Reasoning About

Vasileios Koutavas

Northeastern University
vkoutav@ccs.neu.edu

Abstract

We present a sound and complete method for reasoning ahout co
textual equivalence between different implementatiordasfses in
an imperative subset of Java. To the extent of our knowlediges
the first such method for a language with unrestricted itduece,
where the context can arbitrarily extend classes to distsfgpre-
sumably equivalent implementations. Similar reasonichreues
for class-based languages [1, 12] don’t consider inharé&at all,
or forbid the context from extending related classes. Oteein-
nigues that do consider inheritance [3] study whole-pnogeguiv-
alence. Our technique also handles public, protected, @vat@in-
terfaces of classes, imperative fields, and invocationsitibacks.
Using our technique we were able to prove equivalences imexa
ples with higher-order behavior, where previous methods$uiac-
tional calculi admit limitations [21, 24].

Furthermore we use our technique as a tool to understand the
exact effect of inheritance on contextual equivalence. \W/ehet
by deriving conditions of equivalence for a language withiod
heritance and compare them to those we get after we extend th
language with it. In a similar way we show that adding a cast-op
ator is a conservative extension of the language.

Categories and Subject Descriptors F.3.2 [Logic and Meanings

of Program$: Semantics of Programming Languages—operational
semantics; D.3.3 Arogramming Languagés Language Con-
structs and Features—procedures, functions and subesutib.3.1
[Programming Languagés Formal Definitions and Theory—
semantics

General Terms theory, languages

Keywords contextual equivalence, bisimulations, lambda-calculus
higher-order procedures, imperative languages

1. Introduction

The class is a facility to divide programs into small unitatten-
code different parts of the entire program behavior. Thikena
classes attractive for reuse and reimplementation. Butgihg the
implementation of a class that is being used in a number of pro
grams comes with the responsibility that the new implententa
will not alter the behavior of these programs.

The effect that a change in the implementation of a classchas t
the behavior of a program that uses it depends greatly on &lys w

[copyright notice will appear here]

e_l_

Class Behavior

Mitchell Wand

Northeastern University
wand@ccs.neu.edu

that the program interacts with the class. In a Java-likguage
(and in the absence of reflection) the surrounding program ca
interact directly with the class by creating new instan@asking

its public methods, and changing the state of its publicdidiccan
also interact more indirectly with the class. It can definectasses
that inherit from the original class and instantiate olgeatvoke
methods, and change the state of fields of these classesowore
the subclasses may override methods of the original clatbare
access to its protected interface.

To formalize the notion of equivalent implementations of
classes we adapt the standard notion of contextual eqonoele
between expressions from functional languages [20] to alveq
alence between classes in class-based languages: clédssed
C' are contextually equivalent, if and only if, for atlass table
contextsC7 | |, expressiong, and the empty stor@, the program
configurationgC7[C], 0, e) and(CT[C'], 0, e) have the same op-
erational behavior.

Using this definition directly for proving the equivalendetwo
ufficiently different implementations of a class is not sibke.
his is because of the quantification over all class tableesas,
but also because it is not strong enough to support an inaucti
proof which, would require us to consider not just equal, dab
related stores. CIU theorems [17] ease the quantificatien cn-
texts by considering only the evaluation contexts, but thiayi-
larly are not strong enough in general to support an indegoof.
Moreover CIU theorems have not been applied to class-based |
guages.

Another way of reasoning about the behavior of class imple-
mentations is by using denotational methods (see [6, 14jhofa-
tions are usually compositional in the sense that they pieertean-
ing of program fragments without the quantification overteats.
Nevertheless the usual denotational methods distinggjsivaent
class implementations that have a different local storavieh For
example the two implementations of a Cell class in Figure (ld/o
have different denotations because they have differemisti@uch
equivalences can be dealt with by methods that build logieal
lations of denotations [5], or exploit properties of somegvams,
such as ownership confinement [3]. These methods, thoughtitr
not complete in respect to contextual equivalence.

A more natural way to reason about the behavior of two program
fragments is by using bisimulations. Bisimulations wetedduced
by Hennessy and Milner [10] for reasoning about the behasfior
concurrent programs. They were applied in sequential Gabgu
Abramsky [2] and Howe [11] gave a way of proving that they are
a congruence. Sumii and Pierce later gave a big-step biatronl
proof technique which is sound and complete with respecbis ¢
textual equivalence in a language with dynamic sealing f28]
in a language with recursive and polymorphic types [24].iThe
key innovation was to split the sets into parts, and asse@ath
part with the conditions of knowledge under which that pafthb.
Building on that idea we were able to devise a technique fer de
riving sound and complete definitions of sets from a conbaded

S]

2006/10/8

class Cell extends Object {
private Object c;

class Cell extends Object {
private Object ci;

private Object c2;
private int n;

Cell() { this.c = null; }
public void set(Object o) { this.c = o; }
public Object get() { this.c; }

}

}
}

Cell() { this.cl = null; this.c2 = null; this.n = 0; }
public void set(Object o) { this.cl = o; this.c2 = o; }
public Object get() {

this.n = this.n + 1;

if ((this.n) % 2) == 0 then this.cl; else this.c2;

Figure 1. Two implementations of a Cell class

semantics [8]. We applied this method to derive definitidrsoand
and complete big-step bisimulation for a lambda calculuh store
[16] and for an imperative object calculus [15]. We used¢hesh-
niques to prove non-trivial equivalences that involve Ietare and
higher-order procedures [18].

Here we apply the same technique to derive a method for prov-
ing equivalence between classes in a subset of Java. One of th

differences from our previous work is that, in contrast véxpres-
sions, classes are static entities. The contexts of classedass-
tables which are also static. These static entities areemed to
the dynamic behavior of the program by the instantiatiordasfses
to objects. As a result the conditions that we derive for tlesses
to be equivalent are mostly conditions on the possible intgts of
these classes.

Another difference is that the language we consider here has

runtime errors. We treat errors as constants that beloniytigpas:

we require that if an operation on an instance of a classteesul
an error, then the same operation on the correspondinghoestzf

a related class should also result in Hzgne error

e To the extent of our knowledge this is the first sound and
complete method for proving equivalence between classes in
a language where the context can use inheritance to digimgu
different implementations of the same class. Similar teples
for class-based languages either don't consider inheetat
all [1], or don't allow the context to extend the related skes
[12]. Other techniques that do consider inheritance [3{lstu
whole-program equivalence.

The proof technigue we present here can be used to show equiv-
alent classes with different store behavior, where thelutera
notational methods admit limitations, and classes thatkav
callbacks, a higher-order feature of object-oriented @og
ming.

e We also give an account of how inheritance affects the equiv-
alence of classes. We do this by applying our technique to a
class-based language without inheritance and to its eriens
with inheritance, and by deriving the necessary conditibas
classes need to satisfy in order to be equivalent in these lan

Inheritance is the most interesting feature of the langubge guages.
we study here. The exact interaction with contextual edenee
has not been studied before. Inheritance increases thiegtisth-
ing power of the context. By extending a class, the contaxhexe
access to the protected interface of the class, and moretiamy

it can override methods of the class.

