
Reasoning About Class Behavior

Vasileios Koutavas
Northeastern University
vkoutav@ccs.neu.edu

Mitchell Wand
Northeastern University

wand@ccs.neu.edu

Abstract
We present a sound and complete method for reasoning about con-
textual equivalence between different implementations ofclasses in
an imperative subset of Java. To the extent of our knowledge this is
the first such method for a language with unrestricted inheritance,
where the context can arbitrarily extend classes to distinguish pre-
sumably equivalent implementations. Similar reasoning techniques
for class-based languages [1, 12] don’t consider inheritance at all,
or forbid the context from extending related classes. Othertech-
niques that do consider inheritance [3] study whole-program equiv-
alence. Our technique also handles public, protected, and private in-
terfaces of classes, imperative fields, and invocations of callbacks.
Using our technique we were able to prove equivalences in exam-
ples with higher-order behavior, where previous methods for func-
tional calculi admit limitations [21, 24].

Furthermore we use our technique as a tool to understand the
exact effect of inheritance on contextual equivalence. We do that
by deriving conditions of equivalence for a language without in-
heritance and compare them to those we get after we extend the
language with it. In a similar way we show that adding a cast oper-
ator is a conservative extension of the language.

Categories and Subject Descriptors F.3.2 [Logic and Meanings
of Programs]: Semantics of Programming Languages—operational
semantics; D.3.3 [Programming Languages]: Language Con-
structs and Features—procedures, functions and subroutines; D.3.1
[Programming Languages]: Formal Definitions and Theory—
semantics

General Terms theory, languages

Keywords contextual equivalence, bisimulations, lambda-calculus,
higher-order procedures, imperative languages

1. Introduction
The class is a facility to divide programs into small units that en-
code different parts of the entire program behavior. This makes
classes attractive for reuse and reimplementation. But changing the
implementation of a class that is being used in a number of pro-
grams comes with the responsibility that the new implementation
will not alter the behavior of these programs.

The effect that a change in the implementation of a class has to
the behavior of a program that uses it depends greatly on the ways

[copyright notice will appear here]

that the program interacts with the class. In a Java-like language
(and in the absence of reflection) the surrounding program can
interact directly with the class by creating new instances,invoking
its public methods, and changing the state of its public fields. It can
also interact more indirectly with the class. It can define subclasses
that inherit from the original class and instantiate objects, invoke
methods, and change the state of fields of these classes. Moreover
the subclasses may override methods of the original class and have
access to its protected interface.

To formalize the notion of equivalent implementations of
classes we adapt the standard notion of contextual equivalence
between expressions from functional languages [20] to an equiv-
alence between classes in class-based languages: classesC and
C′ are contextually equivalent, if and only if, for allclass table
contextsCT [ ], expressionse, and the empty store∅, the program
configurations(CT [C], ∅, e) and(CT [C′], ∅, e) have the same op-
erational behavior.

Using this definition directly for proving the equivalence of two
sufficiently different implementations of a class is not possible.
This is because of the quantification over all class table contexts,
but also because it is not strong enough to support an inductive
proof which, would require us to consider not just equal, butalso
related stores. CIU theorems [17] ease the quantification over con-
texts by considering only the evaluation contexts, but theysimi-
larly are not strong enough in general to support an inductive proof.
Moreover CIU theorems have not been applied to class-based lan-
guages.

Another way of reasoning about the behavior of class imple-
mentations is by using denotational methods (see [6, 14]). Denota-
tions are usually compositional in the sense that they give the mean-
ing of program fragments without the quantification over contexts.
Nevertheless the usual denotational methods distinguish equivalent
class implementations that have a different local store behavior. For
example the two implementations of a Cell class in Figure 1 would
have different denotations because they have different fields. Such
equivalences can be dealt with by methods that build logicalre-
lations of denotations [5], or exploit properties of some programs,
such as ownership confinement [3]. These methods, though, are still
not complete in respect to contextual equivalence.

A more natural way to reason about the behavior of two program
fragments is by using bisimulations. Bisimulations were introduced
by Hennessy and Milner [10] for reasoning about the behaviorof
concurrent programs. They were applied in sequential calculi by
Abramsky [2] and Howe [11] gave a way of proving that they are
a congruence. Sumii and Pierce later gave a big-step bisimulation
proof technique which is sound and complete with respect to con-
textual equivalence in a language with dynamic sealing [23]and
in a language with recursive and polymorphic types [24]. Their
key innovation was to split the sets into parts, and associate each
part with the conditions of knowledge under which that part holds.
Building on that idea we were able to devise a technique for de-
riving sound and complete definitions of sets from a context-based
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class Cell extends Object {
private Object c;

Cell() { this.c = null; }
public void set(Object o) { this.c = o; }
public Object get() { this.c; }

}

class Cell extends Object {
private Object c1;
private Object c2;
private int n;

Cell() { this.c1 = null; this.c2 = null; this.n = 0; }
public void set(Object o) { this.c1 = o; this.c2 = o; }
public Object get() {

this.n = this.n + 1;
if ((this.n) % 2) == 0 then this.c1; else this.c2;

}
}

Figure 1. Two implementations of a Cell class

semantics [8]. We applied this method to derive definitions of sound
and complete big-step bisimulation for a lambda calculus with store
[16] and for an imperative object calculus [15]. We used these tech-
niques to prove non-trivial equivalences that involve local store and
higher-order procedures [18].

