
A separation logic for refining concurrent objects

Aaron Turon and Mitchell Wand

Northeastern University

Abstract. Fine-grained concurrent data structures are crucial for gain-
ing performance from multiprocessing, but their design is a subtle art.
Recent literature has made large strides in verifying these data struc-
tures, using either atomicity refinement or separation logic with rely-
guarantee reasoning. In this paper we show how the ownership discipline
of separation logic can be used to enable atomicity refinement, and we
develop a new rely-guarantee method that is localized to the definition
of a data structure. The result is a comprehensive and tidy account of
concurrent data refinement that clarifies and consolidates the existing
approaches.

1 Introduction

To benefit from multiprocessing, shared-memory data structures must allow con-
current access from many clients, without unduly sequentializing that access. Yet
despite this fine-grained interleaving, operations on the data structures must ap-
pear to take effect atomically. The algorithms implementing these operations are
often short but subtle, making formal correctness proofs both feasible and useful.

What does it mean for a concurrent data structure to be correct? If we can
express both the implementation D and the specification S of a data structure in
the same language, we can take the perspective of refinement: D refines S if for
every program context C[−], each behavior of the program C[D] is a possible
behavior of C[S].1 That is, no client can detect that it is interacting with D
rather than S, even if the client invokes many operations of D concurrently.

The appeal of refinement is that, to prove something about the behaviors
of C[D] for a particular client C, it suffices to consider the behaviors of C[S]
instead—and S is usually much simpler than D. For concurrent data structures,
we hope to gain simplicity in two respects: a larger grain of atomicity, and a more
abstract view of data. For example, a set implementation might use a linked-list
representation and fine-grained locking to enable concurrent operations, but its
specification treats the data as an abstract set, and updates that data atomically.

In this paper, we present a new approach for proving refinement of concurrent
objects. The main idea is to incorporate the notion of ownership from concurrent
separation logic (CSL [1]) into a model that captures atomicity and refinement.
By making both atomicity and heap ownership explicit, we can clarify and ex-
ploit their relationship. In particular, atomicity is relative to ownership. In more
detail, our contributions are as follows:
1 In particular, we dispense with linearizability; see §5.



2 Aaron Turon and Mitchell Wand

– We present a new specification language in the tradition of refinement cal-
culi [2, 3], but tailored to separation logic-style reasoning (§2). An important
innovation is the data abstraction operator abs α.ϕ (§3.1), which allows us to
make explicit the assumption that clients of a data structure do not observe
or interfere with its representation. Thus an instance of a data structure is
considered to be jointly owned by its operations.

– We show how this simple ownership model can enable both atomicity and
data refinement (§3.2). When reasoning about an operation on a data struc-
ture instance, any memory that is not part of that instance is considered
private to that operation. Private memory cannot be observed or interfered
with, so computations only dealing with private resources can be viewed as
part of a larger atomic step. As with CSL, “ownership is in the eye of the as-
serter” [1] and is used to describe, not determine, runtime behavior. Because
ownership is described locally, changes to the grain of atomicity are enabled
by strictly local reasoning—in contrast to methods like reduction [4], which
must consider interactions with all possibly concurrent actions.

– We show how to use rely/guarantee reasoning [5] in a modular and dynamic
fashion (§3.2). Again, data abstraction and ownership is crucial: any inter-
ference with a dynamic instance of a data structure must be due to one of
the data structure operations. Rely/guarantee reasoning is used during data
refinement steps. The reasoning is modular in the sense that it involves only
the data structure’s operations, and neither affects nor involves its clients;
the reasoning is dynamic in the sense that it deals with the arbitrarily many
instances of the data structure that may appear at runtime.

– We adapt Brookes’s transition trace model [6] for dynamic memory alloca-
tion, to give our specification language a simple denotational semantics (§4).
The semantics is adequate for a corresponding operational model, which jus-
tifies our claims about refinement. Finally, we introduce the semantic notion
of fenced refinement to justify our ownership-based reasoning.

This paper draws on several ideas from recent work, especially that of Elmas
et al. [7, 8] and Vafeiadis et al. [9, 10]. We refer the reader to §5 for a detailed
discussion of prior work.

2 Programs and their specifications

Our story begins with a very simple data structure: the counter. Counters permit
a single operation, inc, implemented as follows:

tmp = *C; *C = tmp+1; return tmp;

Of course, this implementation only works in a sequential setting. If multiple
threads use it concurrently, an unlucky interleaving can lead to several threads
fetching the same value from the counter. The usual reaction to this problem is
to use mutual exclusion, wrapping the operation with lock instructions. But as
Moir and Shavit put it, “with this arrangement, we prevent the bad interleavings



A separation logic for refining concurrent objects 3

by preventing all interleavings” [11]. Fine-grained concurrent objects permit as
many good interleavings as possible, without allowing any bad ones. The code

while (true) { tmp = *C; if (CAS(C, tmp, tmp+1)) return tmp; }

implements inc using an optimistic approach: it takes a snapshot of the counter
without acquiring a lock, computes the new value of the counter, and uses
compare-and-set (CAS) to safely install the new value. The key is that CAS com-
pares *C with the value of tmp, atomically updating *C with tmp + 1 and re-
turning true if they are the same, and just returning false otherwise.

Even for this simple data structure, the fine-grained implementation signif-
icantly outperforms the lock-based implementation [12]. Likewise, even for this
simple example, we would prefer to think of the counter in a more abstract way
when reasoning about its clients, giving it the following specification:

inc(c, ret) = 〈x : c 7→ x, c 7→ x+ 1 ∧ ret = x〉

This specification says that, for any value x, inc atomically transforms a heap
in which c points to x into one where c points to x+ 1, moreover ensuring that
the value of ret (an out-parameter) is x.

