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Abs t r ac t 

We present a new abstract machine model for compiling languages 
based on their denotational semantics. In this model, the output of the 
compiler is a A-term which is the higher-order abstract syntax for an 
assembly language program. The machine operates by reducing these 
terms. This approach is well-suited for generating code for modern 
machines with many registers. We discuss how this approach can be 
used to prove the correctness of compilers, and how it improves on our 
previous work in this area. 
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1 I n t r o d u c t i o n 

The idea of using conversion to continuation-passing style as the core of 
compiling is an old one. In previous work, the source language (typically 
A-calculus-like) was converted t o cps by a cps-conversion algorithm. One 
then observed that cps code was similar to a flowchart, so one could compile 
the resulting flowchart by conventional means [7]. 

In this paper we take a different approach. We use denotational seman
tics to generate A-terms in continuation-passing style. We observe tha t these 
terms constitute the higher-order abstract syntax of an assembly language; 
ordinary assembly language can be obtained by using a suitable concrete 
syntax. 

We then construct a machine model ( the Register-Closure Abstract Ma
chine) for which our "higher-order abstract assembly language" is the ma
chine language. We show how the behavior of this machine can be derived 
from the definitions of the combinators from which the terms are built . This 
machine model is the key technical development of this paper. It provides 
a formal basis for the connection between cps code and machine code. 

The resulting approach to compiling is very flexible, because it allows 
the compiler writer to specify a greater range of machine instructions in 
the model. Rather than constraining the compiler writer to a particular 
methodology, it provides a correctness criterion which can be applied to 
arbitrarily clever compiler designs. 

In this paper, we first introduce the idea of higher-order abstract syntax 
and il lustrate how it works for some simple assembly-language constructs. In 
Section 3, we develop the machine model. Then, in Section 4, we show how 
this apparatus can be used to develop and prove the correctness of a tiny 
compiler. In Section 5, we show how to extend our machine and compiler 
t o handle procedures. The resulting language is approximately the same as 
tha t in [15]. Last, in Section 6, we discuss previous work and extensions. 

2 T h e H i g h e r - O r d e r A b s t r a c t S y n t a x o f A s s e m b l y L a n g u a g e 

A higher-order abstract syntax [9], also sometimes called Church encoding 
[4], is a representation of the abstract syntax of a arase as a A-term in 
which the binding relationships in the source phrase are represented using 
the binding relationships in the A-term. For example, a quantified formula 
Vx.A in first-order logic might be represented as V(Ai.A). This shows how 
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x is bound in A. 

Let us see how this idea works for assembly language. Consider first 
a simple 3-register addition instruction a d d r i , r 2 , r 3 , which puts the sum 
of the contents of registers r\ and r 2 in register r%, and goes on to the 
next instruction. We would like to create a higher-order abstract syntax 
for this bit of concrete syntax. We observe tha t we must take control flow 
into account, so we consider instead the instruction stream add r*i, r 2 , r$; C 
beginning with our addition instruction. 

The purpose of higher-order abstract syntax is to represent the binding 
pat terns in the syntax, before semantics is considered. It is clear tha t r\ 
and r 2 are "free" in this sequence, because the meaning of the sequence, 
whatever it is, depends on their values. The register r$, however, is not free, 
since it is set rather than referenced. In fact, the addition instruction binds 
r 3 for the remainder of the sequence C. Therefore we define the abstract 
syntax of add r\, r 2 , rs; C to be 

add T\ r 2 (Xr^.C) 

for some combinator add. 

Now, given this syntax, it is reasonably clear tha t the definition of add 
ought to be: 

add = XxyK.n(x + y) 

Similarly, the abstract syntax for a m o v e instruction, whose concrete 
syntax is m o v e r s , r 2 ; C should be 

m o v e r i ( A r 2 . C ) 

and its semantics should be 

m o v e = XXK.KX 

Last, consider a halt instruction. Its abstract syntax is 

halt r 

and its semantics is halt = Xx.x. 
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3 T h e R e g i s t e r - C l o s u r e A b s t r a c t M a c h i n e 

So far, we have a "higher-order abstract assembly language" given by the 
grammar 

C ::= halt r 
| moveri (Ar 2 .C) 
| add r i r 2 (Ar 3 .C) 

where r , T*I, etc., range over register names (A-variables). 

