
Small Bisimulations for Reasoning About Higher-Order
Imperative Programs

Vasileios Koutavas
Northeastern University
vkoutav@ccs.neu.edu

Mitchell Wand
Northeastern University

wand@ccs.neu.edu

Abstract
We introduce a new notion of bisimulation for showing contextual
equivalence of expressions in an untyped lambda-calculus with an
explicit store, and in which all expressed values, including higher-
order values, are storable. Our notion of bisimulation leads to
smaller and more tractable relations than does the method of Sumii
and Pierce [31]. In particular, our method allows one to write down
a bisimulation relation directly in cases where [31] requires an
inductive specification, and where the principle of local invariants
[22] is inapplicable. Our method can also express examples with
higher-order functions, in contrast with the most widely known
previous methods [4, 22, 32] which are limited in their ability to
deal with such examples. The bisimulation conditions are derived
by manually extracting proof obligations from a hypothetical direct
proof of contextual equivalence.

Categories and Subject Descriptors F.3.2 [Logic and Meanings
of Programs]: Semantics of Programming Languages—operational
semantics; D.3.3 [Programming Languages]: Language Con-
structs and Features—procedures, functions and subroutines; D.3.1
[Programming Languages]: Formal Definitions and Theory—
semantics

General Terms theory, languages

Keywords contextual equivalence, bisimulations, lambda-calculus,
higher-order procedures, imperative languages

1. Introduction
In the classic notion of contextual equivalence, two expressions e
and e′ are contextually equivalent if and only if C[e] and C[e′]
produce the same answer for any program context C. Contextual
equivalence is the “gold standard” of equivalences. If e and e′ are
contextually equivalent, then a compiler or other program optimizer
can always safely replace e with e′ or vice versa, wherever it
appears in any program. The idea of contextual equivalence goes
back to Morris [21], and is a key notion in much of denotational
semantics, e.g. [2, 17, 19, 23, 24].

Proving the contextual equivalence of expressions is generally
difficult, since it involves reasoning about all possible contexts. One
way of easing this burden is to find a way to cut down the set of
contexts that need to be considered (e.g. [16]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

Another approach is to use a denotational semantics (e.g., [18]).
In a denotational semantics, two programs with the same denota-
tion are guaranteed to be contextually equivalent. Unfortunately,
denotational equality is a very strong property. Two expressions
that manipulate the store differently will generally have different
denotations. For example, consider

class Cell {
private int y;
Cell (int x) {y = x;}
public void set (int z) {y = z;}
public int get () {return y;}

}

and

class Cell {
private int y1, y2, p;
Cell (int x) {p = 0; y1 = x; y2 = x;}
public void set (int z) {p = p+1; y1 = z; y2 = z;}
public int get () {if ((p % 2) == 0)

{return y1;}
{return y2;}}

}

Here we have two different implementations of a cell containing
an integer. The first keeps a single instance variable y, but the
second keeps three instance variables: a counter p and two copies
of the cell, y1 and y2. It reads from either one copy or the other,
depending on how many times the set method has been executed.

These fragments are indistinguishable (at least in the absence
of reflection), but they will have different denotations because they
allocate different numbers of locations in the store. There are more
complex denotational approaches that attempt to deal with this
kind of situation (e.g., [29]), but this example demonstrates that
a straightforward denotational approach is insufficient for the kind
of examples we wish to handle.

A more promising technique is that of bisimulation. In the
bisimulation approach, one defines a relation R between pairs of
configurations, such that

1. If two configurations are related by R, and each takes a step (or
perhaps a sequence of steps), then the resulting configurations
are again related by R.

2. If two final configurations are related by R, then they represent
the same answer.

For any such R, if two configurations are related by R, then they
will produce the same final answer.

This approach seems more in keeping with how programmers
think. In the example above, we can imagine the sequence of
method calls on a Cell object. At each step, we can imagine the
contents of the instance variable y on one hand, and the instance

variables y1, y2, and p on the other. It’s clear that corresponding
calls to get will always return the same value. The relation R is a
kind of invariant that connects the two computations.

Bisimulation techniques are widely used for process calculi
[20]. They are also an important technique in analysis-based pro-
gram transformation [8, 34, 35].

Although bisimulations seem to capture a programmer’s intu-
ition, they have two significant shortcomings:

1. First, as described above, bisimulations are formulated in terms
of small-step (or rewriting) semantics. This formulation makes
it difficult to reason directly about procedures, especially recur-
sive procedures, for which a big-step (or evaluation) semantics
is more natural.1 In previous work, we have shown how to adapt
bisimulation ideas to handle procedures using a big-step seman-
tics [30, 35].

2. More importantly, bisimulation is a whole-program property. It
is concerned with entire program configurations; it does not talk
directly about program fragments. The key step, therefore, is to
formulate bisimulation as a term relation and show that it is a
congruence. There are many such results for process calculi [9].

In the sequential realm, Sumii and Pierce [31] have shown how
to define bisimulations for a higher-order language with dynamic
sealing. Sealing is of interest because generating a new seal is a
primitive effect. They replaced a single bisimulation with a set of
partial bisimulations, each representing a piece of a bisimulation
under different conditions of knowledge. Similar ideas have also
been used in concurrency [6].

In this paper, we extend and improve the Sumii-Pierce method.
This work makes four contributions:

• We introduce a new notion of bisimulation that leads to smaller
and more tractable relations. In particular, our method allows
one to write down the bisimulation relations directly in cases
where [31] requires an inductive specification, and where the
principle of local invariants [22] is inapplicable.

• We handle a calculus with full-fledged store that may contain
any expressed value.

• Our method can express examples with higher-order functions.
The most widely known previous methods [4, 22, 32] are lim-
ited in their ability to deal with examples containing higher-
order functions.

• Last, we derive our bisimulation by a more structured method
than [31], which relied more on intuition for its derivation.
This method allows us to identify weaker proof obligations,
and sugests the possibility of systematically defining notions
of bisimulation for other languages.

The remainder of the paper is organized as follows: in Section 2,
we present the syntax and operational semantics of the language
we will use. In Section 3, we define contextual equivalence. In
Section 4 we consider how one might go about proving contextual
equivalence directly. From this proof we extract proof obligations
that serve to define the requirements for a bisimulation. In Section 5
we define our notion of bisimulation, and state its correctness. The
proofs are deferred to Appendix A. In Section 6 we present some
well-known examples using this method. In Section 7 we compare
the proof obligations generated by our method with those of [31].
We conclude with a discussion of related work and conclusions.

2. The language
The term language is the untyped, call-by-value lambda calculus
augmented with constants, primitive operations, a conditional con-

1 For an example of the complications caused by this mismatch, see [34].

struct, tuples, and store operations. The syntax of the language is
shown in Figure 1.

The meta-variable c ranges over the set of natural numbers and
booleans; op ranges over the arithmetic and boolean operators. Tu-
ple construction is done by the language constructor (e1, . . . , en),
and projection of the i-th element of a tuple by #i(e). Constants,
abstractions, tuples of values, and locations are values.

The expression νx.e creates a new location in the store, and
binds x to that location inside e; expressions !e and (e :=e) return
and update, respectively, the contents of a location in the store.

The domain of locations is an infinite countable set; meta-
variables l, k range over this set. A store is a finite map from
locations to closed values; s and t range over stores. The value
in location l of store s is given by s(l); s[l 7→ v] places the value
v in location l of store s, extending the domain of s, if necessary.
Dom(s) denotes the domain of store s; Locs(e) denotes the set of
locations that occur inside e. Lclosed(s) is the predicate:

∀l ∈ Dom(s). (FV (s(l)) = ∅) ∧ (Locs(s(l)) ⊆ Dom(s))

Definition 2.1. A configuration is a pair of a store s and expression
e, written 〈s, e〉.

Definition 2.2. A configuration 〈s, e〉 is called well-formed iff it
satisfies the following properties:

Lclosed(s) ∧ (FV (e) = ∅) ∧ (Locs(e) ⊆ Dom(s))

The big-step operational semantics of the language is defined
for well-formed configurations, and is shown in Figure 2. Each
big-step reduction 〈s, e〉⇓〈t, w〉 consists of an initial well-formed
configuration that contains an expression e and the store s, under
which e evaluates, and a final configuration that contains the re-
duced value w and the final store t. If the derivation tree defined by
a big-step evaluation 〈s, e〉⇓〈t, v〉 has height less than k then we
write 〈s, e〉⇓<k 〈t, v〉.

Lemma 2.3. If 〈s, e〉⇓〈t, w〉 then Dom(s) ⊆ Dom(t).

Proof. By straightforward induction on the derivation of
〈s, e〉⇓〈t, w〉.

Lemma 2.4. If 〈s, e〉 is a well-formed configuration and
〈s, e〉⇓〈t, w〉, then 〈t, w〉 is also well-formed.

Proof. By straightforward induction on the derivation of
〈s, e〉⇓〈t, w〉, using Lemma 2.3, and the definition of well-
formed configuration.

We say that a well-formed configuration 〈s, e〉 terminates, and
we write 〈s, e〉⇓, iff there is a finite derivation tree from the rules
in Figure 2 that has 〈s, e〉 as initial configuration, and some 〈t, w〉
as final configuration. Conversely, if there is no such derivation, we
say that 〈s, e〉 diverges, and we write 〈s, e〉⇑.

In the following sections we will use let x=e1 in e2 and
(e1; e2) as syntactic sugar for ((λx.e2) e1), depending on whether
x is free in e2.