Our specifications can be understood as logical formulas satisfied by some set
of observable behaviors (cf. [13]), which for us are finite traces capturing safety
properties. Thus the grammar of specifications

ϕ,ψ, θ ::= ϕ;ψ | ϕ|ψ | let f(x) = ϕ in ψ | f(e) | µX.ϕ | X | ϕ∨ψ | ∃x.ϕ | 〈x : p, q〉 | {p}

includes a combination of programming constructs like sequential and parallel
composition, let-binding of procedures, and recursion, and logical constructs like
disjunction and quantification. The latter can be read operationally, however. For
example, the behaviors admitted by ϕ ∨ ψ are just those admitted either by ϕ
or by ψ, so disjunction corresponds to nondeterministic choice. Variables x are
immutable—only the heap can be mutated—so existentials behave as usual.

To describe the last two forms of specifications, we need to take a brief look
at predicates p, which are checked against a heap σ and environment ρ:

Predicate semantics σ, ρ |= p, where σ ∈ Σ , Loc ⇀ Val, ρ ∈ Var ⇀ Val

p, q, r ::= tt | ff | emp | e 7→ e′ | e = e′ | | p∗ q | p∧ q | p∨ q | p⇒ q | ∀x.p | ∃x.p

σ, ρ |= emp iff σ = ∅
σ, ρ |= e 7→ e′ iff σ = [JeKρ 7→ Je′Kρ]

σ, ρ |= e = e′ iff JeKρ = Je′Kρ

σ, ρ |= ∀x.p iff ∀v. σ, ρ[x 7→ v] |= p

σ, ρ |= p ∗ q iff ∃σ1, σ2. σ = σ1 ] σ2, σ1, ρ |= p, σ2, ρ |= q

Assume: e ::= x | n | e+ e′ | (e, e′) | · · · JeKρ ∈ Val Loc ⊆ Val

We include the key connective of separation logic, the separating conjunction
p ∗ q, which is satisfied by any heap separable into one subheap satisfying p and
one satisfying q. The operators ∧,∨,⇒,∃, tt,ff are defined as usual.

An action 〈x : p, q〉 describes an atomic step of computation in terms of
the strongest partial correctness assertion it satisfies (cf. Morgan’s specification



4 Aaron Turon and Mitchell Wand

statements [2]). The variables x are in scope for both p and q, and are used
to link them together (as in inc above). Starting from a heap σ, an action can
either diverge (i.e. have no behavior), fault if its precondition is not satisfied, or
atomically update the heap so that the postcondition is satisfied. More precisely,
(σ, o) is a behavior of the action in environment ρ iff, for every σ1, σ2 and v,

σ = σ1 ] σ2, ρ[x 7→ v], σ1 |= p =⇒ o = σ′1 ] σ2, ρ[x 7→ v], σ′1 |= q

where o ∈ Σ ∪ {>}. The symbol > represents a fault. This semantics of actions
enforces the locality intrinsic to separation logic [14]. If the precondition is sat-
isfied by a (or multiple) subheap, then the postcondition must be satisfied by
changing only that portion of the heap, leaving the rest (the frame σ2) intact.
If the precondition is nowhere satisfied, any outcome o is permitted—even >.
According to this semantics, inc(c, ret) faults iff c is unallocated.

Many familiar commands can be expressed as actions. The following are used
in our examples, and provide some intuition for action semantics:

skip , 〈emp, emp〉
new(x, ret) , 〈emp, ret 7→ x〉

get(a, ret) , 〈x : a 7→ x, a 7→ x ∧ x = ret〉
put(a, x) , 〈a 7→ −, a 7→ x〉

cas(a, old, new, ret) ,

fi
x : a 7→ x,

(x 6= old ∧ a 7→ x ∧ ret = 0)
∨ (x = old ∧ a 7→ new ∧ ret = 1)

fl
where the predicate a 7→ − is shorthand for ∃z.a 7→ z.

Assertions {p} simply test a predicate: if the heap satisfies p ∗ tt the heap
is left fixed, and otherwise the assertion faults. Assertions provide a way to
introduce a claim during verification while postponing its justification (cf. [7]).

An assumption [P ] is shorthand for the action 〈emp, emp ∧ P 〉, which is a
guard: according to the semantics above, it cannot fault, and must make P true
without changing the heap. Thus if P does not already hold, it must diverge
(have no behavior). The metavariables P,Q,R stand for pure predicates, which
constrain only the environment: for each ρ, either ρ, σ |= P for all σ or for no σ.

We can write the fine-grained version of inc in our language as follows:

inc′(c, ret) = µX.∃t.get(c, t); ∃s.cas(c, t, t+ 1, s); ([s = 1][ret = t] ∨ [s 6= 1];X)

3 Proof theory

Our first goal is to show how to execute inc′ but reason in terms of inc.
Specifications are related through refinement: we write ϕ v ψ if every be-

havior of ϕ is a possible behavior of ψ. Crucially, refinement is a congruence
(§4). Under refinement, faulting is maximally permissive, so a specification al-
lowing a fault at a given point allows any behavior at that point. Thus the
specification 〈ff, tt〉, which faults regardless of the state, is trivial : ϕ v 〈ff, tt〉
for all ϕ. Dually, 〈tt, ff〉, whose behaviors take any heap to one satisfying ff, is
miraculous [2]: no behaviors satisfy it, so 〈tt, ff〉 v ϕ for every ϕ. Miraculous
specifications are akin to imaginary numbers: they are not the primary objects
of our study, but they are indispensable for calculation. Ultimately, if we can
prove that ϕ v 〈x : p, q〉, we know that ϕ faults iff ∃x.p does not hold.