The Register-Closure Abstract Machine (RCAM) is an abstract machine 
which uses these A-terms as its assembly language. The RCAM model is 
based on the following ideas: 

• The machine simulates the reduction of a closure, t ha t is, a A-term 
along with a substitution for its free variables. The behavior of the 
machine is derived from the definitions of the combinators in its in
structions. 

• The target machine registers contain the substitution, or (conversely) 
the substitution represents the contents of the target machine's regis
ters. 

More precisely, define a closure to be a pair (written M • p) consisting 
of a A-term M and a substitution p mapping A-variables (including the free 
variables of M) to constants or closed abstractions. The closure M • p is a 
representation of the te rm obtained by actually performing the substi tution 
p on M [3]. 

By using closures, we need never actually perform a substi tution. The 
key situation is tha t of beta-reduction: 

((Xx.M)N) • p = ((Xx.M) • p)(N • p) 

-* ( M • px)[x := (N • p)} 

= M.(p[x:=(N.p)]) 

Here = denotes syntactic equivalence, obtained by working out the definition 
of substi tution, —• denotes reduction, and px denotes the substi tution p with 
x deleted from its domain. 

The machine operates by reducing a closed term represented by a closure 
C • p. By using the semantics of the combinators, we can work out the 
reduction rules for the machine for each possible closure C • p. 
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For example, let us consider reducing the closure (add r i r 2 (Ar3.C) • p): 

(add r i r 2 (Ar 3 .C) • p) = add(/>r1)( /or-2)((^3-C) • p) 

-H. ( ( A r 3 . C ) . p ) ( ( p r 1 ) + (pr 2 ) ) 

-* C • p[r3 := ((/>ri) + (pr2))] 

Thus we can simulate reduction of the underlying term by defining the 
action of the machine on the add instruction as: 

(add r1r2{Xrz.C) • p)-+C • p[r3 := ((prx) + (pr2))] 

Note tha t the reduction sequence for this closure does just what an 
addition instruction normally does: it goes on to execute the code sequence 
C in a substitution where r 3 is bound to the sum of the contents of ri and 
r 2 . 

The halt and m o v e instructions similarly turn out to do the expected 
things. By using the semantics for the halt and m o v e combinators, we 
calculate as follows: 

halt r • p —• pr 

moverx(Xr2.C) • p —• ((Ar2 .C) • p)(pr{) 

-> C • Pb"2 := pr\] 

Thus the machine action for these instructions should be: 

halt r • p —• pr 
m o v e r i ( A r 2 . C ) • p —*• C • p[r2 := pr{\ 

The halt instruction halts, returning the value in the specified register, 
and the m o v e instruction copies the value in register r\ to register r 2 . 

Note tha t the machine simulates a quasi-leftmost reduction sequence, so 
the machine is guaranteed to find a normal form of the term on which it 
s tar ts , if one exists [2]. 

In general, we can see tha t the abstract syntax for an instruction tha t 
uses registers r\, r 2 , and r 3 , and sets register r^ should be 

o p r i r 2 r 3 ( A r 4 . C ) 



and its semantics should be 

Op = XviV2V3K.K(f(Vi,V2,V3)) 

This easily generalizes to multiple continuations (for branching instruc
tions, or even 0 continuations, as in h a l t ) , setting multiple registers, or 
dependence on certain fixed registers. For example, an instruction which 
branches if the contents of r\ is non-negative, leaving some information in 
the fixed register cc, might have abstract syntax 

br r 1 (Acc .Ci ) (Acc .C 2 ) 

with semantics 

b r = XVKIK2.(V > 0) —• Ki(fv), K2(fv) 

This easy recipe for specifying both semantics and the format of an 
instruction makes it easy to incorporate new machine instructions into the 
RCAM technique. By using continuation semantics, we need not postulate 
an additional stack mechanism in the machine architecture, beyond what is 
explicitly manipulated in the instructions. 