Here we apply the same technique to derive a method for prov-
ing equivalence between classes in a subset of Java. One of the
differences from our previous work is that, in contrast withexpres-
sions, classes are static entities. The contexts of classesare class-
tables which are also static. These static entities are connected to
the dynamic behavior of the program by the instantiations ofclasses
to objects. As a result the conditions that we derive for two classes
to be equivalent are mostly conditions on the possible instances of
these classes.

Another difference is that the language we consider here has
runtime errors. We treat errors as constants that belong to all types:
we require that if an operation on an instance of a class results in
an error, then the same operation on the corresponding instance of
a related class should also result in thesame error.

Inheritance is the most interesting feature of the languagethat
we study here. The exact interaction with contextual equivalence
has not been studied before. Inheritance increases the distinguish-
ing power of the context. By extending a class, the context can have
access to the protected interface of the class, and more importantly
it can override methods of the class.

We start by considering a class-based language with imperative
fields and public and private interfaces of classes, but without
inheritance. We develop our method for deriving conditionsof
adequacy between classes for this language and show that adequacy
coincides with class equivalence. We then extend the language with
inheritance and dynamic dispatch and derive once more conditions
of adequacy. By comparing the two sets of conditions we were able
to give an account as to how inheritance affects class equivalence.
By extending the language once more with a cast operator and
showing that the conditions of adequacy remain unchanged, we
prove that casting is a conservative extension to our language.
Moreover we use the Cell example as a case study of proving
equivalence in the various versions of the language that we study.

Through these extensions of the language we show that our
method of deriving conditions of adequacy is incremental when we
add new syntactic forms in the language (e.g. the cast expression),
but not when we add more complex features like inheritance. In all
three languages, though, the difficulty of proving equivalences does
not change significantly.

The contribution of this work is twofold: it gives a sound and
complete method of proving equivalence between class implemen-
tations in a subset of Java, and also uses this method to studythe
effect of inheritance and downcasting on contextual equivalence.
More specifically:

• To the extent of our knowledge this is the first sound and
complete method for proving equivalence between classes in
a language where the context can use inheritance to distinguish
different implementations of the same class. Similar techniques
for class-based languages either don’t consider inheritance at
all [1], or don’t allow the context to extend the related classes
[12]. Other techniques that do consider inheritance [3] study
whole-program equivalence.

• The proof technique we present here can be used to show equiv-
alent classes with different store behavior, where the usual de-
notational methods admit limitations, and classes that invoke
callbacks, a higher-order feature of object-oriented program-
ming.

• We also give an account of how inheritance affects the equiv-
alence of classes. We do this by applying our technique to a
class-based language without inheritance and to its extension
with inheritance, and by deriving the necessary conditionsthat
classes need to satisfy in order to be equivalent in these lan-
guages.

• Finally we show in a similar way that adding a casting operator
is a conservative extension to a class-based language.

The structure of the paper is as follows: in Section 2 we give
the semantics of a base language with classes, but without inher-
itance and casting. In Section 3 we apply our method of deriving
conditions for equivalence to the base language. In Section4 we
give an example of proving equivalence between two implementa-
tions of a Cell class by constructing an appropriate set and proving
that it satisfies the derived conditions. In Section 5 we extend the
language with inheritance and protected fields and in Section 6 we
show how the conditions of equivalence change due to this exten-
sion. Section 7 shows that the Cell example is still provablein the
second language, showing that interesting equivalences still hold
after the addition of inheritance. Section 8 adds casting tothe lan-
guage and Section 9 shows that this doesn’t affect the conditions of
equivalence. In Section 10 we show how to prove the equivalence
of two classes that invoke callbacks. Finally, in Sections 11 and 12,
we discuss related work and conclude.

2. J1: A Basic Class-Based Language
We start by defining a small class-based language which we call
J1. This language is a subset of Java containing class definitions,
imperative private and public fields, private and public methods,
ground types, constants, conditional, and a let expression. However,
it does not allow classes to inherit behavior from other classes and
to override methods. The syntax ofJ1 is shown in Figure 2.

The main difference betweenJ1 and other imperative Java cal-
culi, like Middleweight Java [4] and Classic Java [9], is thatJ1 does
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PROGRAM CONFIGURATIONS: pconf ∈ CT × STORES× EXPRESSIONS
CLASS TABLES: CT ∈ P(CLASS DEFINITIONS)

CLASS DEFINITIONS: C ::= classC{mod tf ;KM}
CONSTRUCTORDEFINITIONS: K ::= C(){this.f := c}

METHOD DEFINITIONS: M ::= mod tm(tx){e}

TYPES: t ::= void | int | bool | C
MODIFIERS: mod ::= public | private

EXPRESSIONS: e, d ::= v | x Values, Identifiers
| newC | e.m(e) Object Instantiation, Method Invocation
| e.f | e.f := e | op(e) | eq(l, l) Field Lookup and Update, Operators
| letx = e in e | if e then e else e Let Expression, Conditional

VALUES: v, u, w ::= c | l
CONSTANTS: c ::= unit | null | true | false | 0 | ±1 | ±2 | . . . Unit, Null, Booleans, Integers
LOCATIONS: l, k

STORES: s ∈ LOCATIONS ⇀ STOREDOBJECTS

STOREDOBJECTS: o ::= obj C {f = v}

ERRORS: ε ::= nerr Null Error

Figure 2. Syntax ofJ1

not have inheritance and casting. We later extendJ1 with inheri-
tance to create the languageJ2, and then we add a casting operator
to createJ3. J3 has the same constructs as Middleweight Java,
with the addition of constants and access modifiers.J3 doesn’t
have the explicit interfaces and mixings of Classic Java.