We start by considering a class-based language with imperat
fields and public and private interfaces of classes, butauith
inheritance. We develop our method for deriving conditiafs
adequacy between classes for this language and show tlpizanye
coincides with class equivalence. We then extend the lageywith
inheritance and dynamic dispatch and derive once more tonsli 1L | !
of adequacy. By comparing the two sets of conditions we wielee a ~ show how the conditions of equivalence change due to thenext
to give an account as to how inheritance affects class eguive. sion. Section 7 shows that the Cell example is still provablie
By extending the language once more with a cast operator andsecond language, showing that interesting equivalendefiait
Showing that the conditions of adequacy remain unchanged’ w after the addItIO!’l of inheritance. S.eCUOn 8 adds CaSt”‘tgedar]-
prove that casting is a conservative extension to our laggua gua_ge and Section g_ShOWS that this doesn't affect the Oone_th
Moreover we use the Cell example as a case study of proving equivalence. In Section 10 we show how to prove the equicalen
equivalence in the various versions of the language thatway.s of tWO classes that invoke callbacks. Finally, in Sectiohsdd 12,

Through these extensions of the language we show that ourWe discuss related work and conclude.
method of deriving conditions of adequacy is incrementanwve
add new syntactic forms in the language (e.g. the cast esiprgs
but not when we add more complex features like inheritancalll
three languages, though, the difficulty of proving equinats does
not change significantly.

The contribution of this work is twofold: it gives a sound and
complete method of proving equivalence between class imgrhe
tations in a subset of Java, and also uses this method to gtady
effect of inheritance and downcasting on contextual edgmne.
More specifically:

Finally we show in a similar way that adding a casting operato
is a conservative extension to a class-based language.

The structure of the paper is as follows: in Section 2 we give
the semantics of a base language with classes, but withbet-in
itance and casting. In Section 3 we apply our method of degivi
conditions for equivalence to the base language. In Sedtioe
give an example of proving equivalence between two implaazen
tions of a Cell class by constructing an appropriate set aodmg
that it satisfies the derived conditions. In Section 5 we raxtthe
language with inheritance and protected fields and in Seétioe

2. Jp: A Basic Class-Based Language

We start by defining a small class-based language which we cal
J1- This language is a subset of Java containing class defigjtio
imperative private and public fields, private and public imoels,
ground types, constants, conditional, and a let expressiowever,
it does not allow classes to inherit behavior from othersgasand
to override methods. The syntax gf is shown in Figure 2.

The main difference betwees and other imperative Java cal-
culi, like Middleweight Java [4] and Classic Java [9], isttha does

2 2006/10/8

PROGRAM CONFIGURATIONS:

peonf € CT x STORESx EXPRESSIONS

CLASS TABLES: CT € P(CLASSDEFINITIONS)
CLASS DEFINITIONS: C ::= class C{modt f; K M}
CONSTRUCTORDEFINITIONS: K ::=C(){this.f :=c}
METHOD DEFINITIONS: M ::=mod tm(tx){e}
TYPES t::=void | int | bool | C
MODIFIERS mod ::= public | private

EXPRESSIONS e, du=v|x

| newC | e.m(e)

| eflef:=e]|op(e)]|eq(l])

| letz=cine|ifethenecelseec

Values, Identifiers

Object Instantiation, Method Invocation
Field Lookup and Update, Operators
Let Expression, Conditional

Unit, Null, Booleans, Integers

VALUES: v, u,w :=c]|l
CONSTANTS: c:=unit | null | true | false |0 | +1|+2]...
L OCATIONS: Lk
STORES s € LOCATIONS — STOREDOBJECTS
STOREDOBJECTS oux=objC{f=v}
ERRORS € 11=nerr

Null Error

Figure 2. Syntax of 7;

not have inheritance and casting. We later extghdvith inheri-
tance to create the language, and then we add a casting operator
to create7s. [J3 has the same constructs as Middleweight Java,
with the addition of constants and access modifigfs.doesn’t
have the explicit interfaces and mixings of Classic Java.

The values of the language are constants or locations iridhe s
where objects are stored. Stored objects are structuresdahtain
the name of the class which they instantiate, and a bindingzoh
field of the class to a value of the appropriate type. A program
can test for pointer equivalence of objects which is assuimdx
implemented as one of the operators of the language.

The types of7; are class types, as well as the ground types
void, int, andbool. There is aunit constant of typevoid,
true andfalse of typebool, and the integers of typint . The
constantull has any class type.

J1 has also a null erromerr) for the case that a program tries
to perform an operation onmll value.

Class definitions state the name of a class, its fields and-meth

ods, and also its constructor. Theblic andprivate access
maodifiers in the definitions of fields and methods specify tups

of these names. Public methods and fields are visible toasbek,
while private methods and fields are visible only from witltie

same class.

Class tables are sets of classes. Well-formed class tadniésic
classes with distinct names. We test the well-formednessctdss
table by the predicatefClassHierarchyC7). When we add inher-
itance to the language this predicate will check for a valabs
hierarchy.

We will use meta-operations and the dot notation to perform
static lookup on class tables and classes. For exa@pl€’ returns
the definition of the class named from the class tabl€7, and
CT .C fields returns a sequence of all the field definition<inA
complete table of these meta-operations and a descriptitiren
functionality is shown in Figure 7 of the Appendix.

Stores are partial maps from locations to stored objects. A
program configuratioris a triple composed of a class table, a store,

and a closed expression (writtéd - s, e). An initial configuration
is a program configuration that contains the empty stibye (

The typing rules of7; are shown in Figure 3. The typing
judgments for expressions have the foff; I'; s I e:t. T' is the
type environment. The store is used to type-check locations;
the value stored in a location has the typétype. In 77 this is
the class type mentioned in the object itself, but, when wé wi
add inheritance later on, this may be the superclass of tjeztob
currently stored in a location. In this way stores are usest@®
typings in the typing judgments. The constanill has any class
type defined in the class table. The rest of the typing juddsien
expressions are the expected ones for a language/like

The typing judgments for method, class, and class-tablaidefi
tionsareC7HM:0OKin C,CTHC:0OK, andC7:0K, respectively.
(CT F s, ¢e):0K is the typing judgment for program configurations.

In Figure 4 we give a small-step semantics f&r. A small-
stepC7 + s,e — s1,e1 describes a transition from the program
configurationC7 F s, e to the configuratio®7 + s1,e1. We also
define—* to be the reflexive and transitive closure-ef and— <*
the reflexive and up té — 1 steps transitive closure ef. We also
write CT +s, e] iff there existss1, w, such that7+s, e —* s1, w.