We will also use an overbar as a syntactic meta-operator to
denote a comma-separated sequence of syntax fragments:

σ = σ1, . . . , σn

where σ is a syntax fragment and σi is the same fragment with i-
subscripts on all meta-identifiers it contains. For example we will
write [u/x]e instead of [u1/x1, . . . , un/xn]e, and (v, v′) ∈ R
instead of (v1, v′

1), . . . , (vn, v′

n) ∈ R. For the purposes of this
paper the size of a sequence in the overbar notation is considered
arbitrary, and left implicit (see [15] for a more rigorous treatment).

EXPRESSIONS: d, e ::= x Identifiers
| c Constants
| λx.e Abstraction
| (e e) Application
| op(e, . . . , e) Primitive Operations
| if e then e else e Conditional
| (e, . . . , e) Tuple Construction
| #i(e) Projection
| l Locations
| νx.e New Location
| !e Dereferencing
| (e :=e) Assignment

VALUES: u, v, w ::= c | λx.e | (v, . . . , v) | l

LOCATIONS: l, k

STORES: s, t ∈ LOCATIONS
fin
→ VALUES

CONFIGURATIONS: 〈s, e〉 ∈ STORES × EXPRESSIONS

Figure 1. Syntactic Domains

EVAL-CONST
〈s, c〉⇓〈s, c〉

EVAL-ABSTR
〈s, λx.e〉⇓〈s, λx.e〉

EVAL-APP
〈s, e1 〉⇓〈s1, λx.e〉 〈s1, e2 〉⇓〈s2, v〉 〈s2, [v/x]e〉⇓〈t, w〉

〈s, (e1 e2)〉⇓〈t, w〉

EVAL-OP

〈s, e1 〉⇓〈s1, c1 〉 . . . 〈sn−1, en 〉⇓〈t, cn 〉 oparith(c1, . . . , cn) = c

〈s, op(e1, . . . , en)〉⇓〈t, c〉

EVAL-IF
〈s, e1 〉⇓〈s1, w1 〉 〈s1, ei〉⇓〈t, w〉 (w1, i) ∈ {(true, 2), (false, 3)}

〈s, if e1 then e2 else e3 〉⇓〈t, w〉

EVAL-TUPLE
〈s, e1 〉⇓〈s1, w1 〉 . . . 〈sn−1, en 〉⇓〈t, wn 〉

〈s, (e1, . . . , en)〉⇓〈t, (w1, . . . , wn)〉

EVAL-PROJ
〈s, e〉⇓〈t, (w1, . . . , wn)〉 1 ≤ i ≤ n

〈s, #i(e)〉⇓〈t, wi 〉

EVAL-LOC
〈s, l〉⇓〈s, l〉

EVAL-NEW
〈s[l 7→ 0], [l/x]e〉⇓〈t, w〉 l 6∈ Dom(s)

〈s, νx.e〉⇓〈t, w〉

EVAL-DEREF
〈s, e〉⇓〈t, l〉 t(l) = w

〈s, !e〉⇓〈t, w〉

EVAL-ASSIGN
〈s, e1 〉⇓〈s1, l〉 l ∈ Dom(s1) 〈s1, e2 〉⇓〈t, w〉

〈s, (e1 :=e2)〉⇓〈t[l 7→w], ()〉

Figure 2. Operational Semantics

3. Contextual Equivalence
We begin with the standard notion of contextual equivalence:

Definition 3.1 (Standard Contextual Equivalence). (e, e′) ∈
≡std if and only if for all stores s and expression contexts C[] such
that 〈s, C[e]〉 and 〈s, C[e′]〉 are well-formed configurations,

〈s, C[e]〉⇓ ⇐⇒ 〈s, C[e′]〉⇓

This definition is difficult to work with for several reasons:

• Since expression contexts can bind variables, contexts are not
equal up to α-renaming, which makes quantification over ex-
pression contexts hard. Furthermore a proof must deal with the
complications of binding in e and e′.

• It deals with expressions in the same store, but since closures
are storable, any inductive proof must somehow involve gener-
alization to programs operating in different stores.

Following Sumii and Pierce, we eliminate the first of these
complications by invoking the following theorem.

Theorem 3.2 (Value Restriction). For any expressions e, e′, and
identifier x,

(e, e′) ∈ ≡std ⇐⇒ (λx.e, λx.e′) ∈ ≡std

Proof. Appendix A.1.

As a result, instead of reasoning about the equivalence of two
open expressions e and e′, we can close them under an appropriate
number of abstractions and reason about the equivalence of those
closed values. If e and e′ are closed, then we can reason about the
equivalence of λx.e and λx.e′, for some identifier x.

We will therefore reason primarily about value relations:

Definition 3.3. A value relation R is a set of pairs of closed values.

Restricting the equivalent expressions to closed values permits
the use of β-substitution [v/x]C, instead of the capturing substitu-
tion C[v], where x is a free identifier in the hole of C. This allows
us to define the set of all instances of expression contexts, with R-
related values in their holes:

Definition 3.4. If R is a value relation, then R∗ is the set:

R∗ = {([u/x]d, [u′/x]d) | (u, u′) ∈ R, FV (d) ⊆ {x},
Locs(d) = ∅}

The generalization to contexts with multiple holes is needed
by the induction principle we will introduce later. It is also useful
to separately define the largest subset of R∗ which contains only
values:

Definition 3.5. If R is a value relation, then R∗

val is the set:

R∗

val = {(v, v′) | (v, v′) ∈ R∗, and v, v′ are values}

Both ()∗ and ()∗
val

are closure operations:

Lemma 3.6. If R and S are value relations, then:

1. R ⊆ R∗

val ⊆ R∗.
2. If R ⊆ S, then R∗ ⊆ S∗ and R∗

val ⊆ S∗

val.
3. (R∗)∗ = R∗ and (R∗

val)
∗

val
= R∗

val.
4. If R ⊆ S ⊆ R∗, then S∗ = R∗. If R ⊆ S ⊆ R∗

val, then
S∗

val = R∗

val.

Proof. The first is immediate by the definitions of R∗ and R∗

val. The
rest follow by elementary properties of substitution.

The next complication is that of expressions in different, but
equivalent, stores. Therefore, we will reason not just about value
relations, but states:

Definition 3.7. A state is a triple (s, s′, R), where s and s′ are
stores, and R is a value relation.

A state (s, s′, R) represents pairs of values that are intended to
be equivalent in stores s and s′, respectively. We call these “states”
by analogy with the states of a Kripke structure: they represent
possible worlds in which expressions may be evaluated. Since here
R contains pairs of presumably equivalent values, the expressions
to be evaluated cannot simply be the values in R. Instead, they are
expressions that are R-related instances of a common root. This
leads to the definition of contextual equivalence which we will use:

Definition 3.8. Contextual equivalence ≡ is the largest set of
states (s, s′, R), such that:

1. Lclosed(s) and Lclosed(s′),
2. if (u, u′) ∈ R, then Locs(u) ⊆ Dom(s), and Locs(u′) ⊆

Dom(s′),
3. if (e, e′) ∈ R∗, then 〈s, e〉⇓ ⇐⇒ 〈s′, e′〉⇓

This definition is similar to the one in [31].
The first two conditions of the definition restrict to well-formed

configurations; the third condition demands equivalence of termi-
nation under related, rather than equal, stores.

The role of R in each tuple of ≡ is twofold. It contains pairs
of equivalent values, where all the left-hand sides are evaluated
in contexts with store s, and the right-hand sides in contexts with
store s′. Furthermore, it is the means of accessing existing locations
by the contexts; any location l not mentioned in R is inaccessible
by elements of R∗, since the context d in Definition 3.4 may not
contain any locations.

We extend ≡ to open expressions by the following definition.

Definition 3.9. e ≡ e′ iff for all stores s, there exists a value
relation R such that:

((s, s, R) ∈ ≡) ∧ ((λx.e, λx.e′) ∈ R)

for some x such that FV (e) ⊆ {x} and FV (e′) ⊆ {x}.

We show that≡ coincides with the standard notion of contextual
equivalence:

Theorem 3.10. e ≡ e′ iff e ≡std e′.

Proof. Appendix A.2.

4. Deriving Obligations for an Equivalence Proof
Let X be a set of states of the form (s, s′, R). How would we go
about proving that X ⊆ (≡)? For each state (s, s′, R) ∈ X , we
must show:

1. Lclosed(s) and Lclosed(s′),
2. for all (u, u′) ∈ R, Locs(u) ⊆ Dom(s), and Locs(u′) ⊆

Dom(s′),
3. if (e, e′) ∈ R∗, then 〈s, e〉⇓ ⇐⇒ 〈s′, e′〉⇓

The first two of these are generally straightforward. The last
one, of course, is the difficult one. In order to have any hope of
carrying out an induction, we will need to show not merely that if
〈s, e〉⇓ then 〈s′, e′ 〉⇓ (and vice versa), but also that the terminal
configurations are related in some state of X . More precisely, we
will want to prove that

((s, s′, R) ∈ X) ∧ ((e, e′) ∈ R∗) ∧ 〈s, e〉⇓ 〈t, w〉
=⇒ (∃t′, w′, Q : 〈s′, e′ 〉⇓〈t′, w′ 〉

∧ (Q ⊇ R) ∧ ((t, t′, Q) ∈ X)
∧ ((w, w′) ∈ Q∗

val))

(1)

The obvious way to do this is by induction on the size of the
derivation of 〈s, e〉⇓ 〈t, w〉. This leads to the following induction
hypothesis:

IH(k) = ((s, s′, R) ∈ X) ∧ ((e, e′) ∈ R∗) ∧ 〈s, e〉⇓<k 〈t, w〉
=⇒ (∃t′, w′, Q : 〈s′, e′〉⇓〈t′, w′ 〉

∧ (Q ⊇ R) ∧ ((t, t′, Q) ∈ X)
∧ ((w, w′) ∈ Q∗

val))
(2)

We can now imagine a proof of (2) for all k by induction on k.
The proof would proceed by cases on e. Most of the cases follow
directly from the induction hypothesis. The ones that don’t would
remain as proof obligations on X .