The values of the language are constants or locations in the store
where objects are stored. Stored objects are structures that contain
the name of the class which they instantiate, and a binding for each
field of the class to a value of the appropriate type. A program
can test for pointer equivalence of objects which is assumedto be
implemented as one of the operators of the language.

The types ofJ1 are class types, as well as the ground types
void , int , andbool . There is aunit constant of typevoid ,
true andfalse of typebool , and the integers of typeint . The
constantnull has any class type.
J1 has also a null error (nerr) for the case that a program tries

to perform an operation on anull value.
Class definitions state the name of a class, its fields and meth-

ods, and also its constructor. Thepublic andprivate access
modifiers in the definitions of fields and methods specify the scope
of these names. Public methods and fields are visible to all classes,
while private methods and fields are visible only from withinthe
same class.

Class tables are sets of classes. Well-formed class tables contain
classes with distinct names. We test the well-formedness ofa class
table by the predicatewfClassHierarchy(CT ). When we add inher-
itance to the language this predicate will check for a valid class
hierarchy.

We will use meta-operations and the dot notation to perform
static lookup on class tables and classes. For exampleCT .C returns
the definition of the class namedC from the class tableCT , and
CT .C.fields returns a sequence of all the field definitions inC. A
complete table of these meta-operations and a description of their
functionality is shown in Figure 7 of the Appendix.

Stores are partial maps from locations to stored objects. A
program configurationis a triple composed of a class table, a store,

and a closed expression (writtenCT ⊢s, e). An initial configuration
is a program configuration that contains the empty store (∅).

The typing rules ofJ1 are shown in Figure 3. The typing
judgments for expressions have the formCT ; Γ; s ⊢ e:t . Γ is the
type environment. The stores is used to type-check locations;
the value stored in a location has the types.l.type. In J1 this is
the class type mentioned in the object itself, but, when we will
add inheritance later on, this may be the superclass of the object
currently stored in a location. In this way stores are used asstore
typings in the typing judgments. The constantnull has any class
type defined in the class table. The rest of the typing judgments for
expressions are the expected ones for a language likeJ1.

The typing judgments for method, class, and class-table defini-
tions areCT ⊢M:OK in C , CT ⊢C:OK, andCT :OK, respectively.
(CT ⊢ s, e):OK is the typing judgment for program configurations.

In Figure 4 we give a small-step semantics forJ1. A small-
stepCT ⊢ s, e → s1, e1 describes a transition from the program
configurationCT ⊢ s, e to the configurationCT ⊢ s1, e1. We also
define→∗ to be the reflexive and transitive closure of→, and→<k

the reflexive and up tok− 1 steps transitive closure of→. We also
writeCT ⊢s, e↓ iff there existss1, w, such thatCT ⊢s, e→∗ s1, w.

We use calligraphic font for the meta-identifiers that denote
class-table, class, constructor, or method definitions. Wealso
use an overbar notation to denote syntactic sequence with arbi-
trary length. When expanded, all the meta-identifiers in these-
quence are annotated with the appropriate subscripts; e.g.we write
obj C {f = l}, instead ofobj C {f1 = l1, f2 = l2, . . . , fn = ln}.
We also use the notationf = v\fi = u to denote the sequence
f1 = v1, · · · , fi−1 = vi−1, fi = u, fi+1 = vi+1, · · · .

3. Equivalence and Adequacy inJ1

We want to study contextual equivalence of class definitionsin J1

and its extensions. To do this we need to define class table contexts,
relations on classes, and their extension to class tables.

Definition 3.1. A class table context, CT [ ], is a set of class defini-
tions. Placing a class definition, or a sequence of class definitions,
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CT ; Γ; s ⊢ e:t