A separation logic for refining concurrent objects 5

Thinking of specifications as formulas in a logic, we have a model theory
saying when a behavior satisfies a formula (§4), and the following sound proof
theory for showing implications (refinements) between formulas:

A selection of sound refinements ϕ v ψ, with ϕ ≡ ψ iff ϕ v ψ and ψ v ϕ

〈tt, ff〉 v ϕ
〈ff, tt〉 w ϕ

ϕ ∨ ϕ v ϕ
ϕ ∨ ψ w ϕ

∃x.ϕ v ϕ
∃x.ϕ w ϕ[e/x]

〈x, y : p, q〉 v 〈y : p[e/x], q[e/x]〉
〈x, y : p, q〉 w 〈y : p, q〉

DstL (ϕ1 ∨ ϕ2);ψ ≡ ϕ1;ψ ∨ ϕ2;ψ
DstR ψ; (ϕ1 ∨ ϕ2) ≡ ψ;ϕ1 ∨ ψ;ϕ2

Frm 〈x : p, q〉 v 〈x : p ∗ r, q ∗ r〉
Ext 〈x : p, p〉 ≡ {∃x.p} (p exact)

Str rules

ϕ; (∃x.ψ) ≡ ∃x.ϕ;ψ
〈y : p,∃x.q〉 ≡ ∃x. 〈y : p, q〉

Idm1 {p}{p} ≡ {p}
Idm2 {∃x.p} 〈x : p, q〉 ≡ 〈x : p, q〉
Asm 〈x : p, q ∧R〉 ≡ 〈x : p, q〉 [R]

Ind
ϕ[ψ/X] v ψ
µX.ϕ v ψ

Csq1

∀x. p⇒ p′ ∀x. q′ ⇒ q

〈x : p′, q′〉 v 〈x : p, q〉

Csq2

(q∗tt)⇒ (p∗tt)
{p} v {q}

NB: a predicate appearing both in and outside a binder for x cannot mention x.

Many of these rules are familiar. The top row comes from first-order and Hoare
logic; we leave those rules unlabeled and use them freely. The two Dst rules,
giving the interaction between nondeterminism and sequencing, are standard for
a linear-time process calculus [15]. Ind is standard fixpoint induction. Frm is
the frame rule from separation logic, capturing the locality of actions. Csq1 is
the consequence rule of Hoare logic.

The less familiar rules are still largely straightforward. Ext provides an im-
portant case where actions and assertions are equivalent: on exact predicates,
which are satisfied by exactly one heap, and hence are deterministic as postcon-
ditions. The Str rules allow us to manipulate quantifier structure in a way remi-
niscent of scope extrusion. The Idm rules express the idempotence of assertions—
recall that the precondition of an action acts as a kind of assertion. Asm allows
us to move a guard into or out of a postcondition. Csq2 tells us that assertions
are antitonic, which follows from the permissive nature of faulting.

To show inc′ v inc, we first prove two lemmas describing the effect of cas:

cas(a, o, n, r); [r = 1]
(Asm, Csq1) v 〈x : a 7→ x, a 7→ n ∧ x = o〉

cas(a, o, n, r); [r 6= 1]
(Asm, Csq1) v 〈x : a 7→ x, a 7→ x〉 ≡ {a 7→ −}

Next we begin abstracting the loop in inc′, with X replaced by inc(c, ret):

∃t.get(c, t);∃s.cas(c, t, t+ 1, s); ([s = 1][ret = t] ∨ [s 6= 1]; inc(c, ret))

DstR v ∃t.get(c, t);∃s.
„

cas(c, t, t+ 1, s); [s = 1][ret = t]
∨ cas(c, t, t+ 1, s); [s 6= 1]; inc(c, ret)

«
lemmas v ∃t.get(c, t);∃s.

„
〈x : c 7→ x, c 7→ t+ 1 ∧ x = t〉 [ret = t]
∨ {c 7→ −}; inc(c, ret)

«
Asm,
Csq1

v ∃t.get(c, t);∃s.(inc(c, ret) ∨ {c 7→ −}; inc(c, ret))



6 Aaron Turon and Mitchell Wand

Next is the key step: abstracting get into an assertion(cf. havoc abstraction [7]):

definition ≡ ∃t. 〈x : n 7→ x, n 7→ x ∧ x = t〉 ; ∃s.(inc(c, ret) ∨ {c 7→ −}; inc(c, ret))
Csq1 v ∃t. 〈x : n 7→ x, n 7→ x〉 ;∃s.(inc(c, ret) ∨ {c 7→ −}; inc(c, ret))
Ext v ∃t.{c 7→ −};∃s.(inc(c, ret) ∨ {c 7→ −}; inc(c, ret))

revealing that the value t returned from get is unimportant for correctness.
Finally the assertions {c 7→ −} are absorbed using Idm2, yielding one atomic
action: inc(c, ret).Using Ind, we conclude that inc′ v inc.

Notice that we do not give and did not use any rules for reasoning about
parallel composition. We certainly could give such rules, but that would be beside
the point. Our aim is to reason about concurrent data structure implementations,
which are pieces of sequential code that clients may choose to execute in parallel.
Having proved the refinement, we can conclude that even for a concurrent client
C[−] we have C[inc′] v C[inc].

3.1 Data abstraction

The specification inc is simpler than inc′ in an important respect: it has a larger
grain of atomicity. However, inc is still unsatisfying as a specification, because it
reveals the representation of the counter data structure, and hence is not refined
by implementations using a different representation. We need data abstraction.