We use calligraphic font for the meta-identifiers that denot
class-table, class, constructor, or method definitions. alé®
use an overbar notation to denote syntactic sequence wbth ar
trary length. When expanded, all the meta-identifiers in dbe
qguence are annotated with the appropriate subscriptsye.grite
obj C{f =1}, instead ofobj C{f1 = l1, fo =loy..., fo = ln}.
We also use the notatiofi = v\ f; = u to denote the sequence
f1 = V1, 7fi71 = Ui71,fi =u, fi+1 = Vi1,

3. Equivalence and Adequacy in7;

We want to study contextual equivalence of class definitiong;
and its extensions. To do this we need to define class tabtexdsn
relations on classes, and their extension to class tables.

Definition 3.1. Aclass table contex€7], is a set of class defini-
tions. Placing a class definition, or a sequence of class itiefis,

2006/10/8

CT;T;sket

x:tel ¢ € {true, false} ce{£1,£2,---} classC{---} € CT
CT;T; sk x:t CT;T; st unit:void CT;T; st c:bool CT;T; sk c:iint CT;T; sk null:C
C € CT .classnames CT;T;skety

C' € CT .classnames

op.type=1ty —t

sdl.type =C
CT;T';sHI:C
CT;T;skeC

CT;T; sk this:Cy
f € accessibleCT, C, Co)
modt f € CT.C fields

CT;T';sknewC:C

CT;T;skeC
CT;T; sk this:Cy
f € accessibleCT, C, Co)
modt f € CT.C fields
CT;T';sken:t

CT;T; st op(e):t
CT;T;skeC
CT;T; st this:Cy
m € accessibleCT, C, Cy)
modty —tm € CT.C.methods
CT;T;skeoity

CT;T;ske.fit

CT;T';sken:ts
CT; T x:ty; sk et

CT;T;stke.f:=e:void

CT;T; st em(eq):t
CT;T; st ei:bool

CT;T; st ea:t

CT;T'; st es:t

CT;T;sk letx=e;ine:t

CT;T; st if e; then es else e3:t

CT - M:OKiin C| CT F C:OK CT:0K (CT F s,e):0K
K = C(){this.f:=c} o
CT;0;0Fct {C}+C:OK CT:0K
CT;x:t;,this:C; 0 - e:t CT - M:OKin C wfClassHierarchy{C}) CT;0; sk et
CT + mod tm(f: z){e}:0Kin C CT + class C{t [;KM}:0K {C}:0K (CT +s,¢):0K

Figure 3. Typing of /1

in the hole of a class table context corresponds to set union:
cTle)” cTu{C)

Definition 3.2. R°*® is a relation on classes iff it is a set of pairs
of class definitions, such that for 4, ") € R**®, and all class-
table context€ 7 |:

CTI[C):0K <> CT[C']:0K

The above definition requires that we relate only class defini
tions that are interchangeable at compile time; i.e. répipone
with the other in a class-table context doesn't affect tipénty judg-
ment of the program. In practice this means that the reldeesses
have the same name, extend the same superclass, and haamthe s
public interface.

Definition 3.3. If R®** is a relation on classes, then the following
is its extension to class tables:
def —.

CTIR™®] = {(CT[C],CT[CT) | (C,C) € R,
CTIC]:OK}
We give the following definition of contextual equivalena® f
Ji:

Definition 3.4 (Contextual Equivalence €)). (=) is the largest
relation on classes such that for di£7,CT") € CT[=], expres-
sionse, and typeg, such thaCT; 0; () - e:t, we have:

CTF0,el < CT'F0,e|

This definition is hard to use directly. To discover more $jec
conditions that assumed equivalent classes need to satisfgl-
low the method we developed in [16, 15] to derive a usablefproo
technique of equivalence for imperative higher-order leaugs.

This method relies on the definition aflequaterelations that im-
ply contextual equivalence, and an abstract inductive fridis-
cover a set of necessary conditions for adequacy. Here we sho
how to apply this method tg .

We will define adequacy as a property of the following relagio

Definition 3.5. A J-relationR is a set of tuplegs, s’, R¢, R°**),
wheres, s’ are stores,R’ is a relation on object references, and
R is a relation on classes.

For the definition of adequacy we also need to defireslated
answers and expressions.

Definition 3.6. If R’ is a relation on object reference€7, C7'
class tables, and, s’ stores, then we define the following relations:

e related values of type

Vi[CT,CT s, s, R Y {1,1)| (1,1') € R,
CT;0; sk l:t,
CT';0; 8" H1':t}

U{(c,0) |CT;0;0F c:t,

CT';0;0F c:t}

e related answers of type

AeT,cT s, s, R Y vieT,cT’ s, s, RY]

U {(nerr,nerr)}

2006/10/8

CTts,e— s1,e1

CT .C.constr =

C(){this.f :=c}

I & Dom(s)

CTFs,newC — s[l=0bjC{f =c}],1

sl=o0bjC{f =0}

CTFs,l.fi — s,v;

CT.C.m = mod tm(t; z){e}

CT + s,null.f; — s,nerr

CT +5,l.m(T) — s, [v/z,1/this]e

sl=o0bjC{f =v}

CT + s,null.m(v) — s,nerr

CTrs,lfiz=u—sll—objC{f =v|fi =u}],unit

CT F s,null.f; := v — s,nerr

CTFs,letx=vine — s,[v/x]e

Evaluation Contexth
7€|E[E]
=[£I me) [vm(@,[],2) | [].f

‘C’T}—S,E[e] — s1, Elei] ‘

CTFs,e— s1,e1

CT + s,if true thene; else ez — s, €1

=el|v.fi=

CT F s,if false thene; else ea — s, €2

[] |letz =[] ine | if[] theneelsee | op(T,[],?)

CTts,Ele] — s1, FE

CT+s,E[e] — s1,¢

Figure 4. Small-step Operational Semanticsbf

¢ and related expressions of type

E\[CT.CT',s,s',R] Y

{([l/]e, ' /xle) | FV(e) € {T},

(1,I') € R,
Locs(e) =0,
CT;0; st [v/x]e:t,
CT'; 0; 8"+ [v'/z]e:t}

By requiring thatLocs(e) = 0 in the above definition we force

all R-related expressions to use ortyrelated references.
We now give the definition of adequaté-relations. These are

J-relations from which all derived related program configiaras
have the same operational behavior.

Definition 3.7 (Adequacy). R is adequate if and only if:

v(s,s’, R, R®*) € R.
v(CT,CT') € CT[R™).
Vt,Y(e, ') € B[CT,CT,s,8, R
Vs, w
(CTEs,e =" s1,w)
= Js), v, Rl
(CT'F s, e —* sp,w')
/\(() S At[CT CT’ Sl,Sl,R])
/\((817817R Rds))
A (R C RY)

and the reverse.

In this definition of adequacy, the most interesting quasatfon
is the one on related expressions of typeThis quantification

is general enough so that we can carry out an induction based
on this definition. It covers the case where related methods a
invoked onrelated (and not just equal) objects and are passed
related arguments. The quantification over class tablgs plaole
in the soundness of this definition, but not to the existerfcano
induction.

Adequate relations are sound and complete in the following
way.

Theorem 3.8 (Soundness)If R is adequate andd, 0, (), R°**) €
RthenR™® C (=).