x:t ∈ Γ

CT ; Γ; s ⊢ x:t CT ; Γ; s ⊢ unit:void

c ∈ {true, false}

CT ; Γ; s ⊢ c:bool

c ∈ {±1,±2, · · · }

CT ; Γ; s ⊢ c:int

classC{· · ·} ∈ CT

CT ; Γ; s ⊢ null:C

C ∈ CT .classnames
s.l.type = C

CT ; Γ; s ⊢ l:C

C ∈ CT .classnames

CT ; Γ; s ⊢ newC:C

CT ; Γ; s ⊢ e:t0
op.type= t0→ t

CT ; Γ; s ⊢ op(e):t

CT ; Γ; s ⊢ e:C
CT ; Γ; s ⊢ this:C0

f ∈ accessible(CT , C, C0)
mod tf ∈ CT .C.fields

CT ; Γ; s ⊢ e.f :t

CT ; Γ; s ⊢ e:C
CT ; Γ; s ⊢ this:C0

f ∈ accessible(CT , C, C0)
mod tf ∈ CT .C.fields
CT ; Γ; s ⊢ e1:t

CT ; Γ; s ⊢ e.f := e1:void

CT ; Γ; s ⊢ e:C
CT ; Γ; s ⊢ this:C0

m ∈ accessible(CT , C, C0)
mod t0→ tm ∈ CT .C.methods

CT ; Γ; s ⊢ e0:t0

CT ; Γ; s ⊢ e.m(e0):t

CT ; Γ; s ⊢ e1:t1
CT ; Γ, x:t1 ; s ⊢ e:t

CT ; Γ; s ⊢ let x = e1 in e:t

CT ; Γ; s ⊢ e1:bool
CT ; Γ; s ⊢ e2:t
CT ; Γ; s ⊢ e3:t

CT ; Γ; s ⊢ if e1 then e2 else e3:t

CT ⊢M:OK in C CT ⊢ C:OK CT :OK (CT ⊢ s, e):OK

CT ; x:t1 , this:C ; ∅ ⊢ e:t

CT ⊢mod tm(t1 x){e}:OK in C

K = C(){this.f := c}
CT ; ∅; ∅ ⊢ c:t
CT ⊢M:OK in C

CT ⊢ classC{tf ;KM}:OK

{C} ⊢ C:OK

wfClassHierarchy({C})

{C}:OK

CT :OK
CT ; ∅; s ⊢ e:t

(CT ⊢ s, e):OK

Figure 3. Typing ofJ1

in the hole of a class table context corresponds to set union:

CT [C]
def
= CT ∪ {C}

Definition 3.2. Rcls is a relation on classes iff it is a set of pairs
of class definitions, such that for all(C, C′) ∈ Rcls, and all class-
table contextsCT [ ]:

CT [C]:OK⇐⇒ CT [C′]:OK

The above definition requires that we relate only class defini-
tions that are interchangeable at compile time; i.e. replacing one
with the other in a class-table context doesn’t affect the typing judg-
ment of the program. In practice this means that the related classes
have the same name, extend the same superclass, and have the same
public interface.

Definition 3.3. If Rcls is a relation on classes, then the following
is its extension to class tables:

CT [Rcls]
def
= {(CT [C], CT [C′]) | (C, C′) ∈ Rcls,

CT [C]:OK}

We give the following definition of contextual equivalence for
J1:

Definition 3.4 (Contextual Equivalence (≡)). (≡) is the largest
relation on classes such that for all(CT , CT ′) ∈ CT [≡], expres-
sionse, and typest , such thatCT ; ∅; ∅ ⊢ e:t , we have:

CT ⊢ ∅, e↓ ⇐⇒ CT ′ ⊢ ∅, e↓

This definition is hard to use directly. To discover more specific
conditions that assumed equivalent classes need to satisfywe fol-
low the method we developed in [16, 15] to derive a usable proof
technique of equivalence for imperative higher-order languages.

This method relies on the definition ofadequaterelations that im-
ply contextual equivalence, and an abstract inductive proof to dis-
cover a set of necessary conditions for adequacy. Here we show
how to apply this method toJ1.

We will define adequacy as a property of the following relations.

Definition 3.5. A J -relation R is a set of tuples(s, s′, Rℓ, Rcls),
wheres, s′ are stores,Rℓ is a relation on object references, and
Rcls is a relation on classes.

For the definition of adequacy we also need to defineR-related
answers and expressions.

Definition 3.6. If Rℓ is a relation on object references,CT , CT ′

class tables, ands, s′ stores, then we define the following relations:

• related values of typet :

Vt [CT , CT ′, s, s′, Rℓ]
def
= {(l, l′) | (l, l′) ∈ Rℓ,

CT ; ∅; s ⊢ l:t ,
CT ′; ∅; s′ ⊢ l′:t}

∪ {(c, c) | CT ; ∅; ∅ ⊢ c:t ,
CT ′; ∅; ∅ ⊢ c:t}

• related answers of typet :

At [CT , CT ′, s, s′, Rℓ]
def
= Vt [CT , CT ′, s, s′, Rℓ]
∪ {(nerr, nerr)}

4 2006/10/8



CT ⊢ s, e→ s1, e1

CT .C.constr = C(){this.f := c}
l 6∈ Dom(s)

CT ⊢ s, newC → s[l = obj C {f = c}], l

s.l = obj C {f = v}

CT ⊢ s, l.fi → s, vi CT ⊢ s, null.fi → s, nerr

CT .C.m = mod tm(tx x){e}

CT ⊢ s, l.m(v)→ s, [v/x, l/this]e CT ⊢ s,null.m(v)→ s,nerr

s.l = obj C {f = v}

CT ⊢ s, l.fi := u→ s[l← obj C {f = v | fi = u}], unit CT ⊢ s,null.fi := v → s, nerr

CT ⊢ s, let x = v in e→ s, [v/x]e CT ⊢ s, if true then e1 else e2 → s, e1 CT ⊢ s, if false then e1 else e2 → s, e2

Evaluation Contexts

E ::=E | E[E]
E ::= [ ] | [ ] .f | [ ] .m(e) | v.m(v, [ ] , e) | [ ] .f := e | v.f := [ ] | letx = [ ] in e | if [ ] then e else e | op(v, [ ] , e)

CT ⊢ s, E[e]→ s1, E[e1]

CT ⊢ s, e→ s1, e1

CT ⊢ s, E[e]→ s1, E[e1] CT ⊢ s, E [ε]→ s1, ε

Figure 4. Small-step Operational Semantics ofJ1

• and related expressions of typet :

Et [CT , CT ′, s, s′, Rℓ]
def
=

{([l/x]e, [l′/x]e) | FV (e) ⊆ {x},

(l, l′) ∈ Rℓ,
Locs(e) = ∅,

CT ; ∅; s ⊢ [v/x]e:t ,

CT ′; ∅; s′ ⊢ [v′/x]e:t}

By requiring thatLocs(e) = ∅ in the above definition we force
all R-related expressions to use onlyR-related references.