We can think of programs as syntactic sugar for certain specifications, as in
our definitions of get, cas, etc., but the specification language need not be limited
to program-like constructs. Thus, we take the radical step of introducing a data
abstraction operator abs α.ϕ, which allows us to write

abs cnt. let newCnt(ret) = 〈emp, cnt(ret, 0)〉 ,
inc(c, ret) = 〈x : cnt(c, x), cnt(c, x+ 1) ∧ ret = x〉 in ϕ

where cnt does not appear in ϕ. The idea is that cnt(`, x) is an abstract re-
source that the client ϕ can work with only by using the let-bound proce-
dures (because none of its own actions mention cnt). Each abstract resource
has two parameters: an abstract location ` and an abstract value x. We redefine
Σ , (Loc ⇀ Val) ∪ (ResVar ⇀ 2Loc×Val) so that σ(α) is the set of owned
α resources. Then newCnt, for example, takes σ to σ ] [cnt 7→ {(a, 0)}] for some
location a; we assume ] does not permit two abstract resources with the same
location. We introduce data abstraction via the following rule, reminiscent of
∃-introduction:2

Data1 let f(x) = 〈y : p[r/α], q[r/α]〉 in ϕ v abs α.let f(x) = 〈y : p, q〉 in ϕ

Here we are thinking of r as a predicate with two holes, so that r[`, x] gives a
concrete representation invariant for the abstract resource α(`, x). For inc, we
would let r[`, x] = ` 7→ x.

2 Our abstract resource variables also mirror Parkinson and Bierman’s abstract pred-
icates [16]. But the semantics of abs α.ϕ is not that of second-order ∃; see §4.



A separation logic for refining concurrent objects 7

The use of abstract resources allows us to localize interaction with the heap
cells associated with a data structure, even though pointers to those cells escape.
Crucially, we do this without restricting the client of the data structure—notice
Data1 does not constrain ϕ. For example, we have the valid data refinement

let f(ret) = new(0, ret) in ∃x.f(x); put(x, 1)
v abs α. let f(ret) = 〈emp, α(ret)〉 in ∃x.f(x); put(x, 1)

even though the client improperly follows a pointer into, and then modifies, the
data structure we are abstracting. Because the abstract f does not allocate x on
the concrete heap, when the client attempts to put(x, 1) it will fault—we have
literally taken away the concrete resources associated with the data structure—
and the permissive nature of faulting means that the refinement holds no matter
what the concrete implementation does. In general, moving from a concrete to
an abstract data representation causes the client to fault whenever it attempts
to forge, access, or modify an instance of the data structure without using the
let-bound procedures.

3.2 Ownership, fenced refinement, and rely/guarantee

The key step in developing our logic is to permit rely/guarantee and ownership-
based reasoning through data abstraction. We motivate and illustrate that step
by verifying a version of Treiber’s stack [17]:

newStk(ret) = new(0, ret)
push(s, x) = ∃n.new((x, 0), n);
µX.∃t.get(s, t);

put2(n, t);
∃b.cas(s, t, n, b);
if b = 0 then X

pop(s, ret) =
µX.∃t.get(s, t);

if t = 0 then [ret = emptyStack]
else ∃n.get2(t, n);

∃b.cas(s, t, n, b);
if b = 0 then X else get1(t, ret)

The specifications geti and puti operate on the ith component of pairs, e.g.,
put2(a, x) , 〈y : a 7→ (y,−), a 7→ (y, x)〉. Stacks provide two new challenges com-
pared to counters. First, the loop in push modifies the heap every time it exe-
cutes, by calling put2, rather than just at a successful cas; this makes atomicity
nontrivial to show. Second, pop has a potential “ABA” problem [18]: it assumes
that if the head pointer s is unchanged (i.e. equal to t at the cas), then the tail
of that cell is unchanged (i.e. equal to n at the cas). Intuitively this assumption
is justified because stack cells are never changed or deallocated once they are
introduced;3 we must make such an argument within the logic.

To deal with these challenges, we introduce the conceptual notion of own-
ership, captured by the formal notion of fenced refinement—which significantly
enhances the power of the logic.

Where does ownership enter the picture? Informally, we want to think of
the representation of stack instances (living in the heap) as being jointly owned
by the stack procedures, while only the corresponding abstract stack resources
3 We assume garbage collection here, but we can also verify a deallocating stack.



8 Aaron Turon and Mitchell Wand

are owned by the client—thus, as already mentioned, the client cannot directly
interfere with stack instances. Conversely, the stack does not interfere with its
client’s memory. But notice that the procedure push allocates memory for itself
that, initially, belongs to neither the client nor any stack instance. Until that
memory becomes part of a stack instance, it is exclusively owned by push—and
hence, we can reason about it sequentially. Likewise, if memory is removed from
a stack instance by a procedure (as in pop), it becomes private to that procedure,
even if other threads have pointers to it. From the point of view of those other
threads, the memory has effectively been deallocated by their environment.

We need a way to characterize the memory associated with a data structure
instances. A precise predicate is one that, for any heap, it is satisfied by at most
one subheap—that is, it unambiguously picks out (“fences” [19]) the part of
the heap constituting the data structure instance. Our representation invariant
` 7→ − for a counter located at ` is precise, as is the invariant ∃x.list(`, x) where

list(`, ε) , ` 7→ 0 list(`, x · xs) , ∃`′.` 7→ (x, `′) ∗ list(`′, xs)

These precise predicates in some sense describe a way of tracing the heap, start-
ing from some location, to find all the memory associated with a data structure.
We will use I as a metavariable for such precise predicates.

