R(θ′′)}
– N (t) = {θ′|θ′′ ∈ φ(t) ∧ θ′′

λx.E ∈ U ∧ y ∈ fv(θ′′

λx.E) ∧ θ′ ∈ R(y)}

where t ∈ Lab ∪ V ar.Then R is sound for U .

Proof: By induction on the definition of reach(w, v, Σ) using the soundness of
〈φ, σ〉.

The most interesting part of the definition of R is the auxiliary set N that
talks about λ-terms, θλx.E. Then the possibly reachable locations from this
term are the locations hidden in all the possible environments that are used for
the evaluation of the term. Thus, the reachable locations from the term are the
reachable locations from all its free variables, ∀y ∈ fv(θλx.E).R(y) ⊆ R(θ).

Consider the example from section 2. The only constraints relevent to R(y)
are: 18 ∈ R(18) ⊆ R(12) ⊆ R(y). So the smallest solution for R gives R(y) =
{18}. Also, the only constraints relevant to R(8) are: {8} ⊆ {8} ∪ R(16) ⊆
R(8). So in the smallest solution R(8) = {8}. Similarly in the smallest solution
R(x) = {8} and R(2) = {2, 8}.

4.3 The Liveness Analysis

In order to define the liveness of a location in a machine configuration, we need
first to extend the notion of reachability to continuations K.

A value w is reachable from a continuation K in a store Σ if it is reachable
in Σ from a value v or variable x of the top frame of the continuation stack or
if it is reachable in Σ by a lower frame of the continuation stack.

Definition 5 (Reachable Value from a Continuation). Given a store Σ,
reachability from a continuation K, reach(w, K, Σ), is defined as follows.

The Higher-order Aggregate Update Problem 9

– No value is reachable from halt in any store Σ.
– w is reachable from 〈α, ρ, R, K〉 iff either:

1. ∃v that occurs in R s.t. reach(w, v, Σ), or
2. ∃x ∈ fv (R) s.t. reach(w, ρ(x), Σ), or
3. reach(w, K, Σ).

A location is live in a configuration iff it is reachable after the evaluation of
the current expression. If the expression is a value, this means simply that it is
reachable from the value itself or from the current continuation.

Definition 6 (Live Location in a Configuration). Liveness in a configura-
tion is defined as follows:

– 〈halted, v, Σ〉. l ∈ dom(Σ) is live iff reach(θl, v, Σ)
– 〈α, ρ, v, K, Σ〉. l ∈ dom(Σ) is live iff reach(θl, v, Σ), or reach(l, K, Σ)

– 〈α, ρ, θT, K, Σ〉. l ∈ dom(Σ) is live iff (〈α, ρ, θT, K, Σ〉
∗

→ 〈α′, ρ′, v, K, Σ′〉 ⇒
l live in 〈α′, ρ′, v, K, Σ′〉.

Definition 7 (Liveness Analysis).
A liveness analysis Z is a map from expression labels θ to sets of labels. Z is
sound iff for each label θ and for all reachable machine configurations 〈α, ρ, θT, K, Σ〉,
l live in the configuration implies lab(l) ∈ Z(θ) where l = αl.θl and lab(l) = θl.

Given an expression θT , we wish to enumerate the labels of all the locations
that could be live following an evaluation of θT . Assume that θT occurs in a
context E = θ′

g(θ1T1, . . . ,
θi−1Ti−1,

θT, θi+1Ti+1, . . . ,
θnTn).

Every evaluation of θT occurs as part of a sequence of reduction steps

〈α, ρ, E, K, Σ〉
∗

→ 〈α.i, ρ, θT, 〈α, ρ, g(v1, . . . , vi−1, [], θi+1Ti+1, . . . ,
θnTn, K〉, Σ′〉

∗

→ 〈α.i, ρ, v, 〈α, ρ′, g(v1, . . . , vi−1, [], θi+1Ti+1, . . . ,
θnTn, K〉, Σ′′〉

We need to enumerate the labels of all locations reachable from v or from
K ′ = 〈α, ρ, g(v1, . . . , vi−1, [], θi+1Ti+1, . . . ,

θnTn, K〉. By the definition of reacha-
bility, there are exactly four ways in which a location l could be reachable from
v or K ′:

1. l could be reachable from v. This leads to the constraint R(θ) ⊆ Z(θ).
2. l could be reachable from one of v1,...,vi−1. Since each of these vj is the value

of θj Tj, this leads to the constraint R(θj) ⊆ Z(θ) (1 ≤ j ≤ i − 1).
3. l could be reachable from the value that a free variable is bound to in

θi+1Ti+1, · · · , θnTn. This leads to the constraint
x ∈ fv (θj Tj) =⇒ R(x) ⊆ Z(θ) (i + 1 ≤ j ≤ n).