We now give the definition of adequateJ -relations. These are
J -relations from which all derived related program configurations
have the same operational behavior.

Definition 3.7 (Adequacy). R is adequate if and only if:

∀(s, s
′, Rℓ, Rcls) ∈ R.

∀(CT , CT ′) ∈ CT [Rcls].

∀ t,∀(e, e′) ∈ Et [CT , CT ′, s, s′, Rℓ].
∀ s1, w.

(CT ⊢ s, e→∗ s1, w)
=⇒ ∃ s′1, w

′, Rℓ
1.

(CT ′ ⊢ s′, e′ →∗ s′1, w
′)

∧((w, w′) ∈ At [CT , CT ′, s1, s
′

1, R
ℓ
1])

∧((s1, s
′

1, R
ℓ
1, R

cls) ∈ R)
∧(Rℓ ⊆ Rℓ

1)

and the reverse.

In this definition of adequacy, the most interesting quantification
is the one on related expressions of typet. This quantification

is general enough so that we can carry out an induction based
on this definition. It covers the case where related methods are
invoked on related (and not just equal) objects and are passed
related arguments. The quantification over class tables plays a role
in the soundness of this definition, but not to the existence of an
induction.

Adequate relations are sound and complete in the following
way.

Theorem 3.8 (Soundness).If R is adequate and(∅, ∅, ∅, Rcls) ∈
R thenRcls ⊆ (≡).

Proof. Immediate by the definitions of adequacy and contextual
equivalence.

Theorem 3.9 (Completeness).If Rcls ⊆ (≡) then there exists
adequateR with (∅, ∅, ∅, Rcls) ∈ R.

One could show the equivalence between two class implemen-
tations by constructing an appropriate setR and then prove its ad-
equacy by an induction based on Definition 3.7. Our goal is to im-
prove this by finding sufficient conditions onR that would make
the proof of adequacy go through. These conditions act as a Veri-
fication Condition Generator: one provides an invariant (the setR)
that presumably proves a particular equivalence, and the conditions
say what needs to be proven in order to check the validity of the
invariant. The conditions that we derive also give us a better grasp
on how the context can distinguish two class definitions.

To do this we investigate a class of inductive proofs based
on Definition 3.7 by abstracting over the concrete structureof
R and attempting to prove adequacy. This abstract proof reveals
the subcases of the induction that don’t go through just by using
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the induction hypothesis, but also requires that the statesof R
satisfy some extra properties. These properties become theproof
obligations, or verification conditions, forR.

Conjecture 3.10 (Abstract Proof of Adequacy). For some rela-
tion R, R is adequate.

Proof. The proof consists of two inductions, one for the forward
direction of Definition 3.7 and one for the reverse direction. The
induction hypothesis of the former is:

IH(k) =

∀(s, s′, Rℓ, Rcls) ∈ R.

∀(CT , CT ′) ∈ CT [Rcls].

∀ t,∀(e, e
′) ∈ Et [CT , CT ′, s, s′, Rℓ].

∀ s1, w.
(CT ⊢ s, e→<k s1, w)
=⇒ ∃ s′1, w

′, Rℓ
1.

(CT ′ ⊢ s′, e′ →∗ s′1, w
′)

∧ ((w, w′) ∈ At [CT , CT ′, s1, s
′

1, R
ℓ
1])

∧ ((s1, s
′

1, R
ℓ
1, R

cls) ∈ R)
∧ (Rℓ ⊆ Rℓ

1)

We will show that for allk, IH(k) holds. We assume the
induction hypothesis fork, and we will show that it holds fork+1.

Let (e, e′) = ([v/x]e0, [v′/x]e0), for somee0, v, v′, such
that FV (e0) ⊆ {x}, Locs(e0) = ∅, (v, v′) ∈ Rℓ, CT ; ∅; s ⊢
[v/x]e0:t , CT ′; ∅; s′⊢ [v′/x]e0:t . We proceed by cases one0. Due
to limited space we do not show the case analysis of this proof,
which is similar to the ones in [15, 16].

In Theorem 3.13 we summarize all conditions forR that we
found by the above abstract proof. First we give a notation towrite
down the inductive cases and the induction hypotheses (one for
each direction).

Definition 3.11 (Inductive Cases).

Rℓ, Rcls, R ⊢ (CT ⊢ s, e:t) ⊑<k (CT ′ ⊢ s′, e′:t)
def
=

∀ s1, w.
((e, e′) ∈ Et [CT , CT ′, s, s′, Rℓ])
∧ (CT ⊢ s, e→<k s1, w)

=⇒ ∃ s′1, w
′, Rℓ

1.
(CT ′ ⊢ s′, e′ →∗ s′1, w

′)
∧ ((w, w′) ∈ At [CT , CT ′, s1, s

′

1, R
ℓ
1])

∧ ((s1, s
′

1, R
ℓ
1, R

cls) ∈ R)
∧ (Rℓ ⊆ Rℓ

1)

and Rℓ, Rcls, R ⊢ (CT ⊢ s, e:t) ⊒<k (CT ′ ⊢ s′, e′:t) for the
reverse.