For simplicity, we will assume the procedures for a data structure either (1)
allocate an instance of the data structure or (2) read or write an instance of the
data structure, leading to the following specialized data abstraction rule:

Data2

(∃z.I[`, z]), (
W
θi) ` ϕi v θi θi v 〈y : I[`, y], I[`, ei] ∧ Pi〉

let f(`) = 〈emp, I[`, e]〉 , gi(`, x) = ϕi in ψ

v abs α.let f(`) = 〈emp, α(`, e)〉, gi(`, x) = 〈y : α(`, y), α(`, ei) ∧ Pi〉 in ψ

where I has a hole for a location ` and a value z (as in list(`, z)). If we ignore the
grayed portion of the rule, Data2 is derivable from Data1. The advantage of the
new rule is its use of fenced refinement, which has the general form I, θ ` ϕ v ψ.
In fenced refinement, we take the perspective of a procedure interacting with a
data structure instance: our view of the heap consists only of a shared instance
of the data structure (located at `, fenced by ∃z.I[`, z]) and private memory. As
the procedure makes changes to the data structure, memory moves in and out
of the region described by I, and this corresponds to the procedure giving up or
claiming, respectively, exclusive ownership of that memory. Each θi is an atomic
abstraction of the procedure ϕi. Thus the specification

∨
θi characterizes the

expected interference on the shared data structure instance fenced by I.
Fenced refinement is strictly more permissive than standard refinement, be-

cause it makes assumptions about the context—in particular, about the own-
ership of data—that do not always hold. Data2 allows us to derive standard
refinements from fenced refinements, by ensuring that the assumed ownership
protocol is actually followed; “ownership is in the eye of the asserter” [1]. The
second antecedent of the rule checks the ownership protocol at the level of each
θi (an atomic abstraction) rather than each ϕi (a fine-grained implementation).



A separation logic for refining concurrent objects 9

A key novel feature of Data2 is its provision for modular and dynamic
rely/guarantee reasoning. We use fenced refinement to prove that each procedure
body ϕi guarantees to behave like θi, as long it can rely on its environment to
interfere with the shared data only by taking the atomic steps described by

∨
θi.

This form of reasoning is modular because we have isolated the memory involved
(to I[`,−] for some `) and the code involved (each ϕi)—we do not constrain the
clients ψ, nor the contexts in which the data refinement holds. It is dynamic
because it encompasses arbitrary allocation of new data structure instances—we
get rely/guarantee reasoning for each individual instance, even though we do not
know how many instances the client ψ will allocate.

Below, we set out and explain some of the rules of fenced refinement, then
illustrate them on fragments of the stack example.

A selection of sound fenced refinements I, θ ` ϕ v ψ
SeqL

I, θ ` 〈x : p, q〉 〈x : q ∗ p′, r〉 v {I ∗ ∃x.p} 〈x : p ∗ p′, r〉
Inv

I, θ ` {I} ≡ skip

SeqR

I, θ ` 〈x : p, q ∗ r′〉 {I ∗ ∃x.q} v {s} 〈x : p, q ∗ r′〉
I, θ ` 〈x : p, q ∗ r′〉 〈x : q, r〉 v {s} 〈x : p, r ∗ r′〉

Lift
ϕ v ψ

I, θ ` ϕ v ψ
Stab1

〈x : p, q〉 v 〈x : (p∗tt) ∧ s, r〉 θ v 〈r, r〉
I, θ ` 〈x : p, q〉 {r} v {s} 〈x : p, q〉

Stab2

ϕ v 〈x : p, I ∗ q〉
I, θ ` ϕ; {I ∗ q} v ϕ

In fenced refinement, any data that is not part of the data structure instance
fenced by I is private, and hence can be reasoned about sequentially. The Seq
rules permit atomicity refinement: two atomic actions can be combined if one of
them only operates on private data. SeqL combines two actions when the first
is private, introducing an assertion as a verification condition for showing that
the data p is separate from I on the heap—and hence private. In SeqR, where
the second action must be private, separability must be satisfied in between the
two atomic actions; showing that verification condition may involve introducing
a further assertion s.

Inv expresses that the invariant I always holds, so asserting it will always
succeed. Lift reflects the fact that fenced refinement is more permissive than
standard refinement.

Finally, Stab1 allows as assertion {r} to be removed if it is stably satisfied
after an action (which may require a new assertion, {s}, to hold prior to the
action). The predicate r holds stably if it holds immediately after the action
(the first antecedent of the rule) and if it is invariant under any interference θ.
Stab2 is a handy special case for assertions that solely constrain private data.

In addition to those rules, fenced refinement is also nearly a congruence:
if I, θ ` ϕ v ψ then I, θ ` C[ϕ] v C[ψ] for any context C that does not
contain parallel composition. It is not a congruence for parallel composition
because of the sequential reasoning it permits on private data. Since we use



10 Aaron Turon and Mitchell Wand

fenced refinement only to reason about the procedures implementing a data
structure—which we argued are usually sequential—this is all we need.