To demonstrate this we consider the case of application (e =
(e1 e2)) in this proof: We assume (2) for k and prove it for k + 1.

Let (s, s′, R) ∈ X , ((e1 e2), e′) ∈ R∗, and 〈s, e〉⇓<k+1 〈t,
w〉. We have to show that

∃t′, w′, Q : 〈s′, e′〉⇓〈t′, w′ 〉
∧ (Q ⊇ R) ∧ ((t, t′, Q) ∈ X)
∧ ((w, w′) ∈ Q∗

val)

By the definition of R∗, e′ = (e′1 e′2), and (ei, e′i) ∈ R∗, for
i = 1, 2. The big-step rule for application (EVAL-APP) gives for
(e1 e2):

〈s, e1 〉⇓
<k 〈s1, λx.e3〉

〈s1, e2 〉⇓
<k 〈s2, v〉

〈s2, [v/x]e3 〉⇓
<k 〈t, w〉

〈s, (e1 e2)〉⇓
<k+1 〈t, w〉

(3)

By the first premise of (3), and the induction hypothesis at e1 and
(s, s′, R) we get:

∃s′1, e
′

3, R1 : 〈s′, e′1 〉⇓〈s
′

1, w′

1 〉
∧ (R1 ⊇ R) ∧ ((s1, s

′

1, R1) ∈ X)
∧ ((λx.e3, w′

1) ∈ R1
∗

val)

By Lemma 3.6 (2) we get R∗ ⊆ R1
∗. Thus, by the second premise

of (3), and the induction hypothesis at e2 and (s1, s
′

1, R1):

∃s′2, v
′, R2 : 〈s′1, e′2 〉⇓〈s

′

2, v′ 〉
∧ (R2 ⊇ R1) ∧ ((s2, s

′

2, R2) ∈ X)
∧ ((v, v′) ∈ R2

∗

val)

For the third premise of EVAL-APP we distinguish two cases:

• Case 1: λx.e3 and w′

1 are R1-related contexts; i.e., there exist
e′3, d, and (u, u′) ∈ R1 such that FV (d) ⊆ {x, y}, Locs(d) = ∅,
w′

1 = λx.e′3, e3 = [u/y]d, e′3 = [u′/y]d. By the properties of β-
substitution, and because R1

∗ ⊆ R2
∗ and (v, v′) ∈ R2

∗

val ⊆ R2
∗

we have:

([v/x]e3, [v′/x]e′3) ∈ R2
∗

Thus, by the third premise of (3) and the induction hypothesis at
[v/x]e3 and (s2, s

′

2, R2):

∃t′, w′, Q : 〈s′2, [v′/x]e′3 〉⇓〈t
′, w′ 〉

∧ (Q ⊇ R2) ∧ ((t, t′, Q) ∈ X)
∧ ((w, w′) ∈ Q∗

val)

• Case 2: (λx.e3, w′

1) ∈ R1

To handle this case we need to show that w′

1 is also an abstrac-
tion (otherwise the application on the right-hand side would not
succeed). Therefore one of the conditions on X must be:

if (s, s′, R) ∈ X , and (v, v′) ∈ R, then v and v′ have the
same top-level language constructor.

Assuming that X satisfies the above proof obligation, we have
w′

1 = λx.e′ and (λx.e3, λx.e′) ∈ R1 ⊆ R2. The third premise of
(3) is equivalent to:

〈s2, (λx.e3 v)〉⇓<k+1 〈t, w〉

Therefore, to finish this case of the proof, it is sufficient to show
that

〈s2, (λx.e3 v)〉⇓<k+1 〈t, w〉
=⇒ ∃t′, w′, Q : 〈s′2, (λx.e′3 v′)〉⇓〈t′, w′ 〉

∧ (Q ⊇ R2) ∧ ((t, t′, Q) ∈ X)
∧ ((w, w′) ∈ Q∗

val)
assuming the induction hypothesis for derivations less than k. This
leaves the following condition on X :

if (s, s′, R) ∈ X , and (λx.e3, λx.e′3) ∈ R, and the
induction hypothesis holds for derivations of height less than
k, then for all (v, v′) ∈ R∗

val:

〈s2, (λx.e3 v)〉⇓<k+1 〈t, w〉
=⇒ ∃t′, w′, Q : 〈s′2, (λx.e′3 v′)〉⇓〈t′, w′ 〉

∧ (Q ⊇ R2) ∧ ((t, t′, Q) ∈ X)
∧ ((w, w′) ∈ Q∗

val)

If X satisfies the above proof obligations, then we get for both
cases:

〈s′, e′1 〉⇓〈s′1, λx.e′3〉
〈s′1, e′2 〉⇓〈s

′

2, v′ 〉
〈s′2, [v′/x]e′3 〉⇓〈t

′, w′ 〉

〈s′, (e′1 e′2)〉⇓〈t
′, w′ 〉

and also Q ⊇ R, (t, t′, Q) ∈ X , (w, w′) ∈ Q∗

val, and we are done.
By a similar treatment of the rest of the cases for e, we get all

the conditions on X , which are summarized in the definition of
bisimulation in the following section.

5. Small Bisimulations
We now reformulate the proof obligations derived above into con-
ditions on X . We define a bisimulation to be any set X of states
that satisfy these closure conditions.

Definition 5.1 (k-approximation). We will write (s, s′, R)`X e vk

e′ to mean:

∀t, w. (〈s, e〉⇓<k 〈t, w〉
=⇒ ∃t′, w′, Q : (〈s′, e′ 〉⇓〈t′, w′ 〉

∧ (t, t′, Q) ∈ X
∧ (w, w′) ∈ Q∗

val

∧ R ⊆ Q))

We will also write (s, s′, R) `X e wk e′ to mean:

∀t′, w′ . (〈s′, e′ 〉⇓<k 〈t′, w′ 〉
=⇒ ∃t, w, Q : (〈s, e〉⇓〈t, w〉

∧ (t, t′, Q) ∈ X
∧ (w, w′) ∈ Q∗

val

∧ R ⊆ Q))

We use two flavors of k-approximation, one that corresponds to
the forward direction of the proof (shown in the preceding section),
and one for the opposite direction. Note that these two relations are
not converses, since (t, t′, Q) ∈ X , and (w, w′) ∈ Q∗

val appear in
both.

The full induction hypothesis of the proof is given by IHL
X (k)

and IHR
X (k), the first for the forward direction and the second for

the opposite:

Definition 5.2. We will write IHL
X (k) to mean:

∀(s, s′, R) ∈ X . ∀(e, e′) ∈ R∗ . (s, s′, R) `X e vk e′

and IHR
X (k) to mean:

∀(s, s′, R) ∈ X . ∀(e, e′) ∈ R∗ . (s, s′, R) `X e wk e′

We now give the definition of bisimulation.

Definition 5.3. A bisimulation X is a set of states such that for any
state (s, s′, R) ∈ X , the following conditions are satisfied:

1. Lclosed(s) and Lclosed(s′),
2. If (v, v′) ∈ R, then Locs(v) ⊆ Dom(s) and Locs(v′) ⊆

Dom(s′).

3. If (v, v′) ∈ R, then v and v′ have the same top-level language
constructor.

4. If (c, c′) ∈ R, then c = c′.
5. If ((v1, . . . , vn), (v′

1, . . . , v
′

m)) ∈ R, then n = m, and for all
1 ≤ i ≤ n, there exists a value relation Q such that R ⊆ Q,
(vi, v′

i) ∈ Q∗

val, and (s, s′, Q) ∈ X .
6. For any l, l′, with l 6∈ Dom(s) and l′ 6∈ Dom(s′), there

exists a value relation Q such that R ⊆ Q, (l, l′) ∈ Q, and
(s[l 7→ 0], s′[l′ 7→ 0], Q) ∈ X .

7. If (l, l′) ∈ R, then

(a) there exists a value relation Q such that R ⊆ Q,
(s(l), s′(l′)) ∈ Q∗

val, and (s, s′, Q) ∈ X ,
(b) for all (v, v′) ∈ R∗

val, we have (s[l 7→ v], s′[l′ 7→ v′], R) ∈
X

8. For each (λx.e, λx.e′) ∈ R, and for any values (v, v′) ∈ R∗

val,
we have

IHL
X (k) =⇒ (s, s′, R) `X (λx.e v) vk+1 (λx.e′ v′)

IHR
X (k) =⇒ (s, s′, R) `X (λx.e v) wk+1 (λx.e′ v′)

Each of the conditions of Definition 5.3 addresses one of the
proof obligations of the direct proof discussed in Section 4. The
first two conditions are identical to the first two conditions of ≡.
Condition 3 allows us to conclude throughout the direct proof that,
if a value v has a specific top-level language constructor, and it is
related to a value v′, then v′ also has the same language constructor.
This is necessary, for example, in the case of application, when the
operator is one of the related values; if the operator in the left-hand
side is an abstraction, then the operator of the right-hand side is
also an abstraction (otherwise they would not necessarily have the
same terminating behavior).