Definition 3.12 (Inductive Hypotheses).

IHL
R (k)

def
=

∀(s, s′, Rℓ, Rcls) ∈ R.

∀(CT , CT ′) ∈ CT [Rcls].

∀ t, (e, e′) ∈ Et [CT , CT ′, s, s′, Rℓ].
Rℓ, Rcls, R ⊢ (CT ⊢ s, e:t) ⊑<k

(CT ′ ⊢ s′, e′:t)

andIHR
R (k) for the reverse.

Our main theorem is the following.

Theorem 3.13 (Adequacy Conditions). A relation R is ade-
quate if and only if for all states(s, s′, Rℓ, Rcls) of R and for
all (CT , CT ′) ∈ CT [Rcls], the following conditions are satisfied:

1. (Same interfaces)For all (C, C′) ∈ Rcls,

C = classC{public t1 f1; private t2 f2;
C(){this.f1 := c1, this.f2 := c2},

public t3 m3(t4 x4){· · ·},

private t5 m5(t6 x6){. . .}}

C′ = classC{public t1 f1; private t′2 f ′

2;

C(){this.f1 := c1, this.f ′

2 := c′2},

public t3 m3(t4 x4){· · ·},

private t′5 m′

5(t
′

6 x′

6){. . .}}

2. (Related instances)For all (l, l′) ∈ Rℓ, there existst , such that
CT ; ∅; s ⊢ l:t , CT ′; ∅; s′ ⊢ l′:t .

3. (Enough instances)For all C ∈ CT .classnames, with

C = classC{· · ·C(){this.f := c}, · · ·}

C′ = classC{· · ·C(){this.f ′ := c′} · · ·}

and all freshl1, l′1, there existsRℓ
1 ⊇ Rℓ ∪ {(l, l′)}, such that

(s[l = obj C {f = c}], s′[l′ = obj C {f ′ = c′}], Rℓ
1, R

cls) ∈ R.

4. (Related public fields)For all (l, l′) ∈ Rℓ, with s.l =
obj C {f = v} and s′.l′ = obj C {f ′ = v′}, and for all
public ti fi ∈ C.fields,

(vi, v
′

i) ∈ Vti [CT , CT ′, s, s′, Rℓ].

5. (Related updates)For all (l, l′) ∈ Rℓ, withs.l = obj C {f = v}
ands′.l′ = obj C {f ′ = v′}, all public ti fi ∈ CT .C.fields,
and all (u, u′) ∈ Vti [CT , CT ′, s, s′, Rℓ],

(s[l← obj C {f = v\fi = u}],
s′[l′← obj C {f ′ = v′\fi = u′}],
Rℓ, Rcls) ∈ R

6. (Related public methods)For all (C,C′) ∈ Rcls, all refer-
ences(l, l′) ∈ VC [CT , CT ′, s, s′, Rℓ], all methodsm with
CT .C.m = public tm m(tx x){e3}, CT ′.C.m =

public tm m(tx x){e′3}, and for all (v, v′) ∈ Vtx
[CT , CT ′,

s, s′, Rℓ],

IHL
R (k) =⇒

Rℓ, Rcls, R ⊢ (CT ⊢ s, l.m(v):tm) ⊑<k+1

(CT ′ ⊢ s′, l′.m(v′):tm)
IHR

R (k) =⇒
Rℓ, Rcls, R ⊢ (CT ⊢ s, l.m(v):tm) ⊒<k+1

(CT ′ ⊢ s′, l′.m(v′):tm)

Proof. By recapitulating the proof of Conjecture 3.10.

The first condition of Theorem 3.13 requires that related classes
have the same public interface. This ensures that the classes are not
distinguishable at compile time. The second condition requires that
related objects respect the class types. The rest of the conditions
correspond to the primitive operations that the context canperform
on the objects in order to distinguish them. Thus the third condition
corresponds to instantiating a new object by the context, the fourth
condition corresponds to dereferencing a public field, the fifth to
updating a public field, and the last to invoking a public method.

The above theorem contains a top-level quantification over all
possible class tables that contain the related classes. This is neces-
sary in order to specify the well-typed values, and to use thereduc-
tion relation. As we will see in the example that follows, this quan-
tification does not introduce any difficulty in the proofs of equiva-
lence. This is because we never need to reason about the behavior of
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methods and classes defined in the class-table contexts since these
cases are handled by the induction hypothesis.

4. The Cell Example
Here we give two implementations of aCell class that store ob-
jects of some classA that is provided by the context. The first im-
plementation ofCell is the usual one, while the other uses two
private fields to keep the stored object, and a counter to decide
which one to return when theget method is invoked. These imple-
mentations have sufficiently different store behavior and the usual
denotational models would assign different denotations and thus
distinguish them [25, 19].