Proof. Immediate by the definitions of adequacy and contextual
equivalence. a

Theorem 3.9 (Completeness)If R** C (=) then there exists
adequateR with (0, 0, 0, R°**) € R.

One could show the equivalence between two class implemen-
tations by constructing an appropriate Beand then prove its ad-
equacy by an induction based on Definition 3.7. Our goal igto i
prove this by finding sufficient conditions dhk that would make
the proof of adequacy go through. These conditions act asia Ve
fication Condition Generator: one provides an invariare &atR)
that presumably proves a particular equivalence, and theittons
say what needs to be proven in order to check the validity ef th
invariant. The conditions that we derive also give us a beftasp
on how the context can distinguish two class definitions.

To do this we investigate a class of inductive proofs based
on Definition 3.7 by abstracting over the concrete structoire
R and attempting to prove adequacy. This abstract proof levea
the subcases of the induction that don’t go through just lygus

2006/10/8

the induction hypothesis, but also requires that the stateR
satisfy some extra properties. These properties becomprtiaé
obligations or verification conditions, foR.

Conjecture 3.10 (Abstract Proof of Adequacy). For some rela-
tion R, R is adequate.

Proof. The proof consists of two inductions, one for the forward
direction of Definition 3.7 and one for the reverse directibhe
induction hypothesis of the former is:

[H(k) =
V(s,s', R*, R%*®) € R.
V(CT,CT') € CT[R™].
vt V(e e) € B CT,CT,s,s', RY.
Vs1,w
(CT Fs,e =<F 51, w)
= 3Jsi,w’, R},
/76/ _)* 837’[0,)

(
((w,w') € A[CT,CT, 51,51, RY])
(
(

We will show that for allk, IH (k) holds. We assume the
induction hypothesis fok, and we will show that it holds fot + 1.

Let (e,e’) ([v/z]eo, [v'/x]eo), for someeq, v, v, such
that F'V(eo) C {Z}, Locs(eo) = 0, (v,v') € R’ CT;0; s+
[v/x]eo:t, CT'; 0; s'+ v’ /x]eo:t. We proceed by cases ep. Due
to limited space we do not show the case analysis of this proof
which is similar to the ones in [15, 16].

a

In Theorem 3.13 we summarize all conditions frthat we
found by the above abstract proof. First we give a notatiomrite
down the inductive cases and the induction hypotheses (@ne f
each direction).

Definition 3.11 (Inductive Cases).

R, R RF (CTFs,ext) °<F (CT'+5',¢':t) %
V81, w
((e,€¢') € E¢[CT,CT', 5,5, R])
/\(CTI—s,e —<k sl,w)
= Jsi,w, Rl
(CT'I—S e —*sh,w)
A((w,w') € A[CT,CT, 51,57, RY])
((817317R RCIS))
A(

and R, R** R (CT - s,e:t) <k (CT' + §',¢':t) for the
reverse.
Definition 3.12 (Inductive Hypotheses).

1H(k) <

v(s,s’, R, R%) € R.
v(CT,CT’) € CT[R].
Vi, (e,e') € E[CT,CT,s,s', RY.
R R RF (CT & s,e:t) C<F
(CT'+ s, ¢e":t)
and I HE (k) for the reverse.
Our main theorem is the following.

Theorem 3.13 (Adequacy Conditions). A relation R is ade-
quate if and only if for all stategs,s’, R®, R°**) of R and for
all (CT,CT’) € CT[R®], the following conditions are satisfied:

1. (Same interfacesor all (C,C’) € R®,

C = class C{publict; f1;privateta fo;
C(){this.f1 :=c1, this.fo :=ca},
public tsms(taxa){ - -},
private tsms(tsx6){.. .}}

C' = class C'{publict; f1;privatet} f5;
C(){this.f1 :=ci1, this.f) :=c},
public tsms(taza){ -},
private tymi(thxf){...}}

2. (Related instance$pr all (1,1') € R, there existg, such that
CT;0;s1:t,CT'; 0; 8" -1:t.
3. (Enough instancedjor all C' € C7 .classnames, with

C = class C{ C(){m}, e}

C' =classC{---C(){this.f :=c'} -}
and all freshiy, I}, there existsR{ D R° U {({,1")}, such that
(sll=0bj C{f =¢}],s'[l' = objC{J" = '}], R{, R™™®) € R.

4. (Related public fields)For all (I,I') € R, with s.I =
objC{f=wv} and s'.l' = objC{f =+'}, and for all
publict; f; € C.fields,

(vi,v}) € V,,[CT,CT', 5,5, R").

5. (Related updatespor all (1,1) € R*,withs.l = obj C {f = v}
ands’.l’ = obj C{f’ =v'}, all publict; f; € CT.C.fields,
and all (u,u’) € V4,[CT,CT’,s,5, R,

(s[l = 0bj C{f = v\fi = u}],
s'[I" —obj C{f" =v'\fi = u'}],
R[, Rcls) cR

6. (Related public methodsfor all (C,C’) € R°*®, all refer-
ences(l,l') € Vo[CT,CT',s,s', RY, all methodsm with

CT.C.m = publict,m(tyz){es}, CT'.Cm =
public tmm(t.x){es}, and for all (v,v") € Vi [CT,CT’,
s, s, R,
THE (k) =
R, R RF (CTFs, lm(Vity,) C<FFE
(CT' F s U m@):ty)
THf (k) =
R, R RF (CTFs, lm(Vity) I<HH
(CT' Fs' U m@):ty)
Proof. By recapitulating the proof of Conjecture 3.10. a

The first condition of Theorem 3.13 requires that relatedsga
have the same public interface. This ensures that the slassaot
distinguishable at compile time. The second condition iregtthat
related objects respect the class types. The rest of thetioorsd
correspond to the primitive operations that the contextpeform
on the objects in order to distinguish them. Thus the thirtiition
corresponds to instantiating a new object by the contegtfahrth
condition corresponds to dereferencing a public field, tfie fo
updating a public field, and the last to invoking a public noeth

The above theorem contains a top-level quantification olter a
possible class tables that contain the related classesisTheces-
sary in order to specify the well-typed values, and to usedtac-
tion relation. As we will see in the example that follows stuan-
tification does not introduce any difficulty in the proofs ofuéva-
lence. This is because we never need to reason about thedratfav

2006/10/8

methods and classes defined in the class-table contexesthiese
cases are handled by the induction hypothesis.

4. The Cell Example

Here we give two implementations ofca11 class that store ob-
jects of some class that is provided by the context. The first im-
plementation ofCell is the usual one, while the other uses two
private fields to keep the stored object, and a counter toddeci
which one to return when thget method is invoked. These imple-
mentations have sufficiently different store behavior drausual
denotational models would assign different denotatiors thos
distinguish them [25, 19].