Condition 4 captures the proof obligation for the case of apply-
ing a primitive operator, Condition 5 the proof obligation for the
case of projection, Condition 6 the proof obligation for the case of
the ν-expression, and Conditions 7 (a), (b) capture the proof obli-
gations for the cases of dereferencing and assignment, respectively.

Condition 8 captures the proof obligation in the case of appli-
cation. As shown in Section 4, in this case the only sub-case that
doesn’t go through directly by the induction hypothesis is when
there are related abstractions in operator position. To prove this sub-
case we may assume the induction hypothesis for shorter derivation
trees. This induction hypothesis is very useful to have when reason-
ing about higher-order procedures, as we will see in the examples.

Next we show that our bisimulations are sound and complete
and that a maximal bisimulation exists.

Theorem 5.4 (Completeness). Contextual equivalence is a bisim-
ulation.

Proof. Appendix A.3.

Theorem 5.5 (Soundness). Any bisimulation is included in con-
textual equivalence.

Proof. The proof recapitulates the derivation of the preceding sec-
tion, and is given in Appendix A.4.

Theorem 5.6. A maximal bisimulation, called bisimilarity (∼),
exists and coincides with contextual equivalence.

Proof. By Definition 3.8 and Theorems 5.4 and 5.5 we get that
≡ is the largest bisimulation. Thus (∼) exists and coincides with
contextual equivalence.

6. Examples
The following examples illustrate our techniques. The first two are
due to Meyer and Sieber [17]. The rest of the examples in [17] can
be done in similar fashion. These examples will also illustrate the
added power given by the induction hypotheses in the last condition
of Definition 5.3.

6.1 Local Store

This example shows that allocation of local store does not affect
computation.

M = λg.νx.g N = λg.g

Proof. To show M ≡ N , it will suffice to construct a bisimulation
X that relates the two expressions at empty stores; Conditions 6
and 7 (b) of Definition 5.3 ensure that the relation covers all equal
stores. We define the parameterized relation:

Q(k, k′) = {(M, N), (k, k′)}

and the set:

X =
�
(s, s′, R) �� ∃k, k′, l

: R = Q(k, k′)
∧ {k} ∩ {l} = ∅
∧ ∃u, u′

: s = [k 7→u, l 7→ 0]
∧ s′ = [k′ 7→u′]

∧ (u, u′) ∈ R∗

val �
Each state (s, s′, R) of X relates M and N in R, as well as an

arbitrary set of locations k and k′. The stores s and s′ consist of
the related locations k and k′, with related contents from R∗

val, and
s has some more locations l, created by calls to M , each of which
contain the integer zero.

We will show that X satisfies the conditions for a bisimulation.
Conditions 1, 3 and 7 are satisfied because (u, u′) ∈ R∗

val, and M ,
N are closed abstractions; Condition 2 is satisfied because Dom(s)
and Dom(s′) contain all the related locations in R. Condition 6 is
obviously satisfied; Conditions 4 and 5 are trivially satisfied.

Condition 8 applies only to (M, N). Let (s, s′, R) ∈ X . We
have to show that for all (v, v′) ∈ R∗

val, the following is true:

IHL
X (k) =⇒ (s, s′, R) `X (M v) vk+1 (N v′)

IHR
X (k) =⇒ (s, s′, R) `X (M v) wk+1 (N v′)

For this example we will show directly that both 〈s, (M v)〉
and 〈s′, (N v′)〉 always terminate, and there exist t, t′, w, w′, S
such that 〈s, (M v)〉⇓〈t, w〉, 〈s′, (N v′)〉⇓〈t′, w′ 〉, (t, t′, S) ∈
X , (w, w′) ∈ S∗

val, and R ⊆ S.
It is easy to show that 〈s, (M v)〉 terminates:

〈s, (M v)〉⇓〈t, w〉

⇐⇒ 〈s, (λg.νx.g)v〉⇓〈t, w〉

⇐⇒ 〈s, νx. [v/g]g〉⇓〈t, w〉

⇐⇒ ∃l0 6∈ Dom(s). 〈s[l0 7→ 0], [l0/x]v〉⇓〈t, w〉

⇐⇒ ∃l0 6∈ Dom(s). 〈s[l0 7→ 0], v〉⇓〈t, w〉 (since v is closed)

Therefore t = s[l0 7→ 0] for some l0, and w = v.
Similarly for 〈s′, (N v′)〉:

〈s′, (N v′)〉⇓〈t′, w′ 〉

⇐⇒ 〈s′, (λg.g)v′〉⇓〈t′, w′ 〉

⇐⇒ 〈s′, [v′/g]g〉⇓〈t′, w′ 〉

⇐⇒ 〈s′, v′ 〉⇓〈t′, w′ 〉

and t′ = s′, w′ = v′. Moreover, by the definition of X ,
(s[l0 7→ 0], s′, R) ∈ X , and (w, w′) ∈ R.

6.2 Higher-Order Functions

The preceding example did not rely on the induction hypotheses in
Condition 8 of Definition 5.3. The next example uses the induction
hypotheses to reason about a call to an unknown procedure.

M = λg.νx.
let f =λz.(x :=!x + 2)
in ((g f);

if (!x mod 2 = 0) then () elseΩ)

N = λg.((g λx.()); ())

Since the only operation g can perform on the location bound
to x is to increase it by two, invocation of g preserves the invariant
that the contents of the location is even.

Proof. As we did in the previous example, we define a parameter-
ized relation:

Q(k, k′, l) = {(M, N), (λz.(l :=!l + 2), λz.()), (k, k′)}

and the set

X =
�
(s, s′, R) �� ∃k, k′, l

: R = Q(k, k′, l)
∧ {k} ∩ {l} = ∅
∧ ∃u, u′, n

: s = [k 7→u, l 7→ 2n]
∧ s′ = [k′ 7→u′]

∧ (u, u′) ∈ R∗

val �
Here the states of the bisimulation are of the form (s, s′, R),

where the stores s and s′ consist of related locations k and k′,
containing related values u and u′, and s contains some additional
locations l, allocated by calls to M , each of which contains some
even number. The relation R relates the locations (k, k′) and each
instantiation of λz.(li :=!li + 2) to λz.().

We will show that X satisfies the conditions for a bisimulation.
As in the previous example, it is easy to check that Conditions 1
through 7 are satisfied by construction of X .

It remains to prove that Condition 8 is satisfied. The related
abstractions in R are (M, N) and (λz.(li := !li + 2), λz.()), for
all li ∈ {l}.

First we prove Condition 8 for (λz.(li := !li + 2), λz.()). Let
s = s0[li 7→ 2ni]. We have to show that for all (v, v′) ∈ R∗

val, the
following is true:

IHL
X (k) =⇒ (s0[li 7→ 2ni], s

′, R) `X

(λz.(li := !li + 2) v) vk+1 (λz.() v′)

Equivalently, we assume IHL
X (k), and 〈s0[li 7→ 2i],

(λz.(li :=!li + 2) v)〉⇓<k+1 〈t, w〉, and show that there exist
t′, w′, S, such that 〈s′, (λz.() v′)〉⇓〈t′, w′ 〉, (t, t′, S) ∈ X ,
(w, w′) ∈ S∗

val, R ⊆ S. We have:

〈s0[li 7→ 2ni], (λz.(li :=!li + 2) v)〉⇓〈t, w〉

⇐⇒ 〈s0[li 7→ 2ni], [v/z](li :=!li + 2)〉⇓〈t, w〉

⇐⇒ 〈s0[li 7→ 2ni], (li :=!li + 2)〉⇓〈t, w〉

and by the evaluation rule for assignment we get that t =
s0[li 7→ 2(ni + 1)], and w = (). Obviously

〈s′, (λz.() v′)〉⇓〈s′, ()〉

Furthermore, by the definition of X , (s0[li 7→ 2(ni + 1)], s′, R) ∈
X , and ((), ()) ∈ R∗

val. The second part of Condition 8 is analo-
gous.

Now we need to prove Condition 8 for (M, N). Again we have
to show that for all (v, v′) ∈ R∗

val:

IHL
X (k) =⇒ (s, s′, R) `X (M v) vk+1 (N v′)

or equivalently, if IHL
X (k), and 〈s, (M v)〉⇓<k+1 〈t, ()〉, then

there exist t′, S, such that 〈s′, (N v′)〉⇓〈t′, ()〉, (t, t′, S) ∈ X ,
R ⊆ S. We have:

〈s, (M v)〉⇓<k+1 〈t, ()〉
=⇒ ∃w, l0 : 〈s[l0 7→ 0], (v λz.(l0 :=!l0 + 2))〉⇓<k 〈t, w〉

∧ (l0 6∈ Dom(s))

Let R = Q(k, k′, l) and P = Q(k, k′, l, l0). We have that
R ⊆ P . By the definition of X , we get (s[l0 7→ 0], s′, P) ∈ X .
Also, because (v, v′) ∈ R∗

val and (λz.(l0 :=!l0 + 2), λz.()) ∈
R, we have ((v λz.(l0 := !l0 + 2)), (v′ λz.())) ∈ R∗ ⊆ P ∗.
Thus, from IHL

X (k), we get that there exist t′, w′, S such that
〈s′, (v λz.())〉⇓〈t′, w′ 〉, (t, t′, S) ∈ X , (w, w′) ∈ S∗

val, and
P ⊆ S. Therefore 〈s′, (N v′)〉⇓〈t′, ()〉, (t, t′, S) ∈ X , and
R ⊆ S, as required.