4. l could be reachable from K. This leads to the constraint Z(θ′) ⊆ Z(θ).

A similar analysis applies if θT appears as an argument of a primitive op-
erator p or as the operator or operand of an application or as the test of an
if-expression. If θT appears as the body of a λ-expression θλλx.θT or as a
branch of an if-expression only cases 1 and 4 apply. If θT is the expression in
the initial configuration, then only case 1 applies. This is summarized in figure 6.

10 Christos Dimoulas, Mitchell Wand

θT is the initial expression

(R(θ) ⊆ Z(θ)) ∈ C[U]
(a)

θλλx.θT ∈ U θ′

(θ1T1
θ2T2) ∈ U θλ ∈ φ(θ1)

(R(θ) ⊆ Z(θ)) ∈ C[U]
(Z(θ′) ⊆ Z(θ)) ∈ C[U]

(b)

θ(θ1T1
θ2T2) or

θp(θ1T1, . . . ,
θi−1Ti−1,

θiTi,
θi+1Ti+1, . . . ,

θnTn) or
θg(θ1T1, . . . ,

θi−1Ti−1,
θiTi,

θi+1Ti+1, . . . ,
θnTn) ∈ U

∀i, 1 ≤ i ≤ n.(R(θi) ⊆ Z(θi)) ∈ C[U]
∀i, 1 ≤ i ≤ n, 1 ≤ j ≤ i − 1.(R(θj) ⊆ Z(θi)) ∈ C[U]
∀i, 1 ≤ i ≤ n, i + 1 ≤ j ≤ n.x ∈ fv(θj Tj) =⇒ (R(x) ⊆ Z(θi)) ∈ C[U]
∀i, 1 ≤ i ≤ n.(Z(θ) ⊆ Z(θi)) ∈ C[U]

(c)

θ
if

θ1T1 then
θ2T2 else

θ3T3 ∈ U

∀i, 1 ≤ i ≤ 3.(R(θi) ⊆ Z(θi)) ∈ C[U]

∀j, 2 ≤ j ≤ 3.x ∈ fv(θj Tj) =⇒ (R(x) ⊆ Z(θ1)) ∈ C[U]
∀i, 1 ≤ i ≤ 3.(Z(θ) ⊆ Z(θi)) ∈ C[U]

(d)

Fig. 6. Set Constraints for Liveness Analysis Z.

Theorem 3 (Soundness of Z). Given a control flow analysis 〈φ, σ〉 and a
reachability analysis R, both sound for U , if Z satisfies the constraints in figure
6 then Z is sound for U .

Proof: We apply the same technique used for the proof of the soundness of the
control flow analysis. The most interesting extended constraints are presented
in figure 7.

〈α, ρ,R, K〉 ∈ S

(Z(lab[](K)) ⊆ Z(lab(R))) ∈ C[S]
(e)

〈α, ρ, E, 〈α′, ρ′, R, K〉, Σ〉 ∈ S

(Z(lab[](R)) ⊆ Z(lab(E))) ∈ C[S]
(f)

Fig. 7. Extended Set Constraints for Liveness Analysis Z.

The goal of the live variable analysis is to determine which variables of an
expression will be bound to live locations.

The Higher-order Aggregate Update Problem 11

Definition 8 (Live Variable Analysis). A live variable analysis L is a map
from expression labels θ to sets of variables. L is sound iff for all reachable
machine configurations 〈α, ρ, θT, K, Σ〉, ρ(x) live in the configuration implies x

∈ L(θ).

Theorem 4 (Soundness of L). Given a flow analysis 〈φ, σ〉 for U and a live-
ness analysis Z, both sound for U , L(θ) = {x ∈ fv (θ)|(φ(x) ∩ Z(θ)) 6= ∅} is
sound for U .

Proof: Straightforward by the definitions of live variable analysis and sound-
ness of Z.

Consider the example from section 2. The constraints relevant to R(8) are:
Z(6) ∪ R(8) ⊆ Z(8), {8} ⊆ R(8). But in the smallest solution Z(6) = ∅,
Z(8) = {8} and φ(y) = {18}. So L(8) = ∅. Similarly, Z(0)∪R(2) ⊆ Z(2). Again
in the smallest solution, Z(0) = ∅, R(8) = {2, 8}, φ(x) = {8}. So L(2) = {x}.