Returning to Treiber’s stack, we can make progress reasoning about push even
before nailing down the invariant I. Below is a fragment of push, corresponding
to a successful execution of the loop body. In this and the following examples,
we assume a fixed I, θ ` part of the refinement, and elide uses of Lift.

put2(n, t);∃b.cas(s, t, n, b); [b 6= 0]
lemma v put2(n, t); 〈z : s 7→ z, s 7→ n ∧ z = t〉

Frm, Csq1 v put2(n, t); 〈z : s 7→ z ∗ n 7→ (x, t), s 7→ n ∗ n 7→ (x, z)〉
SeqL v {I ∗ n 7→ (x,−)}; 〈z : s 7→ z ∗ n 7→ (x,−), s 7→ n ∗ n 7→ (x, t)〉

We use SeqL to enlarge the grain of atomicity, but it imposes the proof obligation
(i.e., assertion) that I, whatever it is, must be separable from the pair located
at n. Intuitively, it will be separable, because n is private data which does not
become part of a stack instance until after the successful cas. That is,

∃n.new((x, 0), n); {I ∗ n 7→ (x,−)}; 〈z : s 7→ z ∗ n 7→ (x,−), s 7→ n ∗ n 7→ (x, t)〉
Stab2 v ∃n.{I}; new((x, 0), n); 〈z : s 7→ z ∗ n 7→ (x,−), s 7→ n ∗ n 7→ (x, t)〉
SeqL,
Idm1

v ∃n.{I}; 〈z : s 7→ z, s 7→ n ∗ n 7→ (x, t)〉
Inv v 〈z : s 7→ z, ∃n.s 7→ n ∗ n 7→ (x, t)〉

The fact that n is privately allocated—even without a specific choice of stack
invariant I—is enough to abstract push into a single atomic action. Of course,
to subsequently use the Data2 rule, we will need to choose such an invariant
and show that the abstracted version of push maintains it.

To choose an appropriate I for a stack, we need to analyze its ownership
protocol. Why not let I[`, x] be ∃z.` 7→ z ∗ list(z, x)? According to this invariant,
when a cell is popped from the stack, the cell would no longer be part of stack
representation, and would therefore be exclusively owned by the pop procedure
that removed it. Meanwhile, threads concurrently executing pop might try to
follow a pointer to that cell (the get2 in pop), and fault from lack of access to
that memory.4 We want instead to treat any cell that has appeared in the stack
as a permanent part of the stack’s representation—after all, we never deallocate.

We therefore need some way to talk about cells that were reachable in the
past, but may no longer be. We employ the device of ghost abstractions, just as
one might introduce a ghost variable for this purpose in Hoare logic. A ghost
abstraction is an abstract resource whose concrete representation is simply emp—
concretely, it does not exist at all—and as such it is trivial to introduce using
Data1. We use Data1 to introduce a ghost abstraction α into cas(a, old, new, ret)
in pop, abstracting its definition to〈

x,A : a 7→ x ∗ α(s, A),
(a 7→ x ∗ α(s, A) ∧ x 6= old ∧ ret = 0)
∨ (a 7→ new ∗ α(s, A · a) ∧ x = old ∧ ret = 1)

〉
The ghost abstraction α has two parameters: the stack location s it is associated
with, and a sequence A of addresses of popped cells. On a successful pop, we
4 This faulting behavior is part of the fenced semantics given in the next section.



A separation logic for refining concurrent objects 11

add a new address. With α in place, we define the following:

I[s, xs] , list(s, xs) ∗ ∃A.α(s, A) ∗ own(A) own(ε) , emp

θpush , 〈n : s 7→ n,∃z.s 7→ z ∗ z 7→ (x, n)〉 own(a ·A) , a 7→ − ∗ own(A)

θpop , 〈n, n1, n2, A : s 7→ n ∗ n 7→ (n1, n2) ∗ α(s, A), s 7→ n2 ∗ α(s, n ·A) ∧ ret = n1〉

and use Data2 to abstract e.g. push(s, x) to 〈xs : stack(s, xs), stack(s, x · xs)〉,
where stack is the abstract resource for stacks.

4 Model theory

To justify our proof theory, we need a model theory saying when |= ϕ v ψ.
We accomplish this by introducing a denotational semantics for specifications.
Our semantics is based on Brookes’s transition trace model [6], which gave a
fully abstract semantics for a simple parallel while language. In this section
we briefly recapitulate that model, making a few adjustments to support our
specification language, and define data abstraction and fenced refinement.

The semantics of a specification is the set of its observable behaviors—its
transition traces—and concurrency is modeled by nondeterministic interleaving.
A transition trace t is a sequence of pairs in (Σ> ×Σ>)∗. Each pair represents
an observable step of execution, which could consist of zero, one, or multiple
atomic steps of computation, depending on the scheduler. For example, the trace
(σ1, σ

′
1)(σ2, σ

′
2) can be read as: the specification began with a heap σ1, and by

the end of its timeslice changed the heap to σ′1; then its environment had a
chance to execute, changing the heap to σ2, and so on. A pair (σ,>) represents
a faulting execution of the specification, while a pair (>, o) represents a fault on
the part of the environment (in which case the second component is irrelevant).

An important subspace of traces are the sequential ones: we write t seq if
the ending heap of each pair in t is equal to the starting heap of the next pair.
Sequential traces are those in which the environment never observably interferes.

With this model of behavior, the semantics of most specifications is straight-
forward (fig 1); we explain abs below. Environments ρ map variables x to values
v, specification variables X to sets of traces T , and procedure variables f to
functions Val → 2Trace. Sequential composition is concatenation and parallel
composition is nondeterministic interleaving.

Crucial to Brookes’s model is a quotient on sets of traces, given by a closure
operator −†. If T is a set of observable behaviors, then T † adds further observa-
tions they give rise to. The unshaded closure rules were in Brookes’s paper; they
say that (1) each behavior gives rise to itself (2) scheduling the specification for
an additional zero-length timeslice does not change the observable behavior and
(3) scheduling the environment for a zero-length timeslice does not change the
observable behavior. To these rules we add a rule saying that a faulting behavior
leads to all possible behaviors with the same prefix—faults are permissive.