4 C o m p i l i n g A d d i t i o n E x p r e s s i o n s 

We next turn to the question of writing a compiler with the RCAM machine 
as its target . Our source language will be addition expressions, given by the 
grammar 

(exp) ::= (var) | ((exp) + (exp)) 

We write a continuation semantics tha t translates this language into A-
terms. As we did for assembly language, we translate variables in the source 
language into free variables in the A-terms. The resulting semantics looks 
very much like Plotkin 's algorithm for conversion to continuation-passing 
style [10]. We write the semantics using = rather than = to emphasize tha t 
this is a syntactic transformation: 

S\x\ = XK.KX 

e\{M + JV)] = \K.S[M](\m.£[N](\n.K(m + n))) 

where K, m, and n are fresh variables. 

Our compiler takes two arguments M and K, where M is a source term 
and K is a A-term. The output C[M}K will be a A-term tha t must meet 
two requirements: 



1. C[M]K = €{M]K, where equality means equality under the rules of 
the A-calculus, and 

2. if C is target code for our machine, then C[M}(Xv.C) is also code. 

Note tha t C{—J— is a binary (mixfix) operator, and not an application; 
we have chosen the notat ion, however, to suggest property ( l ) . 

Now we can write the compiler: 

C\x\K = m o v e a: JT 
C{(M + N)] = C[M](Xm.C[N](Xn. a d d mnK)) 

where all the indicated variables are fresh. 

T h e o r e m . C{—]— satisfies its specification. 

Proof : Easy structural induction. 

To compile an entire program M, we emit C[M}(Xv. halt v). By property 
(1), this is equal to €{M}(Xx.x), the cps-transform of M with the identity 
continuation. 

Thus the program (x + y) + z is compiled as follows: 

C\{x + y) + z}(Xv. halt v) 
= C[(x + y)j(Xu.C{z](Xw. a d d uw{Xv. halt v))) 
= Cl(x + y)](Au. m o v e ^ A u ; . add uw(Xv. halt v))) 
= C[xj(Xa.C[yJ(Xb.addab(Xu. movez(Xw. adduw(Xv. ha l t©))) ) ) 
= movex(Xa. movey(Xb. add ab(Xu. movez(Xw. add uw(Xv. ha l t«)) ) ) ) 

We can see the correspondence to concrete syntax by writing this term as 
follows: 

mOvexAa. 
moveyAfc. 
add abXu. 
m o v e zXw. 
add uwXv. 
halt v 

This corresponds to the concrete syntax 

move x , a 
move y , b 



add a, b, u 

move z, w 

add u, w, v 

halt v 

Note tha t , unlike the situation in [15,16,17], there was no need to use 
associative rules or to ro ta te trees; the code was generated directly. 

Our specifications for a correct compiler enable the compiler writer to 
use whatever cleverness he or she wishes, so long as the resulting abstract 
syntax is interconvertible with the code above. For example, by reducing 
the m o v e instructions, we can generate 

add xy(Xu. add uz(Xv. halt v)) 

corresponding to 

add x , y , u 
add u , z , v 
h a l t v 

Our goal is not to dictate a compiler strategy (e.g., whether this op
timized code is generated immediately or by transformations), but rather 
to give a method for proving the correctness of the chosen strategy. We 
now consider some strategies for a particular problem: the representation of 
procedures. 

5 C o m p i l i n g P r o c e d u r e s 

In this section we sketch how procedures may be compiled in the RCAM 
model. The particular compilation scheme is rather simple; at the end of 
the section we discuss how it may be made more realistic. 

We add procedures to the source language by adding the productions 

(exp) ::= (A(var).(exp)) | ((exp) (exp)) 

with the semantics 

£{Xx.M\ = XK.K(XX.£[M]) 

S{MN\ = XK.£ [M](A/ .5[ iV](Aa. /a«)) 



where K, / , and a are fresh variables. 

To compile these constructs, we must introduce suitable combinators so 
tha t the right-hand sides match the general form of the compiler, in which 
every application is performed by a combinator, and in which every recursive 
call to the compiler (or semantics) has an abstraction as its second argument. 
We can do this by introducing the combinators 

c l o s e = XXK.KX 

a p p l y = X fan. fan 

re turn = Ar i r 2 . r i r 2 

With these combinators, we can compile these as follows: 

C{(Xx.M)]K = c\ose(XxK.C{M](Xv. re turn KV))K 
C[(MN)}K = ClM](Xf.C[N](Xa. a p p l y faK)) 

where all the indicated variables are fresh. It is now easy to confirm, by 

structural induction, tha t this compiler still satisfies i ts specification. 