C = class Cell{
privateAc;
Cell(){this.c :=null}
public void set(Ao){this.c:=o}
public Aget(){this.c}}

"= classCell{
privateAcl, c2;
private int n;
Ce11(){

this.cl:=null;

this.c2 :=null;
this.n:=0}
public void set(Ao){
this.cl:=o;
this.c2:=o}

public Aget(){
this.n:=this.n+ 1;
if (even(this.n)) then this.cl else this.c2}}

To prove the above two class implementations equivalent we
construct the following set:

R = {(s,s', R, R®**) | 3CT,CT",Ip, 1}, D, f1,v1, v},
ls7lf97f27v27vé7lc7llcvm:
s =[lp=o0bjD{f1 =v1}]
[ls = objA{f2 = v2}]
[lc = objCell{c =ls}]
s' = [l = obj D{f1 = v}}]
[llg = objA{f> = v3}]
[lc =objcCell{cl =1, c2 =1, n=m}]
R ={(,C)}
Rl = {(lD7 llp)v (l57 lf9)7 (lc7 llc)}
(v1,0}), (v2,05) € VA[CT,CT', 5,5, R]
(CT,CT') € CTIR™)}

We choose this particuldR by inspecting the conditions of
Theorem 3.13. Condition 1 is obviously satisfied®yndC’. To
satisfy conditions 2 and 3 we addRf the related references to any
class of all possible class-tables. These are objects aflésses
Cell andA, as well as, objects of any other claBsthat may be
defined and instantiated by the context. The values in thesfigf
the instances ab anda are related iV;[CT,C7T", s, s', RY], since
these are fields of identical classes in the class tables.

We also require that the values stored in the private fields of
Cell to be related references afobjects. This is an invariant of
the equivalence between the two implementationsedfl and is
going to help us prove condition 6.

To prove condition 6 we consider an arbitrary tuple
(s,s’, R, R°**) € R, and an arbitrary pair of related class tables

(CT,CT') € CT[R®®]. The only pair of related class defini-
tions inR** is (C,C’). For any(l;,1}) € Veerr[CT,CT ", s,s', RY]
with s.l objCell{c;, = lsg;}, s'.I' = objCell{cl
lsiyc2 = lg;,n = ln;}, we consider allpublict, —tm €
CT .Cell.methods. These are the methodset andset.

In the case oget we havef, —t = void — A. Furthermore:

CT Fs,lget() =" s,ls;
CT' ks, 1l'.get()
—* §'[l; « objCell{cl = lsj,c2 = lsi,n = m+1}],1s}

wheres’.l; = objCell{cl = lg}, 2 = ls;,n = m}. Moreover:
(Isi,ls}) € M[CT,CT', 8,8 [ln; «— m+1], R']
and
(s, s'[l; «— objCell{cl =lg},c2 =1gi,n=m+1}],
R€7 Rcls) cR
Similarly for the case ofet we havet, —t = A— void . Let
(Is,1%) € A[CT,CT', s, ', R"]. We have:

CT + s,0.set(u)
—" s|l; « objCell{c = ls}],unit
CT'+§', 0 .set(u')
—* §'[l; < objCell{cl =I},c2 = li',n = m}],unit

and

(s[l; < objCell{c =Is}],
s'[l; < objCell{cl =1,,c2 = ls7',n = m}],

R’, R) €R

5. J>: An Extension of /7; With Inheritance

We now extend7:by adding the feature of class inheritance. We
also add theprotected access modifier for fields and methods.
Protected fields and methods are accessible from the sasseacld

its subclasses. We do not yet add a cast operation to thedgagu
allowing thus only implicit (and type-safe) upcasting ofjexis.

We assume there is no shadowing of fields, something thatean b
accomplished automatically by adding the name of the claps

of the name of each field. The differences in the syntax, ty@and
operational semantics gf; and 72are shown in Figure 5.

To encode inheritance we have added the rule of subsump-
tion and the subtyping judgments imposed by the class loieyar
and the reflexive and transitive property. The rest of thentyp
rules of the formC7; T'; s F e:t have only trivial changes, assum-
ing that the implementation of the meta-functiaocessiblehan-
dlesprotected fields and methods in the right way. Furthermore
we have changed the rule for type-checking method defirsition
check that subclasses override oplyb1ic andprotected meth-
ods. A valid class hierarchy is now considered to be a tret, ai
empty clas®bjectas its root. In the typing judgments ok, the
meta-functionwfClassHierarchyis true exactly when these condi-
tions hold for a set of classes.

The operational semantics ghare mostly the same as of,
with the exception of the steps that involve object instgidn. In
J2, when a new object is created, the fields from all the super-
classes must be initialized.

6. Adequacyin’,

In this section we study adequacy fgb. The definition of con-
textual equivalence we gave earlier (Definition 3.4) stilds for
J2. It conceals though the fact that the context has, what ihsee
to be, more distinguishing power. It can extend relatedselssind
then use these extensions to distinguish the two sides. Mg ap

2006/10/8

CLASS DEFINITIONS: C,D ::= class C extends D{modt f; C M}

MODIFIERS. mod ::=--- | protected
T e
CT;T';sk ety
CThHt <:t CT FHt1 <:ts CT it <:ts CT.C.super = D
CT;T';sk et CTHt<:t CThFt <:t3 CTHC<:D

CT F M:OKin C

CT;x:t;,this:C; 0 F e:t CT.C.super = D overridablgC7, modt; —tm, D)
CT +mod tm(tiz){e}:OKin C

C’Tl—s,e—>31,el‘

I & Dom(s) class C extends D{---C(){super(); this.f:=c}---} € CT
CT I s,newObject — s[l = obj Object {}],1 CT F s,newC — s, (new D;this.f :=c¢)c

CTrFs[l=0bjD{fp =cp}],(l;this.f:=c)c — s[l=0bjC{fp = cp, [= c}],1

Evaluation Contexth

Eux=---|([];this.f:=¢)c

Figure 5. Syntax, typing, and operational semanticg/{differences from7;)

our method for deriving conditions of adequacy to study #hs 1. (Same interfacedjor all (C,C’) € R°*,
tra distinguishing ability of the context. This reveals #&féect of
inheritance to the equivalence of classes. C = class C{publict; fi;private s fo;
The outline of our technique is the same as before. We reason protectedts f3;
about the same sets of tuplBs and we use the same definitions C(){this.f1 := c1, this.f2 := ca,
for V4, A+, and E; (Definition 3.6). The latter sets, though, are this.f3 :=c3},

larger than before. Iif7an object has type the name of the class
that it instantiates, but, because of subsumption, it cemfzve the
type of any of its superclasses. This is the place where italnee

public tama(tszs){ - -},
private t¢me(trz7){...},

appears in our technique. protected tsms(tox9){...}}
The definition of adequacy (Definition 3.7) remains unchange
for 72, and, as a consequence, the induction hypothesis of the cor- C' = class C{publict; fi; private &} fi;

responding abstract proof also remains the same. When dawin
ing this proof, and taking cases on the structureg@fwe need to
consider sub-cases introduced by inheritance. For examlipén

protectedts f3;
C(){this.f1 :=c1, this.f] :=c},

methodm is defined in a clas§', eo = z.m(), andz is substituted this.fs == cs},
by an object reference, then this object may be an instartiaf public tama(tsxs){ -},
a subclas® of C. It also means that: may have been overridden private tfmy(thah){.. .},

betweenC' andD. More explicitly the conditions for adequacy that —
we derive for7»are the foIIFc))winé: e protected tsms (o xo){...}}
2. (Related instancespor all (1,1') € R, there exists, such that
CT;0; s 1:t,CT'; 0; 6" =1':¢.
3. (Enough instances$pr all C' € CT .classnames, withC7T .C' fields =
modt f and CT'.C.fields = mod t' f and all freshiy, 1},
there existsR{ O R’ U {(I,1’)} such that

sfl=o0bjC{F=c}],s'[l' =obj C{f = '}], Ri, R%) e R.
Theorem 6.1 (Adequacy Conditions for 72). A relation R is (sl J _{f s 1C4 H R)
adequate if and only if for all state, s’, R®, R***) of R and for wherec and¢’ are the initial values of the fields in the construc-
all (CT,CT’) € CT[R*], the following conditions are satisfied: tors of C' and its superclasses.