This example would be difficult to prove using the technique
of Sumii and Pierce from [31], since that technique has no corre-
sponding induction hypothesis. Pitts and Stark’s method of Local
Invariants [22] does not apply to this example either.2

6.3 Higher-Order Stored Values and Methods

Our technique can also deal with the structures underlying object-
oriented programs. For example, here is a model of the Cell
example on page 1. Here M and N each receive an initial value
and return a setter and a getter.

M = λx.νy. (λz.(y :=z), λz.!y)

N = λx.νy1. νy2. νp. (λz.((p :=!p + 1); (y1 :=z); (y2 :=z)),
λz.(if even(!p) then !y1 else !y2))

M allocates one location and exports a setter and a getter. N
allocates two locations. The setter stores a value in both locations
and also increments a counter; the corresponding getter retrieves
the value from one location when the counter is even and from
the other when the counter is odd. This example is slightly more
general than the one on page 1, since here the location can be used
for higher-order values, not just integers.

In general, every application of M will allocate a location li.
For each such location, the corresponding application of N will
allocate three locations l′1i, l

′

2i, l
′

pi. The locations li, l′1i, l′2i will
always contain related values. These locations are not themselves
going to be related in the eventual bisimulation (since they are not
accessible by the context), but their setter and getter procedures
will. In addition, the execution of the contexts, with M and N in
their holes, will allocate some locations k, k′, respectively. So as
before we define a parameterized relation, from which we build a
bisimulation.

The construction is shown in Figure 3. As before, Q relates
the starting terms M and N , the corresponding locations (k, k′)
allocated external to M and N , and the corresponding setter and
getter methods for each object created by M or N (which we write
as setM , getM , setN , getN , parameterized by the locations they
access). We turn this into a bisimulation by specifying that the
related locations contain related values, and the locations of the
corresponding objects contain the correct values as well.

Proof. As in the previous examples, Conditions 1 through 7 are
immediately satisfied. We have to show Condition 8 for each of

2 Like the technique of [31], the Logical Relation of [22] is complete, but
does not seem to lead to a useful proof.

Q(k, k′, l, l′1, l
′

2, l
′
p) = {(M, N), (setM (l), setN (l′1, l

′

2, l
′
p)), (getM(l), getN(l′1, l

′

2, l
′
p)), (k, k′)}

X =
�
(s, s′, R) �� ∃k, k′, l, l′1, l

′

2, lp
: R = Q(k, k′, l, l′1, l

′

2, l
′
p)

∧ {k} ∩ {l} = {k′} ∩ {l, l′1, l
′

2, lp} = ∅
∧ ∃u0, u′

0, u, u′, n
: s = [k 7→u0, l 7→u]

∧ s′ = [k′ 7→u′

0, l
′

1 7→u′, l′2 7→u′, l′p 7→n′]

∧ (u0, u′

0) ∈ R∗

val

∧ (u, u′) ∈ R∗

val �

Figure 3. Bisimulation for Example 6.3

(M, N), (setM(li), setN (l′1i, l
′

2i, l
′

pi)), (getM(li), getN (l′1i, l
′

2i,
l′pi)). It easy to see that all of the related abstractions terminate.
Moreover the final states satisfy the closure requirements of Con-
dition 8.

7. Comparison with Sumii and Pierce
A direct adaptation of the operational bisimulation of Sumii and
Pierce [31] to our language would give a definition of bisimulations
that differs from Definition 5.3 in the following ways:

Condition 5: If (s, s′, R) ∈ X , and ((v1, . . . , vn), (v′

1, . . . , v
′

n)) ∈
R, then (s, s′, R ∪ {(vi, v′

i)}) ∈ X .
Condition 6: If (s, s′, R) ∈ X , and (l, l′) ∈ R, then (s, s′, R ∪

{(s(l), s′(l′))}) ∈ X , and for all (v, v′) ∈ R∗

val, (s[l 7→ v],
s′[l′ 7→ v′], R ∪ {(v, v′)}) ∈ X .

Condition 8: For all (s, s′, R) ∈ X , and all (λx.e, λx.e′) ∈ R,
take any l, l′, such that {l} ∩Dom(s) = {l′}∩Dom(s′) = ∅.
Let Q =R ∪ (l, l′), and (u, u′) ∈ Q∗

val, (v, v′) ∈ Q∗

val. Then

(a) 〈s[l 7→u], (λx.e v)〉⇓〈t, w〉 ⇐⇒
〈s′[l′ 7→u′], (λx.e′ v′)〉⇓〈t′, w′ 〉

(b) and if they terminate, then (t, t′, Q ∪ {(w, w′)}) ∈ X

There are three important differences between these conditions
and the ones we give in Definition 5.3:

• We use a more relaxed closure condition in each of the above
three rules. For example, in Condition 5, instead of requiring
that (s, s′, R ∪ {(vi, v′

i)}) ∈ X , we require that there exists
a value relation Q such that R ⊆ Q, (vi, v′

i) ∈ Q∗

val, and
(s, s′, Q) ∈ X . This is essentially an up-to context closure of
our bisimulations, similar to the one in [25]. An up-to context
technique is not applicable in [31] because the values of that
calculus may contain an arbitrary nesting of seals not known to
the context.

• In Condition 8 we do not require the arguments given to the
functions to be from a larger value relation than R; i.e. instead
of requiring the arguments (v, v′) ∈ Q∗

val, and Q = R ∪ (l, l′),
for some fresh l, l′, we just require that (v, v′) ∈ R∗

val. This
simplification, along with the up-to context closure, permits
direct construction of bisimulations, whereas the conditions
shown here would require inductive constructions in some cases
(e.g. for Example 6.1). Of course to restore the soundness of the
bisimulation we have added Condition 6 to ensure soundness
under any possible extension of the store.

We could have achieved at least the same level of simplicity
in constructing bisimulations by adding an up-to store closure
of our bisimulations, instead of using Condition 6. We chose not

to do this because (a) it would require more technical machinery
to define a unified up-to store and context operator, which
would make our technique (and especially proving Condition 8)
more involved, and (b) the benefit from such an addition would
be the elimination of a small and highly stylized part from each
bisimulation (the explicit mention of any extension of the store).

• The last, and perhaps the most important, difference is also in
Condition 8. As discussed in [32], the Condition 8 shown above
is too strict to help reason about a class of higher-order func-
tions; that is, the class of functions that apply their arguments
internally (like in Example 6.2), and thus their termination de-
pends on the termination of these applications.

In order to prove that such higher-order functions co-
terminate, one must prove that the applications of their argu-
ments to related values co-terminate. Since these arguments are
provided by the context, the problem is reduced to proving co-
termination of R-related contexts, the very thing that we tried
to avoid by defining a bisimulation. We solve this problem by
introducing the induction hypothesis of Section 4 inside Condi-
tion 8, which directly implies the co-termination of applications
of the arguments.

In Section 7 of [31] a similar condition is proposed, but not
studied thoroughly, as a possible way of reasoning about higher-
order functions. That condition is also based on induction on the
height of derivation trees.

8. Other Related Work
A wide variety of techniques have been used to prove the contextual
equivalence of higher-order expressions in the presence of a store.

One obvious approach is denotational: if two expressions have
the same denotation in an adequate compositional semantics, then
they are guaranteed to be contextually equivalent. The difficulty
is that most denotational models are not fully abstract: there are
contextually equivalent expressions that have different denotations.
Meyer and Sieber [17] give a set of such examples. We have used
our system to verify the equivalence of all of the examples in [17].

Another approach is to attempt to restrict the set of contexts that
must be considered in a direct proof. In this approach, one defines
a set C of contexts such that if two expressions are equivalent in
all contexts in C, then they are equivalent in every context. Such
theorems typically take the form of ciu theorems. For example,
Mason and Talcott [16] prove such a theorem for a language similar
to ours. Similar results were obtained by Felleisen [7].

Yet another family of approaches uses either implicit or explicit
transformation to continuation-passing style. For example, Tiuryn
and Wand [33] present a continuation-passing model of an untyped
lambda-calculus with input-output, and prove that applicative ap-

proximation coincides with contextual approximation. Wand and
Sullivan [36] give a denotation to a recursively-typed higher-order
language with side effects by translation to a CPS calculus, and use
the technique to prove the correctness of assignment elimination, an
important step in the compilation of Scheme. Our technique does
not require conversion to CPS.

Pitts and Stark in [22] present a reasoning technique for a
simply-typed functional language with a store that contains only
integers. Their method is based on considering relations over con-
figurations of what is effectively a continuation-passing interpreter.
They define an operational logical relation between expressions
that is parameterized over store relations, and prove its soundness
and completeness with respect to observational equivalence. The
definition of this logical relation is done by induction on types, us-
ing a set of conditions that take into account the possible evaluation
contexts in which related expressions may appear. Because the set
of evaluation contexts is infinite, it is not possible to directly con-
struct this relation and use it in concrete examples. Instead, they
give a proof method called the principle of local invariants, which
can be used to prove that two expressions are included in the log-
ical relation. This method is shown to be sound but not complete.
Our method can be used for all their examples, including ones for
which their method does not apply (Example 6.2).

Honda, Berger, and Yoshida in [12, 5] give a compositional pro-
gram logic for a language with effects and higher-order procedures.
Their method can prove properties of programs written as Hoare
triples. They also give a connection between their logic and con-
textual equivalence: two expressions M , N are equivalent if and
only if for all pre- and post-conditions C, C ′, M satisfies C, C′

iff N satisfies C, C′. Although the quantification on all pre- and
post-conditions seems easier than a quantification over all possi-
ble program contexts, it is still hard enough to make their method
impractical for proving contextual equivalence.