C = class Cell{
private Ac;
Cell(){this.c := null}
public void set(Ao){this.c := o}
public Aget(){this.c}}

C′ = class Cell{
private Ac1, c2;
private int n;
Cell(){

this.c1 := null;
this.c2 := null;
this.n := 0}

public void set(Ao){
this.c1 := o;
this.c2 := o}

public Aget(){
this.n := this.n + 1;
if (even(this.n)) then this.c1 else this.c2}}

To prove the above two class implementations equivalent we
construct the following set:

R = {(s, s′, Rℓ, Rcls) | ∃ CT , CT ′, lD, l′D, D, f1, v1, v′

1,

lS, l′S , f2, v2, v′

2, lC , l′C , m :

s = [lD = obj D{f1 = v1}]

[lS = obj A{f2 = v2}]

[lC = obj Cell{c = lS}]

s′ = [l′D = obj D{f1 = v′

1}]

[l′S = obj A{f2 = v′

2}]

[lC = obj Cell{c1 = l′S, c2 = l′S, n = m}]
Rcls = {(C, C′)}

Rℓ = {(lD, l′D), (lS, l′S), (lC , l′C)}

(v1, v′

1), (v2, v′

2) ∈ Vt [CT , CT ′, s, s′, Rℓ]
(CT , CT ′) ∈ CT [Rcls]}

We choose this particularR by inspecting the conditions of
Theorem 3.13. Condition 1 is obviously satisfied byC andC′. To
satisfy conditions 2 and 3 we add inRℓ the related references to any
class of all possible class-tables. These are objects of theclasses
Cell andA, as well as, objects of any other classD that may be
defined and instantiated by the context. The values in the fields of
the instances ofD andA are related inVt [CT , CT ′, s, s′, Rℓ], since
these are fields of identical classes in the class tables.

We also require that the values stored in the private fields of
Cell to be related references ofA objects. This is an invariant of
the equivalence between the two implementations ofCell and is
going to help us prove condition 6.

To prove condition 6 we consider an arbitrary tuple
(s, s′, Rℓ, Rcls) ∈ R, and an arbitrary pair of related class tables

(CT , CT ′) ∈ CT [Rcls]. The only pair of related class defini-
tions inRcls is (C, C′). For any(li, l′i) ∈ VCell[CT , CT ′, s, s′, Rℓ]
with s.l = obj Cell{ci = lSi}, s′.l′ = obj Cell{c1 =
lSi, c2 = lSi, n = lni}, we consider allpublic tx→ tm ∈
CT .Cell.methods. These are the methodsget andset.

In the case ofget we havetx→ t = void → A . Furthermore:

CT ⊢ s, l.get()→∗ s, lSi

CT ′ ⊢ s′, l′.get()
→∗ s′[l′i← obj Cell{c1 = lS

′

i, c2 = lS
′

i, n = m+1}], lS
′

i

wheres′.l′i = obj Cell{c1 = lS
′

i, c2 = lS
′

i, n = m}. Moreover:

(lSi, lS
′

i) ∈ VA[CT , CT ′, s, s′[lni←m+1], Rℓ]

and

(s, s′[l′i← obj Cell{c1 = lS
′

i, c2 = lS
′

i, n = m+1}],
Rℓ, Rcls) ∈ R

Similarly for the case ofset we havetx→ t = A→ void . Let
(ls, l

′

s) ∈ VA[CT , CT ′, s, s′, Rℓ]. We have:

CT ⊢ s, o.set(u)
→∗ s[li← obj Cell{c = ls}], unit

CT ′ ⊢ s′, o′.set(u′)
→∗ s′[l′i← obj Cell{c1 = l′s, c2 = lsi

′, n = m}], unit

and

(s[li← obj Cell{c = ls}],
s′[l′i← obj Cell{c1 = l′s, c2 = lsi

′, n = m}],
Rℓ, Rcls) ∈ R

5. J2: An Extension ofJ1With Inheritance
We now extendJ1by adding the feature of class inheritance. We
also add theprotected access modifier for fields and methods.
Protected fields and methods are accessible from the same class and
its subclasses. We do not yet add a cast operation to the language,
allowing thus only implicit (and type-safe) upcasting of objects.
We assume there is no shadowing of fields, something that can be
accomplished automatically by adding the name of the class as part
of the name of each field. The differences in the syntax, typing, and
operational semantics ofJ1andJ2are shown in Figure 5.

To encode inheritance we have added the rule of subsump-
tion and the subtyping judgments imposed by the class hierarchy
and the reflexive and transitive property. The rest of the typing
rules of the formCT ; Γ; s ⊢ e:t have only trivial changes, assum-
ing that the implementation of the meta-functionaccessiblehan-
dlesprotected fields and methods in the right way. Furthermore
we have changed the rule for type-checking method definitions to
check that subclasses override onlypublic andprotected meth-
ods. A valid class hierarchy is now considered to be a tree, with an
empty classObjectas its root. In the typing judgments ofJ2, the
meta-functionwfClassHierarchyis true exactly when these condi-
tions hold for a set of classes.

The operational semantics ofJ2are mostly the same as ofJ1,
with the exception of the steps that involve object instantiation. In
J2, when a new object is created, the fields from all the super-
classes must be initialized.