The formats for our three additional instructions are 

C ::= close(Aa;«.C)(Ar.C") 
I app ly r i r 2 (Ar 3 .C) 
| r e turn r i r 2 

By examining the definitions of the combinators, we can now work out 
the behavior of the machine on these instructions. The c lose instruction 
creates a closure of two arguments which represents a procedure and stores 
the closure in the target register. 

close(AxK.C)(Ar.C") • p -+ ((Xr.C') • p)((Xxn.C) • p) 

-* C • p[r := ((XXK.C) • p)} 

Note tha t the c lose instruction is just another format for move; we give it a 
\d i f ferent name because it behaves somewhat differently: it saves the current 

register set. 

The app ly instruction invokes such a procedure object. It creates a 
closure to serve as the continuation, and applies the procedure object to 
the argument and the continuation. In the following, assume tha t pr\ = 
(XXK.C) • p'. Then we reduce as follows: 
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a p p l y r 1 r 2 ( A r 3 . C ) « p - • (pri)(pr2)((Xr3.C) • p) 

- ((XXK.C). p')(pr2)((Xr3.C).p) 

-* Cp'[x:=pr2;K:=((Xr3.C).p)] 

Thus the body of the procedure is executed, with the actual parameter 
placed in the register that the procedure expects, and the continuation (with 
the caller's registers saved) placed in the callee's continuation register. 

The r e turn instruction returns from such a procedure. In the following, 
assume tha t in p, r x contains the continuation ( A r 3 . C ) • p'. 

return7"ir2 « p —> (pr\)(pr2) 

- ((Xr3.C).p')(pr2) 

-+ C • p'[r3 := pr2] 

Thus the caller's registers are restored, and the result placed in r 3 . 

This procedure mechanism relies on microcode to store the register set 
(which may or may not be realistic). Our techniques also extend to mod
elling the representation of procedures by explicit closures, created by the 
compiler designer, but tha t is beyond the scope of this paper. 

We can summarize the behavior of our machine as follows: 

m o v e r i ( A r 2 . C ) • p —*• C • p[r2 :— pri] 
a d d rxr2(Xr3.C) »p -*• C • p[r3 := ((prx) + (pr2))] 
halt r • p —* pr 
close(XxK.C)(Xr.C) »p -* C • p[r : = ((XXK.C) • p)] 

a p p l y rxr2(Xr3.C) • p - • C" • p'[x := pr2; K := ((Ar3 .C) • p)] 
' . (prx = (XXK.C) • p') 

r e t u r n rxr2 • p -* C • o'[r3 := pr2] 
(ri-(Xr3.C).p>) 

We can no longer argue tha t the machine simulates a quasi-leftmost re
duction, since the procedure call and return instructions work correctly only 



if the term has the proper form. We can, however, prove completeness rela
tive to an operational semantics for the source language, in the style of [10]: 
We can give a call-by-value operational semantics (similar to evaly in [10]), 
and prove a simulation theorem (similar to [10]'s Theorem 6.2); the proof is 
simpler because the compiler does all the "administrative reductions." The 
details will be included in the final version of the paper. 

6 C o m p a r i s o n w i t h P r e v i o u s W o r k 

This work is an elaboration of our work in the early 1980's on combinator-
based compiler generation [15,16,17]. The RCAM machine improves on this 
work by replacing combinator terms with more general continuation-passing 
terms using variables, thus obtaining a more direct connection with register 
architectures. 

The idea of using the conversion to continuation-passing style as the basis 
for compilation is an old one [13,14,6, among others]. The most prominent 
recent work in this area is tha t of [1,5]. Both of these papers use cps code as 
an abstract assembly language, though neither use continuation semantics 
as a way of generating the cps code ([1] uses a direct semantics to generate 
terms which are then passed through a cps conversion algorithm; [5] trans
forms source expressions into cps terms but then translates into a target 
language whose syntax is a subset of cps "but with a completely different 
semantics" [5, p. 281]). The RCAM machine may be regarded as provid
ing a formal basis for the connection between cps code and machine code. 
Because one has a formal basis, it much easier to adapt the approach to 
different languages and architectures. 