Bisimulation was originally introduced as a method of charac-
terizing the behavior of non-deterministic systems [10, 11]; this
work also considered the difference between bisimulation and con-
textual equivalence. Abramsky [1] applied this idea to an untyped
lazy lambda-calculus, and proved by domain-theoretic methods
that the bisimulation was a congruence; Howe [13] later provided
a direct operational proof.

Up-to techniques were originally introduced in concurrency
[26, 27, 28]. Their purpose was to reduce the size of bisimulations
by closing them automatically up to context, β-equivalence, injec-
tive substitution, bisimilarity etc., hence making their construction
easier. We incorporate an up-to context technique in the untyped
lambda calculus augmented with higher-order procedures and a
general store. As discussed in Section 7 an up-to store technique
could also be used, but the added value from such a method would
be limited compared to the technical complication that it would in-
troduce.

9. Conclusions and Future Work
We have presented a method for reasoning about higher-order im-
perative programs by using bisimulations. Our technique, although
inspired by and similar to the one in [31], follows a more technical
path and reaches a better notion of bisimulation. Using our method
we were able to overcome the difficulties of previous approaches,
and successfully deal with higher-order functions and store.

Example 6.3, with its setter and getter procedures, illustrates
how this technique can be used to relate objects or methods that
manipulate private state. This suggests that our results should be
applicable to imperative object-oriented languages to prove, for
example, the correctness of refactoring transformations.

We hope to investigate whether our techniques can improve re-
sults for typed calculi, such as [32]. We also hope to apply our tech-

niques to study contextual equivalence in aspect-oriented calculi,
in which advice is typically kept in the store, as in [14]. Last, we
would like to see whether this Kripke-style bisimilarity can help in-
vestigate contextual equivalence in languages with control effects,
e.g. call/cc or exceptions.

References
[1] Samson Abramsky. The lazy lambda calculus. In David A. Turner,

editor, Research Topics in Functional Programming, pages 65–116.
Addison-Wesley, 1990.

[2] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full
abstraction for PCF. Inf. Comput., 163(2):409–470, 2000. Originally
appeared as [3].

[3] Samson Abramsky, Pasquale Malacaria, and Radha Jagadeesan. Full
abstraction for PCF. In Theoretical Aspects of Computer Software,
pages 1–15, 1994.

[4] Nick Benton and Benjamin Leperchey. Relational reasoning in
a nominal semantics for storage. In Typed Lambda Calculi and
Applications, 7th International Conference, TLCA 2005, Nara, Japan,
April 21-23, 2005, Proceedings, volume 3461 of Lecture Notes in
Computer Science, pages 86–101. Springer, 2005.

[5] Martin Berger, Kohei Honda, and Nobuko Yoshida. A logical analysis
of aliasing in imperative higher-order functions. In Proceedings of
the Tenth ACM SIGPLAN International Conference on Functional
Programming (ICFP‘05). ACM Press, sept 2005. To appear.

[6] Yuxin Deng and Davide Sangiorgi. Towards an algebraic theory of
typed mobile processes. In Proc. Icalp ’04, volume 3142 of Lecture
Notes in Computer Science, pages 445–456. Springer-Verlag, 2004.

[7] Matthias Felleisen. The Calculi of Lambda-v-cs Conversion: A
Syntactic Theory of Control and State in Imperative Higher-Order
Programming Languages. PhD thesis, Indiana University, 1987.

[8] Cormac Flanagan and Matthias Felleisen. The semantics of future
and its use in program optimization. In Proceedings 22nd Annual
ACM Symposium on Principles of Programming Languages, pages
209–220, 1995.

[9] Matthew Hennessy. Algebraic theory of processes. MIT Press,
Cambridge, MA, USA, 1988.

[10] Matthew Hennessy and Robin Milner. On observing nondeterminism
and concurrency. In ICALP, pages 299–309, 1980.

[11] Matthew Hennessy and Robin Milner. Algebraic laws for nondeter-
minism and concurrency. Journal of the ACM, 32:137–161, 1985.

[12] Kohei Honda, Martin Berger, and Nobuko Yoshida. An observation-
ally complete program logic for imperative higher-order functions. In
Proceedings of the Twentieth Annual IEEE Symposium on Logic in
Computer Science (LICS), June 2005. To appear.

[13] Douglas J. Howe. Equality in lazy computation systems. In Proc.
4th IEEE Symposium on Logic in Computer Science, pages 198–203,
1989.

[14] R. Jagadeesan, A. S. A. Jeffrey, and J. Riely. A calculus of untyped
aspect-oriented programs. In Proceedings European Conference
on Object-Oriented Programming, volume 1853 of Lecture Notes
in Computer Science, pages 415–427, Berlin, Heidelberg, and New
York, 2003. Springer-Verlag.

[15] Eugene M. Kohlbecker and Mitchell Wand. Macro-by-example:
Deriving syntactic transformations from their specifications. In
Proceedings 14th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 77–84, 1987.

[16] Ian A. Mason and Carolyn L. Talcott. Equivalence in functional
languages with effects. Journal of Functional Programming, 1:287–
327, 1991.

[17] Albert R. Meyer and Kurt Sieber. Towards fully abstract semantics
for local variables: Preliminary report. In Proceedings 15th Annual
ACM Symposium on Principles of Programming Languages, pages
191–203, 1988.

[18] Robert Milne and Christopher Strachey. A Theory of Programming
Language Semantics. Chapman and Hall, London, 1976. Also Wiley,
New York.

[19] Robin Milner. Fully abstract models of typed lambda-calculi.
Theoretical Computer Science, 4:1–22, 1977.

[20] Robin Milner. Operational and algebraic semantics of concurrent
processes. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 1201–1242. MIT Press/Elsevier, 1990.

[21] James H. Morris, Jr. Lambda Calculus Models of Programming
Languages. PhD thesis, MIT, Cambridge, MA, 1968.

[22] Andrew Pitts and Ian Stark. Operational reasoning for functions
with local state. In Andrew Gordon and Andrew Pitts, editors,
Higher Order Operational Techniques in Semantics, pages 227–273.
Publications of the Newton Institute, Cambridge University Press,
1998.

[23] Gordon D. Plotkin. LCF considered as a programming language.
Theoretical Computer Science, 5:223–255, 1977.

[24] E. Ritter and A. M. Pitts. A fully abstract translation between a λ-
calculus with reference types and Standard ML. In 2nd Int. Conf. on
Typed Lambda Calculus and Applications, Edinburgh, 1995, volume
902 of Lecture Notes in Computer Science, pages 397–413, Berlin,
Heidelberg, and New York, 1995. Springer-Verlag.

[25] Davide Sangiorgi. Locality and true-concurrency in calculi for mobile
processes. In Theoretical Aspects of Computer Software, pages 405–
424, 1994.

[26] Davide Sangiorgi. On the bisimulation proof method. In J. Wieder-
mann and P. Háiek, editors, Proc. MFCS’95, volume 969 of Lecture
Notes in Computer Science, pages 479–488. Springer-Verlag, 1995.
Full version to appear in J. Math. Structures in Comp. Sci.

[27] Davide Sangiorgi. Locality and non-interleaving semantics in calculi
for mobile processes. Theoretical Computer Science, 155:39–83,
1996.

[28] Davide Sangiorgi and Robin Milner. The problem of “Weak
Bisimulation up to”. In W.R. Cleveland, editor, Proc. CONCUR
’92, volume 630 of Lecture Notes in Computer Science, pages 32–46.
Springer-Verlag, 1992.

[29] Kurt Sieber. Full abstraction for the second order subset of an algol-
like language. Theor. Comput. Sci., 168(1):155–212, 1996.

[30] Paul A. Steckler and Mitchell Wand. Lightweight closure conversion.
ACM Transactions on Programming Languages and Systems,
19(1):48–86, January 1997. Original version appeared in Proceedings
21st Annual ACM Symposium on Principles of Programming
Languages, 1994.

[31] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic
sealing. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
161–172, New York, NY, USA, 2004. ACM Press.

[32] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for type
abstraction and recursion. In POPL ’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 63–74, New York, NY, USA, 2005. ACM Press.

[33] Jerzy Tiuryn and Mitchell Wand. Untyped lambda-calculus
with input-output. In H. Kirchner, editor, Trees in Algebra and
Programming: CAAP’96, Proc. 21st International Colloquium,
volume 1059 of Lecture Notes in Computer Science, pages 317–329,
Berlin, Heidelberg, and New York, April 1996. Springer-Verlag.

[34] Mitchell Wand and William D. Clinger. Set constraints for destructive
array update optimization. Journal of Functional Programming,
11(3):319–346, May 2001.

[35] Mitchell Wand and Igor Siveroni. Constraint systems for useless
variable elimination. In Proceedings 26th Annual ACM Symposium
on Principles of Programming Languages, pages 291–302, 1999.

[36] Mitchell Wand and Gregory T. Sullivan. Denotational semantics
using an operationally-based term model. In Proceedings 23rd
Annual ACM Symposium on Principles of Programming Languages,
pages 386–399, 1997.

A. Proofs
Definition A.1. M � N is the smallest congruence containing
(e, ((λx.e) x)), for all e.

Note that if e � e′ then FV (e) = FV (e′), and for all C, C[e]
� C[e′].

Lemma A.2. Let e � e′, let x be identifiers, and v, v′ be closed
values, such that v � v′, FV (e) ⊆ {x}, and FV (e′) ⊆ {x}.
Then for all stores s, s′, with Dom(s) = Dom(s′), and for all
l ∈ Dom(s), s(l) � s′(l′):

〈s, [v/x]e〉⇓ ⇐⇒ 〈s′, [v′/x]e′ 〉⇓

Proof. Similar to the one in [32].