5 Replacing Functional with Destructive Updates

5.1 The Transformation

The soundness of the live variable analysis guarantees that if a free variable x

occurs in an expression θT and ρ(x) is live after the evaluation of θT in some
configuration, then x ∈ L(θ). In the case where θT = θUPD(θxx, θ1T1,

θ2T2), we
infer that if x /∈ L(θ), then x is bound to a location l that is not live after
the evaluation of θT . So we can replace the functional update, UPD, with a
destructive one, UPD!, without affecting the meaning of the program that θT
appears in, because l is not accessible by any other part of the program.

Definition 9 (The Transformation (−)∗). Let E ∈ U and L a sound live
variable analysis for U . Also let Θ be a set of labels s.t. every θ ∈ Θ labels an
update of the form θUPD(θxx, E1, E2), where x /∈ L(θ). Then E∗ is the result of
replacing θUPD(θxx, θ1T1,

θ2T2) by θUPD!(θxx, θ1T1
∗, θ2T2

∗) for each θ ∈ Θ.

In the example from section 2, from the results of the live variable analysis on
the program, we concluded that y /∈ L(8). So Θ = {8} and the transformation
gives us the expected result from section 2.

5.2 Correctness Proof

We claim that the initial and the transformed program have the same observable
behavior.

In order to prove our claim, we define a similarity relation ∼ between two
configurations. The similarity relation is parameterized by a one-to-one function
f that records the correspondence between locations on the left and locations
on the right. The relation ∼f is defined by induction on the various structures

12 Christos Dimoulas, Mitchell Wand

– 〈α, ρ, E, K, Σ〉 ∼ 〈α∗, ρ∗, E∗, K∗, Σ∗〉 iff α = α∗ and there exists a one-to-one
function f : (D ⊆ dom(Σ)) → dom(Σ∗) such that ρ ∼

f

fv(E)
ρ∗, Σ ∼

f Σ∗, E ∼
f E∗,

and K ∼
f K∗

– ρ ∼

f
Y ρ∗ iff ∀x ∈ Y . ρ(x) ∼

f ρ∗(x)
– Σ ∼

f Σ∗ iff (l, l∗) ∈ f implies Σ(l) = 〈v1, . . . , vn〉, Σ∗(l∗) = 〈v∗

1 , . . . , v∗

n〉 and
∀i ≤ n. vi ∼

f v∗

i .
– θl ∼

f θ∗

l∗ iff f(l) = l∗.
– θ

UPD(El, Ej , Ev) ∼
f θ

UPD!(E∗

l , Ej , E
∗

v) iff El ∼
f E∗

l , Ej ∼
f E∗

j , Ev ∼
f E∗

v and
θ ∈ Θ

Fig. 8. The Similarity Relation ∼ (selected cases)

involved. The function f avoids the need for a coinductive definition. The key
portions of the definition of ∼ are shown in figure 8.

Two configurations are similar iff there is a one-to-one function f that makes
each of their components similar mod f . Similarity of environments is always
done relative to a set of variables Y ; ρ and ρ∗ are similar mod f iff for each x ∈ Y ,
their values are similar mod f . Two stores Σ and Σ∗ are similar mod f iff for
each (l, l∗) ∈ f , Σ(l) and Σ∗(l∗) are arrays of the same length whose components
are similar mod f . Two locations are similar mod f iff they are related by the
function f . All the other cases are defined by the obvious structural recursion,
except that an UPD-term is similar to an UPD!-term if they have the same label
θ ∈ Θ and their subterms are similar. Similar expressions always have the same
label, unless they are ∼f -related locations.

Clearly, the initial states of the original and the transformed program are
similar, using the empty function for f . We then prove, by induction on the length
of the computation, that as the original and transformed program compute, they
stay in similar configurations. Therefore, the machines halt with similar values:
if the values are constants, then they must be the same constant.

There are two non-trivial cases: when the machines are at an (UPD!, UPD!)
pair (lemma 2), and when they are at a (UPD, UPD!) pair (lemma 6). The for-
mer illustrates why f must be injective, and the latter is a point at which the
transformation has been applied.

In the first case, we use the one-to-one property of f to show that the destruc-
tive updates do not disturb the similarity relation of the produced configurations.

Consider the two following configurations:
S = 〈α.3, ρ3, v, 〈α, ρ, θUPD!(θl l, j, θv []), K〉, Σ〉,
S∗ = 〈α.3, ρ∗3, v

∗, 〈α, ρ∗, θUPD!(θl∗ l∗, j∗, θv []), K∗〉, Σ∗〉. Assume that S ∼
f S∗.