Our use of semantics is unusual in its use of concrete semantics. This 
is in contrast to the usual view tha t semantics maps to some domain of 
meanings. The idea tha t semantics should have an explicit syntactic element 
is found in [12] and in Pleban and Lee's macrosemantics [8]. In our case, it 
was not necessary to specify a domain of meanings for the output terms of 
the semantics; any A-model would suffice. If our compiler needed to reason 

\ about addition, then we could re-introduce traditional semantics through 
the technique of altering our compiler correctness criterion to replace the 
requirement of interconvertibility by equality in some specific model or class 
of models. 

A second unusual feature of our semantics is its use of free variables 
in place of the more conventional environments. This style of translation 
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goes back as least as far as [11], though it is implicit in the principle of 
Church-style encoding. It is possible to adapt the RCAM model to use a 
single environment register (as is used in, say [15]); on the other hand, our 
approach allows more explicit t reatment of register allocation and environ
ment representation. 

This paper presents the key ideas of the RCAM method. We are cur
rently in the process of applying these techniques to a variety of situations, 
including explicit procedure representations, explicit environment represen
tations, imperative code, loops, and recursions. We hope to report on these 
later. 

R e f e r e n c e s 

[l] Appel, A.W., and J im, T. , "Continuation-Passing, Closure-Passing 
Style," Conf. Rec. 16th ACM Symp. on Principles of Programming 
Languages (1989), 293-302. 

[2] Barendregt, H.P. The Lambda Calculus: Its Syntax and Semantics, 
North-Holland, Amsterdam, 1981. 

[3] Boyer, R.S., and Moore, J S. "The Sharing of Structure in Theorem-
Proving Programs," in Machine Intelligence 7 (B . Meltzer & D. Michie, 
eds), Edinburgh University Press (1972), 101-116. 

[4] Church, A. "A formulation of the simple theory of types," J . of Symbolic 
Logic 5 (1940), 56-68. 

[5] Kelsey, R., and Hudak, P. "Realistic Compilation by Program Trans
formation," Conf. Rec. 16th Ann. ACM Symp. on Principles of Pro
gramming Languages (1989), 281-292. 

[6] Kranz, D.A., Kelsey, R., Rees, J .A., Hudak, P., Philbin, J. , and Adams, 
N.I., "Orbit: An Optimizing Compiler for Scheme," Proc. SIGPLAN 
'86 Symp. on Compiler Construction, SIGPLAN Notices 21(7), July, 

v 1986,219-223. 

[7] McCarthy, J. "Towards a Mathematical Science of Computat ion," In
formation Processing 62 (Popplewell, ed.) Amsterdam:North Holland, 
1962,21-28. 

11 



[8] Lee, P., and Pleban, U., "On the Use of LISP in Implementing Deno-
tat ional Semantics," Proc. 1986 ACM Conf. on Lisp and Functional 
Programming, 233-248. 

[9] Pfenning, F. , and Elliott, C , "Higher-Order Abstract Syntax," Proc. 
SIGPLAN '88 Conf. on Prog. Lang. Design and Implementation, (June, 
1988), 199-208. 

10] Plotkin, G.D. "Call-by-Name, Call-by-Value and the A-Calculus," The-
oret. Comp. Sci. 1 (1975) 125-159. 

11] Reynolds, J .C. "The Essence of Algol," in Algorithmic Languages, (J. 
W. deBakker and J .C. van Vliet, eds.) North-Holland, Amsterdam, 
1981, pp. 345-372. 

12] Sethi, R. "Control Flow Aspects of Semantics-Directed Compiling" 
ACM Trans, on Prog. Lang, and Sys. 5 (1983) 554-596. 

13] Steele, G.L. "Rabbit : A Compiler for Scheme," MIT AI Memo No. 474 
(May, 1978). 

14] Wand, M. and Friedman, D.P. "Compiling Lambda Expressions Using 
Continuations and Factorizations," J. of Computer Languages 3 (1978), 
241-263. 

15] Wand, M. "Semantics-Directed Machine Architecture" Conf. Rec. 9th 
ACM Symp. on Principles of Prog. Lang. (1982), 234-241. 

16] Wand, M. "Deriving Target Code as a Representation of Continuation 
Semantics" ACM Trans, on Prog. Lang, and Systems 4, 3 (July, 1982) 
496-517. 

17] Wand, M. "Loops in Combinator-Based Compilers," Conf. Rec. 10th 
ACM Symposium on Principles of Programming Languages (1983), 
190-196. 

12 