A.1 Proof of Theorem 3.2 (Value Restriction)

Proof. The forward direction is easy. If some store s and expression
context C[] distinguish λx.e from λx.e′, then the same store and
the expression context C[λx.[]] distinguish e from e′.

The opposite direction follows from Lemma A.2 as follows.
For all stores s and expression contexts C[] we have C[e] �
C[(λx.e x)], and therefore:

〈s, C[e]〉⇓
⇐⇒ 〈s, C[(λx.e x)]〉⇓ (by Lemma A.2)
⇐⇒ 〈s, C[(λx.e′ x)]〉⇓ (λx.e ≡std λx.e)
⇐⇒ 〈s, C[e′]〉⇓ (by Lemma A.2)

A.2 Proof of Theorem 3.10 ((≡) = (≡std))

Proof. Let:

e ≡std e′

or equivalently, by Theorem 3.2:

∃x: {x} ⊇ FV (e) ∪ FV (e′).
λx.e ≡std λx.e′

or equivalently, by the definition of ≡std:

∃x: {x} ⊇ FV (e) ∪ FV (e′).
∀s, C : 〈s, C[λx.e]〉, 〈s, C[λx.e′]〉

are well-formed configurations.
〈s, C[λx.e]〉⇓ ⇐⇒ 〈s, C[λx.e′]〉⇓

or equivalently, by choosing the appropriate d, y, and l for the
forward direction (and by choosing C for the reverse direction),
such that C[y0] = [l/y]d:

∃x: {x} ⊇ FV (e) ∪ FV (e′).
∀s, d, l, y : (Locs(d) = ∅)

∧ ({l} ⊆ Dom(s))
∧ (FV (d) ⊆ {y0, y}).

〈s, [λx.e/y0, l/y]d〉⇓ ⇐⇒ 〈s, [λx.e/y0, l/y]d〉⇓

or equivalently, by Definition 3.8:

∃x: {x} ⊇ FV (e) ∪ FV (e′).
∀s, d, l, y : (Locs(d) = ∅)

∧ ({l} ⊆ Dom(s))
∧ (FV (d) ⊆ {y0, y}).

∃R : ((λx.e, λx.e′) ∈ R)

∧ ((l, l) ∈ R)
∧ ((s, s, R) ∈ ≡)

or equivalently, by Definition 3.9:

e ≡ e′

A.3 Completeness

We first show some useful properties of ≡.

Lemma A.3. For any state (s, s′, R) ∈ ≡:

1. If (u, u′) ∈ R and (v, v′) ∈ R, such that 〈s, (u v)〉⇓〈t, w〉
and 〈s′, (u′ v′)〉⇓〈t′, w′ 〉, then (t, t′, R ∪ {(w, w′)}) ∈ ≡.

2. If ((v1, . . . , vn), (v′

1, . . . , v
′

n)) ∈ R then (s, s′, R∪{(vi, v′

i)})
∈ ≡.

3. If l, l′ are locations with l 6∈ Dom(s) and l′ 6∈ Dom(s′), then
(s[l 7→ 0], s′[l′ 7→ 0], R ∪ {(l, l′)} ∪ {(0, 0)}) ∈ ≡.

4. If (l, l′) ∈ R then (s, s′, R ∪ {(s(l), s′(l′))}) ∈ ≡.
5. If (l, l′) ∈ R and (v, v′) ∈ R∗

val then (s[l 7→ v], s′[l′ 7→ v′], R∪
{(v, v′)}) ∈ ≡.

6. If (v, v′) ∈ R∗

val then (s, s′, R ∪ {(v, v′)}) ∈ ≡.

Proof. Immediate from the definition of contextual equivalence.
For case 1, if there was a context e that could distinguish value
w from w′, then the context let x=(y z) in e would distinguish
the values u, v from u′, v′. Similarly, for the other cases we
consider the contexts let x=#i(y) in e, νx.e, let x=!y in e,
and let x=((y :=d)) in e. The last part follows from Lemma 3.6.

Proof of Theorem 5.4 (Completeness)

Proof. We prove that ≡ is a bisimulation by showing that it sat-
isfies the conditions for a bisimulation. Conditions 1, 2 of the
bisimulation are immediately satisfied by clauses 1, 2 of the def-
inition of ≡. Condition 3 follows if we apply clause 3 of the def-
inition of ≡ to all contexts that use the related values according
to their kind (e.g. they apply them if they are abstractions). Condi-
tion 4 follows if we consider the context if x = c then () else⊥.
Condition 5 follows from Lemma A.3 (2). Condition 6 follows
from Lemma A.3 (3). Condition 7 follows from Lemma A.3 (4,
5). Condition 8 follows from Lemma A.3 (6) for constructing
the arguments, and Lemma A.3 (1) and clause 3 of the defini-
tion of ≡ to get (s, s′, R) `≡ (λx.e v) vk+1 (λx.e′ v′) and
(s, s′, R) `≡ (λx.e v) wk+1 (λx.e′ v′).

A.4 Soundness

Lemma A.4 (Pre-soundness). Let X be a bisimulation. Then for
any (s, s′, R) ∈ X we have:

1. For all (e, e′) ∈ R∗, 〈s, e〉⇓〈t, w〉 ⇐⇒ 〈s′, e〉⇓〈t′, w′ 〉,
2. and if they both terminate, there exists a relation Q ⊇ R such

that (t, t′, Q) ∈ X , and (w, w′) ∈ Q∗

val.

Proof. We prove the forward direction for the first clause by induc-
tion on the derivation of the left-hand side of clause 1; the opposite
direction follows from symmetry. Our induction hypothesis is:

((s, s′, R) ∈ X) ∧ ((e, e′) ∈ R∗) ∧ 〈s, e〉⇓<k 〈t, w〉
=⇒ (∃t′, w′, Q : 〈s′, e′ 〉⇓〈t′, w′ 〉

∧ (Q ⊇ R) ∧ ((t, t′, Q) ∈ X)
∧ ((w, w′) ∈ Q∗

val))

(4)

We assume the induction hypothesis for derivations of height
less than k, and we will prove it for derivations less than k + 1; we
proceed by cases on e:

• e = w, where w is a value. By the definition of R∗, e′ must
also be a value. Thus (4) is immediately satisfied, since t′ = s′,
w′ = e′, and Q = R.

• e = (e1 e2). By the definition of R∗, e′ = (e′1 e′2), and
(ei, e′i) ∈ R∗, where i = 1, 2. The big-step rule for application
(EVAL-APP) on the left-hand side gives:

〈s, e1 〉⇓
<k 〈s1, λx.e3 〉 〈s1, e2 〉⇓

<k 〈s2, v〉

〈s2, [v/x]e3 〉⇓
<k 〈t, w〉

〈s, (e1 e2)〉⇓
<k+1 〈t, w〉

(5)

By the first premise of (5) and the induction hypothesis at e1 and
(s, s′, R) we get:

∃s′1, w
′

1, R1 : 〈s′, e′1 〉⇓〈s
′

1, w′

1 〉
∧ (R1 ⊇ R) ∧ ((s1, s

′

1, R1) ∈ X)
∧ ((λx.e3, w′

1) ∈ R1
∗

val)

By the second premise of (5) and the induction hypothesis at e2 and
(s1, s

′

1, R1) we get:

∃s′2, v
′, R2 : 〈s′1, e′2 〉⇓〈s

′

2, v′ 〉
∧ (R2 ⊇ R1) ∧ ((s2, s

′

2, R2) ∈ X)
∧ ((v, v′) ∈ R2

∗

val)

For the third premise of EVAL-APP we distinguish two cases:

Case 1: There exist e′3, d, (u, u′) ∈ R1, such that FV (d) ⊆
{x, y}, Locs(d) = ∅, w′

1 = λx.e′3, e3 = [u/y]d, e′3 = [u′/y]d.
By the properties of β-substitution, and because R1

∗ ⊆ R2
∗

and (v, v′) ∈ R2
∗

val we have ([v/x]e3, [v′/x]e′3) ∈ R2
∗, and thus

we can apply the induction hypothesis at [v/x]e3 and (s2, s
′

2, R2):

∃t′, w′, Q : 〈s′2, [v′/x]e′3 〉⇓〈t′, w′ 〉
∧ (Q ⊇ R2) ∧ ((t, t′, Q) ∈ X)
∧ ((w, w′) ∈ Q∗

val)

Case 2: λx.e3 = [λx.e3/y]y, (λx.e3, w′) ∈ R1 ⊆ R2. By Con-
dition 3 we get w′

1 = λx.e′3 = [λx.e′3/y]y. We have:

〈s2, [v/x]e3 〉⇓
<k 〈t, w〉 ⇐⇒ 〈s2, (λx.e3 v)〉⇓<k+1 〈t, w〉

(6)
Because (s2, s

′

2, R2) ∈ X , (λx.e3, λx.e′3) ∈ R2, and (v, v′) ∈
R2

∗

val, we get by Condition 8 of the definition of bisimulation:

IHL
X (k) =⇒ (s2, s

′

2, R2) `X (λx.e3 v) vk+1 (λx.e′3 v′)

IHL
X (k) is true by the induction hypothesis. Therefore by (6) and

the definition of k-approximation we get:

∃t′, w′, Q : 〈s′2, (λx.e′3 v)〉⇓〈t′, w′ 〉
∧ (Q ⊇ R2) ∧ ((t, t′, Q) ∈ X)
∧ ((w, w′) ∈ Q∗

val)

Thus for both of the above cases, the EVAL-APP rule for the
right-hand side gives:

〈s′, e′1 〉⇓〈s
′

1, λx.e′3 〉 〈s′1, e′2 〉⇓〈s
′

2, v′ 〉
〈s′2, [v′/x]e′3 〉⇓〈t

′, w′ 〉

〈s′, (e′1 e′2)〉⇓〈t
′, w′ 〉

and also Q ⊇ R2, (t, t′, Q) ∈ X , (w, w′) ∈ Q∗

val.