8 2006/10/8

4. (Related public and protected fields)r all (,1') € R*, with
s =objC{f =v}ands'.l' = obj C {f’ = '}, and for all
modt; f; € C.fields, withmod € {public,protected},

(vi,v}) € Vi, [CT,CT/,S,SI,R[].

. (Related updatespor all (1,1') € R, withs.l = obj C'{f = v}
ands’.l’ = obj C'{f’ = v'}, allmodt; fi € CT.C.fields, with
mod € {public,protected}, and all (u,u’) €
Vi [CT,CT',s,s", R,

(s[l = 0bj C{f = v\ fi = u}],
sl —objC{f =v'\fi =u'}],
Rl7Rcls) cR

. (Related public methodsjor all (C,C’) € R, all refer-
ences(l,l') € Vc[CT,CT',s,s', R"], all methodsm defined
in C with CT.C.m = mod tmm(tyx){es}, CT'.C.m
mod tmm(ty z){es}, and mod € {public,protected},
and for all (v,v') € V=[CT,CT", s, ', R'),

THE(K) =
RY, R RF (CTF s,l.m(D):ty,) T<FH
(CT' =8I m(v):tm)

THE(E) =
R, R, RE (CT +s5,1.m(D):ty) I<FH!
(CT’ = S,7 l,.m(v/):tm)
The differences between these conditions and the conditbn
Theorem 3.13 are the following:

e Condition 1 requires that related classes have the same pro-
tected interface. This is because the context can exterasa cl
and have access to its protected fields and methods.

In condition 3 new objects contain all the fields of their supe
classes.

Condition 4 requires that algerotected fields contain related
values. If we assume that we have two presumably equivalent
classe<” and(C’ that contain grotected field f which may

not contain related values, then the context can distihgihie

two implementations by extending them with the following
class:

class D extends C{public ¢ getf(){this.f}}

Then by instantiatingD, invoking methods of” until f does
not contain related values in the two implementations, aed t
invoking the methodjetf, it can distinguish the two sides.

Similarly condition 5 requires that related updates shalgd
apply to protected fields. If two implementations of a class
are not operationally equivalent when one of th&ibtected
fields (e.g.f) is updated with equivalent values, then the context
can distinguish these implementations by extending thetim wi
the class:

class D extends C{public void setf (tx){this.f:=z}}

In a similar fashion, in condition 6 we need to test the betravi

of any relatedprotected (in addition topublic) methodm

that is defined in anyC,C’) € R°'*. These methods may be
invoked on objects that instantiate subclasses ahdC’. The
case thain is overridden by a subclass defined in the context is
handled by the induction hypothesis. The only non-trivese

is whenm is defined in a class i®“**. Furthermore, it may be

the case that: invokes internally another methgdf the same
object which has been overridden by a subclass defined in the
context. Sincey is overridden, it must be thatis apublic or

protected method, and internal calls to them are handled by
the induction hypothesis in our method.

From the above we conclude that adding inheritancé&tdoes
not affect the local reasoning of condition 6 when using eght
nique. This is because of the wide application of the inaunchiy-
pothesis to factor out many of the sub-cases.

For classes that don't ugerotected fields and methods, we
observe that conditions 1-5 of Theorem 3.13 imply the cpoed-
ing conditions of Theorem 6.1. This is not true, though, fonc
dition 6, where in Theorem 6.1 method invocations are tested
objects that instantiate any subclass of related classgie, w The-
orem 3.13 are tested only on objects of related classesxgorm@e
the following two classes are equivalentjabut not in 7»:

C =class C{
cO{}
public bool my(){true}
public bool ma(){this.mi()}}
C =class C{
cO{}
public bool mi(){true}
public bool mo(){true}}

A context containing the following subclass 6f can distin-
guish the two implementations:

class D extends C{

D(){super()}
public bool mi(){false}}

Therefore, extending the language with inheritance giveeem
distinguishing power to the context. By overriding methabes
context can break invariants that hold farblic andprotected
methods and are needed by other methods. The only way foss cla
to maintain these invariants is to declare the methods ted ho
satisfy thenmprivate.

7. The Cell Example inJs

We adapt the two implementations of a Cell from Section 4 & th
language?7., and we show that the equivalence still holds.

C = class Cell extends Object{
privateAc;
Cell(){this.c :=null}
public void set(Ao){this.c:=o}
public Aget(){this.c}}

C' = class Cell extends Object{
privateAcl, c2;
private int n;
Cell(){
this.cl:=null;
this.c2 :=null;

this.n:=0}
public void set(Ao){

this.cl:=o;

this.c2:=o}

public Aget(){
this.n:=thisn+ 1;
if (even(this.n)) then this.cl else this.c2}}

To prove the above two class implementations equivalent we
construct the following set:

2006/10/8

R = {(s,s', R, R®®) | 3CT,CT’,1p,l}, D, f1,v1, 0},
lB,lb,B,fz,Uz,Ué,lc,l/c,m,f:;,'l):;,'Ué :
[lp=o0bjD{f1 =v1}]
[ls = obj B{f> = v2}]
lc =0bjC{c =15, fs = vs}]
s’ = [l =obj D{fi = vi}]
[l = obj B{f> = v3}]
lc =0bjC{cl =1g5,c2=15,n=m, fz3 = v}
R ={(C,C)}
R = {(le lb)7 (lB7l;3)7 (ZCJ,C)}
(v1,v}), (v2,vh), (w3, vh) € VE[CT,CT', 5,5, RY]
(CT,CT") € CT[R™)
CTHFB<:A
CT + C <:Cell}

Again we constructed this set by inspecting the conditidns o
adequacy for7.. The resulting set differs from the one in Section 4
at the bold-faced parts. In this set we need to take into axtdbe
subclasses of andCell, which may have extra fields. Subclasses
of Cell may have also overridden the metheds andget. Even
in this case the equivalence holds, since the implementafieach
of the two methods doesn’t depend on the other. In the case, fo
example, that the methoskt called internally the methogdet,
inheritance may had broken the equivalence, as we discustesl
previous section.