Data abstraction works by replacing the abstract resource α by an arbitrary
concrete resource. We use trace merge (s ] t) to separate a trace into abstract
and concrete parts: the notation s]α t denotes a trace that splits into two traces



12 Aaron Turon and Mitchell Wand

Atomic step semantics act(x, ρ, p, q) ⊆ Σ ×Σ>

(σ, o) ∈ act(x, ρ, p, q) iff ∀σ1, σ2, v.
σ = σ1 ] σ2, ρ[x 7→ v], σ1 |= p =⇒ o = σ′1 ] σ2, ρ[x 7→ v], σ′1 |= q

Specification semantics JϕKρ ⊆ Trace

Jf(e)Kρ , ρ(f)(JeKρ)
Jϕ;ψKρ , (JϕKρ ; JψKρ)†

Jϕ ‖ ψKρ , (JϕKρ ‖ JψKρ)†

Jϕ ∨ ψKρ , JϕKρ ∪ JψKρ

J∃x.ϕKρ ,
S
v JϕKρ[x7→v]

Jlet f(x) = ϕ in ψKρ , JψKρ[f 7→λv.JϕKρ[x 7→v]]

JµX.ϕKρ ,
T
{T † : JϕKρ[X 7→T

†] ⊆ T †}
J〈x : p, q〉Kρ , act(x, ρ, p, q)†

J{p}Kρ , {(σ, σ) : σ ∈ Jp ∗ ttKρ}†
∪ {(o,>) : o /∈ Jp ∗ ttKρ}†

Jabs α.ϕKρ , { s ] u : s ]α t ∈ JϕKρ , t, u seq∅ }†
∪ { (s1 ] u)(o,>) : (s1s2) ]α t ∈ JϕKρ , t, u seq∅, last(u) 6⊆ o }†

Closure t ∈ T †

t ∈ T
t ∈ T †

st ∈ T †

s(o, o)t ∈ T †
s(o, o′)(o′, o′′)t ∈ T †

s(o, o′′)t ∈ T †
t(o,>)u ∈ T †

t(o, o′)u′ ∈ T †

Trace merge

ε ] ε , ε (o1, o
′
1)s ] (o2, o

′
2)t , (o1 ] o2, o′1 ] o′2)(s ] t)

Entailment

|= ϕ v ψ , ∀ρ . JϕKρ ⊆ JψKρ

I, θ |= ϕ v ψ , ∀ρ, o, o′ . rclJθ∗Kρ(JIKρ .o
′
o JϕKρ) ⊆ rclJθ∗Kρ(JIKρ .o

′
o JψKρ)

Data structure projection H .o
′
o T ⊆ Trace

H .o
′
o T , {s : s ] t ∈ T, s ∈ (H ×H)∗, t seqo

′

o }
Rely closure

t ∈ T
t ∈ rclS(T )

(σ′, o) /∈ S s(σ, σ′)t ∈ rclS(T )

s(σ, σ′)(o,>) ∈ rclS(T )

s(o,>)t ∈ rclS(T )

s(o, o′)u ∈ rclS(T )

Fig. 1. The model theory

s and t, where s contains no α resources and t contains only α resources. The
requirement that t seq∅ (that is, t is sequential and begins with no resources)
reflects the fact that no interference on α from the environment of the abstraction
is possible, and initially no α resources are allocated.

In the first clause defining data abstraction, we simply replace the abstract
resource trace by an arbitrary seq∅ trace u—swapping concrete for abstract
resources. Because u may simply be a sequence of empty heaps (∅, ∅)∗, the en-
vironment of the abstraction cannot assume that the concrete resources have
any particular shape—and if it does make such an assumption, it will fault.
Consequently, in the second clause, we respond to interference on the concrete
representation by faulting. Because faulting is permissive, this relieves us from



A separation logic for refining concurrent objects 13

showing anything about the implementation in the presence of an interfering
environment. The second clause enables modular rely/guarantee reasoning.

We define fenced refinement in two steps. First, we use data structure projec-
tion to project the relevant data structure instance from traces. The projection
takes the denotation H (a set of heaps) of the predicate I fencing a data struc-
ture, along with a set of traces T , and yields those traces without the resources
outside of the data structure. In addition, it filters the traces to a particular start
and end state (o and o′) of the private resources. This reflects the fact that in
fenced refinement, we view behavior using a trace semantics for the shared data
(so that we can handle interference) and a sequential semantics for the private
data (since it cannot be interfered with). Finally, we apply rely closure to express
our assumption about interference on the shared data. Any interference outside
of those assumptions results in a fault, just as in data abstraction.

Two important theorems hold about the system we have presented. First, the
denotational semantics of specifications (without abs) is adequate for the natural
operational semantics, where we observe termination of a closed program. It
follows that ϕ v · · · v 〈x : p, q〉 for a program ϕ means the program will not
fault if p is satisfied, and will leave the heap satisfying q—even if the · · · steps
included uses of data abstraction. Second, the proof rules we have presented—
including congruence—are sound for the model. The proofs of these theorems
will appear in a forthcoming technical report.

5 Evaluation and related work

In the last several years, there has been stunning progress in the formal verifica-
tion of fine-grained concurrent data structures [7–10], giving logics appropriate
for hand verification as well as automated verification. We have sought in this
work to clarify and consolidate this literature—the linchpin for us being data ab-
straction. While the logic resulting from our work does offer some significant new
features, we do not claim that it is more practical or applicable than the extant
approaches—only that it provides some additional insight, and more modularity.