• e = op(e1, . . . , en). By definition of R∗, e′ = op(e′1, . . . , e
′

n)
and (ei, e′i) ∈ R∗

val, 1 ≤ i ≤ n. The big-step rule for primitive
operators (EVAL-OP) on the left-hand side gives:

〈s, e1 〉⇓
<k 〈s1, c1 〉 . . . 〈sn−1, en 〉⇓

<k 〈sn, cn 〉

oparith(c1, . . . , cn) = c

〈s, op(e1, . . . , en)〉⇓<k+1 〈sn, c〉
(7)

By premises of (7) and the induction hypothesis at ei and
(si−1, s

′

i−1, Ri−1) ∈ X for all 1 ≤ i ≤ n we get:

∃s′i, Ri : 〈s′i−1, e′i 〉⇓〈s
′

i, w′

i 〉
∧ (Ri ⊇ Ri−1) ∧ ((si, s

′

i, Ri) ∈ X)
∧ ((ci, w′

i) ∈ Ri
∗

val)

where R0 = R, s0 = s, s′0 = s′.
By Conditions 3, 4, we get wi = ci, for all 1 ≤ i ≤ n. Thus by

applying EVAL-OP on the right-hand side we get:

〈s′, e′1 〉⇓〈s
′

1, c1 〉 . . . 〈s′n−1, e′n 〉⇓〈s
′

n, cn 〉

oparith(c1, . . . , cn) = c

〈s′, op(e′1, . . . , e
′

n)〉⇓〈s′n, c〉

and Rn ⊇ R, (sn, s′n, Rn) ∈ X , (c, c) ∈ Rn
∗

val.

• e = if e1 then e2 else e3. This case follows from straightfor-
ward applications of the induction hypothesis at e1, e2, and e3.

• e = (e1, . . . , en). This case also follows from applications of
the induction hypothesis at each of the ei (1 ≤ i ≤ n).

• e = #i(e0). By the definition of R∗ we have e′ = #i(e
′

0) and
(e0, e′0) ∈ R∗. The big-step rule for projection (EVAL-PROJ) on
the left-hand side gives:

〈s, e0 〉⇓
<k 〈t, (w1, . . . , wn)〉 1 ≤ i ≤ n

〈s, #i(e0)〉⇓
<k+1 〈t, wi 〉

By the induction hypothesis at e0 and (s, s′, R) we get:

∃t′, w′, Q : 〈s′, e′0 〉⇓〈t
′, w′ 〉

∧ (Q ⊇ R) ∧ ((t, t′, Q) ∈ X)
∧ (((w1, . . . , wn), w′) ∈ Q∗

val)

Case 1: w′ = (w′

1, . . . , w
′

n), and for all 1 ≤ j ≤ n, (wj , w′

j) ∈
Q∗

val. By the evaluation rule EVAL-PROJ, we get for the right-hand
side:

〈s′, e′0 〉⇓〈t
′, (w′

1, . . . , w
′

n)〉 1 ≤ i ≤ n

〈s′, #i(e
′

0)〉⇓〈t
′, w′

i 〉

and also Q ⊇ R, (t, t′, Q) ∈ X , (wi, w′

i) ∈ Q∗

val.

Case 2: (w1, . . . , wn) = [(w1, . . . , wn)/y]y, w′ = [w′/y]y, and
((w1, . . . , wn), w′) ∈ Q. By Conditions 3 and 5 of the definition
of bisimulation we get:

∃w′

1, . . . , w
′

n, P : (w′ = (w′

1, . . . , w
′

n))
∧ (P ⊇ Q) ∧ ((wi, w′

i) ∈ P ∗

val)

Again the evaluation rule EVAL-PROJ for the right-hand side gives:

〈s′, e′0 〉⇓〈t
′, (w′

1, . . . , w
′

n)〉 1 ≤ i ≤ n

〈s′, #i(e
′

0)〉⇓〈t
′, w′

i 〉

and also P ⊇ Q ⊇ R, (t, t′, P) ∈ X , (wi, w′

i) ∈ P ∗

val.

• e = νx.e0. By the definition of R∗ we have e′ = νx.e′0
and (e0, e′0) ∈ R∗. The evaluation rule for reference allocation
(EVAL-NEW), gives for the left-hand side:

〈s[l 7→ 0], [l/x]e0 〉⇓
<k 〈t, w〉 l 6∈ Dom(s)

〈s, νx.e0 〉⇓
<k+1 〈t, w〉

We choose l′ 6∈ Dom(s′). From Condition 6 of the definition of
bisimulation we get:

∃Q ⊇ R ∪ {(l, l′)}: (s[l 7→ 0], s′[l′ 7→ 0], Q) ∈ X

From the induction hypothesis at [l/x]e0 and (s[l 7→ 0], s′[l′ 7→ 0],
Q) ∈ X we get:

∃t′, w′, P : 〈s′[l′ 7→ 0], [l′/x]e′0 〉⇓〈t
′, w′ 〉

∧ (P ⊇ Q) ∧ ((t, t′, P) ∈ X)
∧ ((w, w′) ∈ P ∗

val)

Combining these into EVAL-NEW, we get for the right-hand side:

〈s′[l′ 7→ 0], [l′/x]e′0 〉⇓〈t
′, w′ 〉 l′ 6∈ Dom(s′)

〈s′, νx.e′0 〉⇓〈t
′, w′ 〉

• e = !e0. By the definition of R∗, we have: e′ = !e′0 and
(e0, e′0) ∈ R∗. The EVAL-DEREF evaluation rule gives for the
left-hand side:

〈s, e0 〉⇓
<k 〈t, l〉 l ∈ Dom(t) t(l) = w

〈s, !e0 〉⇓
<k+1 〈t, w〉

From the induction hypothesis at e0 and (s, s′, R) we get:

∃t′, w′

0, P : 〈s′, e′0 〉⇓〈t′, w′

0 〉
∧ (Q ⊇ R) ∧ ((t, t′, Q) ∈ X) ∧ ((l, w′

0) ∈ Q∗

val)

By the definition of Q∗

val, and Conditions 2, 3, and 7 (a) of the
definition of bisimulation we have (l, w′

0) ∈ Q, and there exists
l′ such that w′

0 = l′, l′ ∈ Dom(t′), and there exists P ⊇ Q
such that ((t(l), t′(l′)) ∈ P ∗

val) and (t, t′, P) ∈ X . Therefore, by
EVAL-DEREF, we get for the right-hand side:

〈s′, e′0 〉⇓〈t
′, l′ 〉 l′ ∈ Dom(t′) t′(l′) = w′

〈s′, !e′0 〉⇓〈t
′, w′ 〉

and also P ⊇ Q ⊇ R, (t, t′, P) ∈ X , (w, w′) ∈ P ∗

val.

• e = (e1 :=e2). By the definition of R∗ we have e′ =
(e′1 :=e′2), and (ei, e′i) ∈ R∗, and i = 1, 2. From the
EVAL-ASSIGN evaluation rule we get for the left-hand side:

〈s, e1 〉⇓
<k 〈s1, l〉 l ∈ Dom(s1) 〈s1, e2 〉⇓

<k 〈t, w〉

〈s, (e1 :=e2)〉⇓
<k+1 〈t[l 7→w], ()〉

By the induction hypothesis at e1 and (s, s′, R) ∈ X we get:

∃s′1, w
′

1, R1 : 〈s′, e′1 〉⇓〈s
′

1, w′

1 〉
∧ (R1 ⊇ R) ∧ ((s1, s

′

1, R1) ∈ X)
∧ ((l, w′

1) ∈ R1
∗

val)

By the definition of R1
∗

val, and Conditions 2, and 3, of the definition
of bisimulation we get that (l, w′

1) ∈ R1, and there exists l′

such that w′

1 = l′, and l′ ∈ Dom(s′1). Applying the induction
hypothesis again at e2 and (s1, s

′

1, R1) gives:

∃t′, w′, Q : 〈s′1, e′2 〉⇓〈t
′, w′ 〉

∧ (Q ⊇ R1) ∧ ((t, t′, Q) ∈ X) ∧ ((w, w′) ∈ Q∗

val)

And by the EVAL-ASSIGN rule we get:

〈s′, e′1 〉⇓〈s
′

1, l′ 〉 l′ ∈ Dom(s′1) 〈s′1, e′2 〉⇓〈t
′, w′ 〉

〈s′, (e′1 :=e′2)〉⇓〈t
′[l′ 7→w′], ()〉

From Lemma 2.3 we have: l ∈ Dom(t), l′ ∈ Dom(t′). Moreover,
we know that (l, l′) ∈ R1 ⊆ Q, (w, w′) ∈ Q∗

val, and (t, t′, Q) ∈
X . Thus, by Condition 7(b) of the definition of bisimulation we get:

(t[l 7→w], t′[l′ 7→w′], Q) ∈ X

Proof of Theorem 5.5 (Soundness)

Proof. To prove soundness, we need to show that ∼ satisfies the
conditions of ≡. The first two conditions are trivially satisfied, be-
cause they are also part of the definition of bisimulation. Condition
3 follows from Lemma A.4.