However, even considering arbitrary subclasseSeafl, prov-
ing the adequacy conditions fgkis not substantially harder than
proving them for7;.

S

8. J3: Adding Downcasting to [/,

Our last extension adds a cast expressiog4pcreating language
Js. The casting operator allows both explicit upcasting andrdo
casting. The latter is a non type-safe operation which chtces
one more error to the languagerr. The extra syntax, typing rules
and operational semantics for casting are shown in Figure 6.

9. AdequacyinJgs

The addition of a casting operation has minimal effect on the
technical machinery we have set up so far. The first thing veel ne
to do is to add the new error to the set of answers of type

Definition 9.1. If R’ is a relation on object reference€T, CT'
class tables, and, s’ stores, then we define the following relation
on answers of typge

AJeT, T, s, s, R Y vijcT,cT’ 5,5, RY)

U {(cerr, cerr), (nerr, nerr)}

The rest of the definitions remain the same throughout our
technique.

10. An Example With Callbacks

We consider the adaptation t@;0f an example from Meyer and
Sieber [18]. We have two implementations ofCeunter class,
one containing a private counter g, initialized to zero anent
increased by two only by the methadc. There is also a method
callP, which takes as an argument an instance of an somexlass
provided by the context is assumed to have a methpdhich can
accept as arguments instances of the ctasster. By proving
this equivalence we show thgtcan be accessed only through the
methodinc, and thus it will always contain an even number. To
do that we will need to reason about the behavior of callg,to
the implementation of which is unknown to us. We manage this b
using the induction hypothesis.

C = class Counter extends Object{
private int g;
Cc(){this.g:=0}
public int callP(Ao){
0.P(this);
if even(this.g) then O else 1}
public void inc(){this.g:=this.g+ 2}}

C’ = class Counter extends Object{

cO{}
public int callP(Ao){o.P(this);0}
public void inc(){unit}}

We construct the following set:

R = {(s,s’, R, R®**) | 3CT,CT,lp, 1}, D, f1,v1,v},
lB7llB7B7f27U27Ué7lC7llC7n7 f37U37Ué :
s =|lp=0bjD{f1 =}
[ls = obj B{f2 = v2}]
[lc =0bjC{g = 2n, f3 = vs}]
s' = [l = obj D{Jr = 01]
[l = obj B{f2 = v3}]
llc = 0bjC{fs = v3}]
R ={(c,C)}
R' = {(ZD7 lb)7 (lB7 ”3)7 (lc7 l,C)}
(v1,}), (v2,v5), (vs,vh) € VE[CT,CT', s, s, R
(CT,CT") € CT[R™)
CTHB<:A
CT I C <:Counter}

The tuples ofR consist of related stores that contain related
objects of the classeB, C, D. B represents any possible subclass
of the classt andC' any possible subclass of cla&sunter. D are
all the other classes that may be defined by the context.

We need to show thak satisfies Theorem 6.1. The interesting
case is to show condition 6 for methed11P.

Consider arbitrary(s, s, R, R°**) € R, and (C7,CT") €

The second and last place where we need to consider the newCT[R**]. For any(lci,lz;) € Veouner[CT,CT, s, 8", R] with

cast expression is in the abstract proof of Conjecture L07%.

We need to consider one more casedgrnamely the case when
eo = (C)es. This case, though, is handled immediately by the
induction hypothesis and thus it does not add any extra tiondi

of adequacy on the s&. Theorem 6.1 holds also fgfs.

From the analysis discussed above we conclude that downcast
ing (and casting in general) does not give to the context aimae
distinguishing power. Therefore its presence does nottffen-
textual equivalence.

10

s.lci = objCounter {g = 2n, -}, s'.l; = objCounter {---},
and any(lg;,l;3;) € VA[CT,CT’,s,s', R], we need to show for
anyk:

THE (k) =
R*, R R (CT F s,lci.callP(lp;):int) T<FF?
(CT'+§',1p;.callP(lp,;):int)

and the reverse.

2006/10/8

EXPRESSIONS e ::

ERRORS ¢ ::
CT;T;sket

CT;T;skeD

CTHFD<:C

| (Ce
- | cerr Cast Error

CTHFC<:D

Cast Expression

CT;T;skeD
C#D

CT;T; sk (C)e:C

CTFs,e—>S1761‘
CTHC<:D

CT;I;sk (C)e:C

CTHC £:D

CTFs,(D)objC{f =1} — s,0b§ C{f =1}

Evaluation Contexth

CT + s,(D)null — s,null

CT+s,(D)objC{f =1} — s,cerr

[(O)]]

Figure 6. Syntax, Typing, and Operational Semantics/{differences with7:)

We assumd H{ (k) and for anys; andc:

CT b s,lci.callP(lB;) <kl g ¢
= CT Fs,15;.P(lci) —<" s1,unit

Because the last derivation has fewer thasteps and

(s,s', R*, R°*®) € R,
(15j-P(lci), Up; P(104)) € Buosa [CT,CT', 5,8, R]

we can apply the induction hypothesis and get that theré gxis
R’ such that;

CT'+ s, 1;.P(lc;) —* s1,unit
(817 8l17 R{7 Rds) € R7
R’ C Ry
Thus the invariant that the fielgl will contain an even number in

store s1, after the call toP, is maintained and therefore = 0.
Furthermore

CT'+ &', lg;.callP(lg;) —* 51,0

and by this we are done.

In this example we didn’t need to worry about the implementa-
tion of A and its metho®, since our use of the induction hypothesis
abstracts over them.

11. Related Work

Banerjee and Naumann in [3] present a method for reasonimgt ab
whole-program equivalence in a subset of Java, similghtd heir
technique is based on a denotational model in which they lauil
simulation relation of denotations. They use a notiorcaofine-
mentto restrict certain pointers to the heap, and show that if two
class tables are confined and there is a simulation betweéerd#:
notations, then these class tables are equivalent. It deat if this
technique is complete. This is because the authors doni et
there is a simulation relation for any two equivalent andficad
class-tables, but also because the technique seems hielpha-
son only about confined class tables. Furthermore it is nabab
how this technique can be extended to contextual equivalefc
classes, a stronger property than whole program equivaledigr

11

method gives a sound and complete proof technique for gxidcsl
stronger property. Using our technique we were able to stow c
textually equivalent all of their examples.

Another technique for reasoning about contextual equiae
in a class-based language is the one from Jeffrey and Ratfik2]i
which follows their work on concurrent objects [13]. Theydy a
Java-like language for which they define a semantic tracev&qu
lence and show that it is sound and complete with respectste te
ing equivalence. This is an elegant technique which can bé s
prove equivalences like the adaptation of our examplesdio gm-
guage. Doing these proofs with their method would requishtowv
that two modules have the same traces, which we believe would
result in introducing bisimulations similar to ours andrpa full-
blown inductive proof as the one shown in the abstract prdof o
Conjecture 3.10. The difference with our work is that thaydgta
significantly different language. The most important featof that
language, that ours does not have, is a package systemgtrattse
the interaction of classes with their context. Classes atevisi-
ble through the package barriers. Therefore they are netsitile
by classes in other packages and the state of each class@gua
teed to be private. Only interfaces and instances of clabatfm-
plement these interfaces are shared between packagesthésen
restrictions the interaction of classes with the contextobees an
interaction of messages. When packages have the samedaterf
and they communicate though teememessages with the context,
then these packages are equivalent. This technique is ptitap
ble to 73 where the interaction of classes with their context is more
complex, and furthermore it doesn't study the effect of hithace
to class equivalence.]