The basic form of our calculus clearly bears resemblance to Elmas et al.’s cal-
culus of atomic actions [7, 8]. The key idea in that work is to combine Lipton’s
technique of reduction [4] for enlarging the grain of atomicity, with abstraction
(e.g. weakening a Hoare triple) on atomic actions. The authors demonstrate
that the combination of techniques is extremely powerful; they were able to au-
tomate their logic and use it to verify a significant number of data structures
and other programs. A significant difference between their calculus and ours is
what refinement entails, semantically. For them, refinement is ultimately about
the input-output relation of a program, where for us, it is about the reactive,
trace-based semantics. The distinction comes down to this: is refinement a con-
gruence for parallel composition? For us it is, and this means that our system as
a whole is compositional. We also demonstrate that reduction is not necessary
for atomicity refinement, at least for the class of examples we have considered;
we instead use ownership-based reasoning. Finally, aside from these points, we



14 Aaron Turon and Mitchell Wand

have shown how to incorporate separation logic into a calculus of atomic actions,
which makes reasoning about the heap much more pleasant.

A significant departure in our work is that we have dispensed with lineariz-
ability, which is usually taken as the basic correctness condition for the data
structures we are studying [20]. Here we are influenced by Filipović et al. [21],
who point out that “programmers expect that the behavior of their program
does not change whether they use experts’ data structures or less-optimized but
obviously-correct data structures.” The authors go on to show that, if we take
refinement as our basic goal, we can view linearizability as a sound (and some-
times complete) proof technique. But implicit in their proof of soundness—and
indeed in the definition of linearizability—is the assumption that the heap data
associated with data structures is never interfered with by clients. In a setting
where clients are given pointers into those data structures, this is an assumption
that should be checked. In contrast, we are able to give a comprehensive model
including both data structures and their clients, and make explicit the necessary
assumptions about ownership.

Our use of separation logic and rely/guarantee clearly derives from Vafeiadis
et al.’s work [9], especially Vafeiadis’s groundbreaking thesis [10]. In that line
of work, it was shown how to combine separation logic and rely/guarantee rea-
soning, which provided a basis for verifying fine-grained concurrent data struc-
tures. While their logic for proving Hoare triples was proved sound, no formal
connection to linearizability or refinement was made; there is only an implicit
methodology for proving certain Hoare triples about data structures and con-
cluding that those data structures are linearizable. We show how to make that
methodology explicit, and moreover compositional, by tying it to data abstrac-
tion. As a byproduct, we get a modularized account of rely/guarantee. We also
eliminate any need for explicit linearization points (which sometimes require
prophecy variables) or annotations separating shared from private resources.

Separation logic has already been used to localize rely/guarantee reasoning
in Feng’s work [19], from which we borrow the “fence” terminology. In Feng’s
paper, rely/guarantee reasoning for a memory region can be tied to a particular
part of the program where interference may occur. After proving that part of
the program, the rely and guarantee are removed, and no larger context using
that memory in parallel can be adjoined. In contrast, we localize rely/guarantee
reasoning to a data structure definition, even though the memory associated with
that data structure is used in arbitrary parallel contexts. We believe these use
cases are complementary. A further difference, though, is that our rely condition
grows to encompass arbitrarily many instances of a data structure, by describing
the expected interference on an instance in general.

Bierman and Parkinson [16], and Filipović et al. [22] have investigated data
abstraction in a sequential separation logic setting. In particular, Bierman and
Parkinson use abstract predicates whose definition is known to the data structure
implementation, but opaque to the client—a form of second-order existential
quantification. There is clearly a close relationship to our abstract resources,
but we do not define abs in terms of second-order quantification, because we



A separation logic for refining concurrent objects 15

need the ability to introduce faults and require sequentiality. The connections
between these approaches certainly merit further investigation.

References

1. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1-3) (2007) 271–307

2. Morgan, C., Vickers, T.e.: On the refinement calculus. Springer (1993)
3. Back, R.J., von Wright, J.: Refinement calculus: a systematic introduction.

Springer (1998)
4. Lipton, R.J.: Reduction: a method of proving properties of parallel programs.

Commun. ACM 18(12) (1975) 717–721
5. Jones, C.B.: Tentative steps toward a development method for interfering pro-

grams. ACM Trans. Program. Lang. Syst. 5(4) (1983) 596–619
6. Brookes, S.: Full abstraction for a shared variable parallel language. Information

and computation 127(2) (1996) 145–163
7. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: POPL, ACM

(2009) 2–15
8. Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Tasiran, S.: Simplifying linearizability

proofs with reduction and abstraction. In: TACAS, Springer (2010) 296–311
9. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic.

In: CONCUR, Springer (2007) 256–271
10. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis, Univer-

sity of Cambridge (2008)
11. Moir, M., Shavit, N.: Concurrent data structures. In: Handbook of Data Structures

and Applications, D. Metha and S. Sahni Editors. (2007) 47–14 47–30 Chapman
and Hall/CRC Press.

12. Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe locking
on multiprogrammed shared memory multiprocessors. J. Parallel Distrib. Comput.
51(1) (1998) 1–26

13. Hoare, C.A.R., Hanna, F.K.: Programs are predicates [and discussion]. Philo-
sophical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences 312(1522) (1984) 475–489

14. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: LICS, IEEE Computer Society (2007) 366–378

15. van Glabbeek, R.J.: The linear time - branching time spectrum. In: CONCUR,
Springer (1990) 278–297

16. Parkinson, M., Bierman, G.: Separation logic and abstraction. POPL 40(1) (2005)
247–258

17. Treiber, R.K.: Systems programming: coping with parallelism. Technical report,
Almaden Research Center (1986)

18. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

19. Feng, X.: Local rely-guarantee reasoning. SIGPLAN Not. 44(1) (2009) 315–327
20. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12(3) (1990) 463–492
21. Filipović, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent

objects. In: ESOP, Springer (2009) 252–266
22. Filipović, I., OHearn, P., Torp-Smith, N., Yang, H.: Blaming the client: on data

refinement in the presence of pointers. In: FACS, Springer (2009)