By the semantics of the language we know that S → S′ and S∗ → S∗′ where
S′ = 〈α, ρ, θl l, K, Σ′〉,
S∗′ = 〈α, ρ∗, θl∗ l∗, K∗, Σ∗′〉
where Σ′ = Σ [l → α.θl〈v1, . . . , vj−1, v, vj+1, . . . , vn〉],

Σ∗′ = Σ∗[l∗ → α.θl∗ 〈v∗1 , . . . , v∗j−1, v
∗, v∗j+1, . . . , v

∗

n〉]

The Higher-order Aggregate Update Problem 13

Lemma 1. Σ′
∼

f Σ∗′

Proof: From S ∼
f S∗, we know that θl l ∼

f θl∗ l∗, ∀0 ≤ i ≤ n. vi ∼
f v∗i

and v ∼
f v∗. Furthermore, f is an one-to-one function. So there is no other

l′ ∈ dom(Σ) or l∗′ ∈ dom(Σ∗) such that l′ ∼
f l∗ or l ∼

f l∗′. Since Σ ∼
f

Σ∗ we can conclude that Σ[l → α.θl〈v1, . . . , vj−1, v, vj+1, . . . , vn〉] ∼
f Σ∗[l∗ →

α.θl∗ 〈v∗1 , . . . , v∗j−1, v
∗, v∗j+1, . . . , v

∗

n〉].

Lemma 2. S′
∼

f S∗′

Proof: Straightforward by S ∼
f S∗ and lemma 1.

In the second case, we take advantage of the definition of the transformation
and the fact that this case arises only when the updated location is not live. We
define a new one-to-one function f ′ which makes the two resulting configurations
similar.

Consider the two following configurations:
S = 〈α, ρ, θUPD(x, Ej , Ev), K, Σ〉,
S∗ = 〈α, ρ∗, θUPD!(x, E∗

j , E∗

v), K∗, Σ∗〉

where x /∈ L(θ) and S ∼
f S∗. Assume that S

∗

→ S′′ and S∗
∗

→ S∗′′, where
S′′ = 〈α, ρ, θα.θ, K, Σ′′〉,
S∗′′ = 〈α, ρ, θl∗ l∗, K∗, Σ∗′′〉
and where ∀1 ≤ i ≤ n. vi ∈ Σ′(l), ∀1 ≤ i ≤ n. v∗i ∈ Σ∗′(l∗),

Σ′′ = Σ′ [α.θ → α.θ〈v1, . . . , vj−1, v, vj+1, . . . , vn〉],
Σ∗′′ = Σ∗′[l∗ → α.θl∗ 〈v∗1 , . . . , v∗j−i, v

∗, v∗j+1, . . . , v
∗

n〉].
Then there must be configurations

S′ = 〈α.3, ρ3, v, 〈α, ρ, θUPD(θl l, θjj, θv []), K〉, Σ′〉,
S∗′ = 〈α.3, ρ∗3, v

∗, 〈α, ρ∗, θUPD!(θl∗ l∗, θjj, θv []), K∗〉, Σ∗′〉

such that S
∗

→ S′ → S′′ and S∗ ∗

→ S∗′ → S∗′′. Assume that S′
∼

f S∗′.
Consider now the following f ′:
– f ′(α.θ) = l∗

– if l′ live in S′′ and l′ 6= α.θ then f ′(l′) = f(l′).

Lemma 3. f ′ is a one-to-one function.

Proof: By S′
∼

f S∗′, f(l) = l∗. f is a one-to-one function. Let g be the function
defined by the second branch of the definition of f ′. g is a subset of f . Since
l is not live in in S′′, g is a one-to-one function that does not include the pair
(l, l∗). Also, there is no l′ ∈ dom(Σ′) such that l′ 6= l and f(l′) = l∗. So there is
no l′ ∈ dom(Σ′) such that g(l′) = l∗. The extension of g with the pair (α.θ, l∗)
defines f ′. From the above we can conclude that f ′ is a one-to-one function.

Lemma 4. ∀w, w∗ if reach(w, K, Σ′′) and w ∼
f w∗ then w ∼

f ′

w∗.

Lemma 5. Let Σ′′(α.θ) = α.θ〈w1, . . . , wn〉. ∀1 ≤ i ≤ n, w, w∗ if reach(w, wi, Σ
′′)

and w ∼
f w∗ then w ∼

f ′

w∗.

14 Christos Dimoulas, Mitchell Wand

Proof: We prove these two lemmas by induction on the depth of w. The in-
teresting part is in the base case of the inductive proof, when w is a location,
where we proceed by case analysis on whether w is the updated location l.

Lemma 6. S′′
∼

f ′

S∗′′

Proof: By lemmas 4 and 5, we can conclude that all the values that are reach-
able from S′′ are related through f ′ with the corresponding values that occur
in S∗′′. Thus by lemma 3 and the definition of the similarity relation all the
elements of the two resulting configurations are similar.