In the same spirit as Jeffrey and Rathkéraham et al. [1] give
a fully abstract trace semantics, with respect to may tgsfior
a concurrent class-based language. Their work focusesagsed
that don’t support inheritance, much like adilanguage, and all
fields and methods are public.

12. Conclusions and Future Work

We have presented a sound and complete method for reasoning
about class equivalence in a subset of Java. This is the dickt s

2006/10/8

method that successfully deals with inheritance, as weiLdsic reasoning about higher-order imperative programsPrisceedings

and private interfaces of classes and imperative fields. &/e able 33rd ACM Symposium on Programming Languagesges 141-152,
to use this method to prove equivalences in a number of istiage January 2006.
examples. [17] lan A. Mason and Carolyn L. Talcott. Equivalence in ftiogal
We have also used our technique to study the effect of inher- languages with effectslournal of Functional Programmingl:287—
itance on contextual equivalence. Moreover we have shoan th 327, 1991
ﬁ}dd'ng a cast operator in a language with inheritance is secoa- [18] Albert R. Meyer and Kurt Sieber. Towards fully abstraemantics
tive extension, for local variables: Preliminary report. Rroceedings 15th Annual
We have seen that our method can deal with the null-pointér an ACM Symposium on Principles of Programming Languagegies
cast exceptions of Java. We would like to investigate furiéhis 191-203, 1988.
Q|rect|0n and see if our technique can prove contextuahedgrice [19] Robert Milne and Christopher Strachef. Theory of Programming
in a language with more advanced control effects (e.g. [7]). Language Semantic€hapman and Hall, London, 1976. Also Wiley,
In the future we would also like to see whether our method can New York.
benefit from ideas in closely related areas, like Separatagic [20] James H. Morris, Jr.Lambda Calculus Models of Programming
[22]. Languages PhD thesis, MIT, Cambridge, MA, 1968.
[21] Andrew Pitts and lan Stark. Operational reasoning torctions
with local state. In Andrew Gordon and Andrew Pitts, editors
Refer_en(,:es i Higher Order Operational Techniques in Semantjgages 227-273.
[1] Erika Abraham, Marcello M. Bonsangue, Frank S. de Boer, and Publications of the Newton Institute, Cambridge Universtress,
Martin Steffen. Object connectivity and full abstractioor fa 1998.

concurrent calculus of classes. In Zhiming Liu and Keijircal,
editors,ICTAC, volume 3407 ot_ecture Notes in Computer Science
pages 37-51. Springer, 2004.

[22] John C. Reynolds. Separation logic: A logic for sharadahle data
structures. InProc. 17th IEEE Symposium on Logic in Computer
Sciencepages 55-74, Washington, DC, USA, 2002. IEEE Computer

[2] Samson Abramsky. The lazy lambda calculus. In David Anéa, Society.

2?;5?;3?}?@%2&;3 -2_09%85 in Functional Programmjgges 65-116. [23] Eijiro Sumii and Benjamin C. Pierce. A bisimulation fdynamic
) > '))) sealing. InProceedings 31st Annual ACM Symposium on Principles

[3] Anindya Banerjee and David A. Naumann. Ownership comfieet of Programming Languagepages 161-172, New York, NY, USA,
ensures representation independence for object-origmtggtams.J. 2004. ACM Press.

ACM’ 5?(6)'894_960’ 2005.)) [24] Eijiro Sumii and Benjamin C. Pierce. A bisimulation foype

[4] Gavin Bierman, Matthew Parkinson, and Andrew Pitts. M abstraction and recursion. roceedings 32nd Annual ACM
imperative core calculus for Java and Java with effects.hifieel Symposium on Principles of Programming Languagesyes 63—
Report 563, Cambridge University Computer Laboratory,il&f03. 74, New York, NY, USA, 2005. ACM Press.

[5] Nina Bohr and Lars Birkedal. Relational reasoning fauesive types [25] Glynn Winskel. The Formal Semantics of Programming Languages
and references. Submitted for publication, May 2006. MIT Press, Cambridge, MA, 1993.

[6] William R. Cook. A denotational semantics of inheritanclechnical .

Report CS-89-33, 1989. A. Appendix

[7] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba.
syntactic theory of sequential contrdlheoretical Computer Science
52(3):205-237, 1987.

[8] Matthias Felleisen. The Calculi of Lambda-v-cs Conversion: A ! C.classname Returns the class name dé_
Syntactic Theory of Control and State in Imperative HigBeder fined by the class definitiod
Programming Language$hD thesis, Indiana University, 1987.)

))) CT .C.super Returns the name of the im-

[9] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programrs

reduction semantics for classes and mixinkecture Notes in mediate superclass 6f. .
Computer Sciencel523:241-269, 1999. CT .C.constr Returns the constructor defi-

[10] Matthew Hennessy and Robin Milner. On observing nogigieinism hition of classC.

and concurrency. IfCALP, pages 299-309, 1980. CT .C.constr.type Returns the constructor type
[11] Douglas J. Howe. Proving congruence of bisimulatiofiuinctional . of classC’

programming languagesnformation and Computatiqri24(2):103— CT .C fields Retur.ns a sequence of aII. of

112, February 1996. the field definitions (public

and private) of clas€’ and all

[12] A. S. A. Jeffrey and J. Rathke. Java jr.: Fully abstraece .
its superclasses.

semantics for a core Java languagePrac. European Symposium on

Programming volume 3444 ol_ecture Notes in Computer Science CT .C.methods Returns a sequence of all

pages 423-438. Springer-Verlag, 2005. the method definitions (pub-
[13] Alan Jeffrey and Julian Rathke. A fully abstract mayiteg semantics lic and private) that can be in-

for concurrent objectsTheor. Comput. S¢i338(1-3):17-63, 2005. voked on an instance of class
[14] Samuel Kamin. Inheritance in smalltalk-80: A denaiagl definition. c. .

In Proceedings 15th Annual ACM Symposium on Principles of CT.C.m.defclass Traverses up the class hierar-

Programming Languagepages 80-87, 1988. chy, starting from clas€’ and

[15] Vasileios Koutavas and Mitchell Wand. Bisimulatiore fintyped returns the first name of the
imperative objects. In Peter Sestoft, ediferpc. ESOP 2006volume C|a_55 in which methodn is
3924 ofLecture Notes in Computer Scienpages 146161, Berlin, defined.

Heidelberg, and New York, 2006. Springer-Verlag. L I

[16] Vasileios Koutavas and Mitchell Wand. Small bisimidat for Figure 7. Meta-Functions

12 2006/10/8