Observe that these lemmas imply that similar configuration either both halt
or both take a step to similar configurations. Combining these lemmas gets us:

Theorem 5 (Correctness of (−)∗ - The main theorem). Let E0 be the
initial program, and let E∗

0 be the result of applying the transformation on E0.

Then 〈ǫ, ∅, E0, halt, ∅〉
n
→ 〈halted, v, Σ〉 iff 〈ǫ, ∅, E∗

0 , halt, ∅〉
n
→ 〈halted, v∗, Σ∗〉

where for some f v ∼
f v∗ and Σ ∼

f Σ∗

6 Related Work

Our effort is strongly related to previous work on inter-procedural aggregate
update analysis. Hudak and Bloss [4, 5] propose an aggregate update analysis for
strict first-order languages with flat arrays. Their approach combines abstract
interpretation with conventional flow analysis. In their turn, Draghicescu and
Purushothaman [1] presented an aggregate optimization for non-strict first-order
languages with flat arrays. The transformation is based on a liveness analysis.

The analysis of Wand and Clinger [12], which extends the analysis of [7, 8],
presents a modular framework. They build a propagation analysis, and on top
of that an alias analysis and finally a live variables analysis. The transformation
replaces functional updates of dead variables with destructive updates. Their
analysis deals only with first-order languages with arrays of scalar values and
they prove the soundness of their analysis using environmental semantics and
store erasure.

Shankar [9] proposed a method for safe destructive update in strongly-typed
higher-order functional languages with eager order of evaluation. The structure
of his framework is very similar to that of [12]: it uses an alias analysis to create
a live variable analysis and then uses the results of the analysis to perform the
transformation. The analysis handles higher-order programs by means of a fixed
point calculation of the live variables. However the analysis cannot handle nested
arrays.

From a different perspective, efforts like [3, 6] are influenced by the gener-
alization of linear type systems [11] and try to solve the problem using type
annotations. None of these can handle untyped programs as our does.

Our optimization is based on the analysis of [12]. We share the spirit of a
modular framework which consists of layers with different analysis in each layer

The Higher-order Aggregate Update Problem 15

computed symbolically. But our analysis differs from that of [12] in a number of
ways. Instead of a propagation and an alias analysis we use control-flow analysis
[10]. This makes our framework capable of handling higher-order languages and
arrays of any kind of values. Also, we can handle source code with both func-
tional and destructive updates. Finally we use a different proof technique for the
correctness of the transformation by constructing a bisimulation of the initial
and the transformed program based on store shape properties.

References

1. M. Draghicescu and S. Purushothaman. A uniform treatment of order of evaluation
and aggregate update. Theoretical Computer Science, 118(2):231–262, 1993.

2. M. Felleisen and D. P. Friedman. A calculus for assignments in higher-order lan-
guages. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, page 314, 1987.
3. J. C. Guzman and P. Hudak. Single-threaded polymorphic lambda calculus. In

IEEE Symposium on Logic in Computer Science, pages 333–343, 1990.
4. P. Hudak and A. Bloss. The aggregate update problem in functional programming

systems. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, pages 300–314, 1985.
5. P. Hudak and A. Bloss. Avoiding copying in functional and logic programming

languages. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, pages 300–314, 1985.
6. M. Odersky. How to make destructive updates less destructive. In ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, pages 25–26,
1991.

7. A.V.S. Sastry. Efficient Array Update Analysis of Strict Functional Languages.
PhD thesis, Computer and Information Science, University of Oregon, 1994.

8. A.V.S. Sastry, W. D. Clinger, and Z. Ariola. Order-of-evaluation analysis for de-
structive updates in strict functional languages with flat aggregates. In Conference

on Functional Programming Languages and Computer Architecture, pages 266–275,
1993.

9. N. Shankar. Static analysis for safe destructive updates in a functional language.
In International Workshop on Logic-based Program Synthesis and Transformation,
pages 1–24, 2002.

10. O. Shivers. Control-Flow Analysis of Higher-Order Languages, or Taming Lambda.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 1991. Technical Report CMU-CS-91-145.

11. P. Wadler. Linear types can change the world! In IFIP TC 2 Working Conference

on Programming Concepts and Methods, pages 347–359, 1990.
12. M. Wand and W. D. Clinger. Set constraints for destructive array update opti-

mization. Journal of Functional Programming, 11(3):319–346, May 2001.
13. G. B. Williamson. Flow analysis for higher-order multithreaded computations. PhD

thesis, College of Computer and Information Science, Northeastern University,
Boston, Massachusetts, 2004.