6. Adequacy inJ2

In this section we study adequacy forJ2. The definition of con-
textual equivalence we gave earlier (Definition 3.4) still holds for
J2. It conceals though the fact that the context has, what it seems
to be, more distinguishing power. It can extend related classes and
then use these extensions to distinguish the two sides. We apply
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CLASS DEFINITIONS: C,D ::= classC extends D{mod tf ;KM}
MODIFIERS: mod ::= · · · | protected

CT ; Γ; s ⊢ e:t CT ⊢ t1 <: t2

CT ; Γ; s ⊢ e:t1
CT ⊢ t1 <: t

CT ; Γ; s ⊢ e:t CT ⊢ t <: t

CT ⊢ t1 <: t2 CT ⊢ t2 <: t3

CT ⊢ t1 <: t3

CT .C.super = D

CT ⊢ C <: D

CT ⊢M:OK in C

CT ; x:t1 , this:C ; ∅ ⊢ e:t CT .C.super = D overridable(CT , mod t1→ tm, D)

CT ⊢mod tm(t1 x){e}:OK in C

CT ⊢ s, e→ s1, e1

l 6∈ Dom(s)

CT ⊢ s, new Object→ s[l = obj Object {}], l

classC extends D{· · ·C(){super(); this.f := c} · · ·} ∈ CT

CT ⊢ s, newC → s, (newD; this.f := c)C

CT ⊢ s[l = obj D{fD = cD}], (l; this.f := c)C → s[l = obj C {fD = cD, f = c}], l

Evaluation Contexts

E ::= · · · | ([ ] ; this.f := c)C

Figure 5. Syntax, typing, and operational semantics ofJ2(differences fromJ1)

our method for deriving conditions of adequacy to study thisex-
tra distinguishing ability of the context. This reveals theeffect of
inheritance to the equivalence of classes.

The outline of our technique is the same as before. We reason
about the same sets of tuplesR, and we use the same definitions
for Vt, At, and Et (Definition 3.6). The latter sets, though, are
larger than before. InJ2an object has type the name of the class
that it instantiates, but, because of subsumption, it can also have the
type of any of its superclasses. This is the place where inheritance
appears in our technique.

The definition of adequacy (Definition 3.7) remains unchanged
for J2, and, as a consequence, the induction hypothesis of the cor-
responding abstract proof also remains the same. When unwind-
ing this proof, and taking cases on the structure ofe0, we need to
consider sub-cases introduced by inheritance. For examplewhen
methodm is defined in a classC, e0 = x.m(), andx is substituted
by an object reference, then this object may be an instantiation of
a subclassD of C. It also means thatm may have been overridden
betweenC andD. More explicitly the conditions for adequacy that
we derive forJ2are the following:

Theorem 6.1 (Adequacy Conditions forJ2). A relation R is
adequate if and only if for all states(s, s′, Rℓ, Rcls) of R and for
all (CT , CT ′) ∈ CT [Rcls], the following conditions are satisfied:

1. (Same interfaces)For all (C, C′) ∈ Rcls,

C = classC{public t1 f1; private t2 f2;
protected t3 f3;
C(){this.f1 := c1, this.f2 := c2,

this.f3 := c3},

public t4 m4(t5 x5){· · ·},

private t6 m6(t7 x7){. . .},

protected t8 m8(t9 x9){. . .}}

C′ = classC{public t1 f1; private t′2 f ′

2;
protected t3 f3;

C(){this.f1 := c1, this.f ′

2 := c′2,
this.f3 := c3},

public t4 m4(t5 x5){· · ·},

private t′6 m′

6(t
′

7 x′

7){. . .},

protected t8 m8(t9 x9){. . .}}

2. (Related instances)For all (l, l′) ∈ Rℓ, there existst , such that
CT ; ∅; s ⊢ l:t , CT ′; ∅; s′ ⊢ l′:t .

3. (Enough instances)For all C ∈ CT .classnames, withCT .C.fields =

mod tf and CT ′.C.fields = mod′ t′ f ′ and all freshl1, l′1,
there existsRℓ

1 ⊇ Rℓ ∪ {(l, l′)} such that

(s[l = obj C {f = c}], s′[l′ = obj C {f ′ = c′}], Rℓ
1, R

cls) ∈ R.

wherec andc′ are the initial values of the fields in the construc-
tors ofC and its superclasses.

8 2006/10/8



4. (Related public and protected fields)For all (l, l′) ∈ Rℓ, with
s.l = obj C {f = v} ands′.l′ = obj C {f ′ = v′}, and for all
mod ti fi ∈ C.fields, with mod ∈ {public, protected},

(vi, v
′

i) ∈ Vti [CT , CT ′, s, s′, Rℓ].

5. (Related updates)For all (l, l′) ∈ Rℓ, withs.l = obj C {f = v}
ands′.l′ = obj C {f ′ = v′}, all mod ti fi ∈ CT .C.fields, with
mod ∈ {public, protected}, and all (u, u′) ∈
Vti [CT , CT ′, s, s′, Rℓ],

(s[l← obj C {f = v\fi = u}],
s′[l′← obj C {f ′ = v′\fi = u′}],
Rℓ, Rcls) ∈ R

6. (Related public methods)For all (C,C′) ∈ Rcls, all refer-
ences(l, l′) ∈ VC [CT , CT ′, s, s′, Rℓ], all methodsm defined
in C with CT .C.m = mod tm m(tx x){e3}, CT ′.C.m =
mod tm m(tx x){e′3}, and mod ∈ {public, protected},
and for all (v, v′) ∈ Vtx

[CT , CT ′, s, s′, Rℓ],

IHL
R (k) =⇒
Rℓ, Rcls, R ⊢ (CT ⊢ s, l.m(v):tm) ⊑<k+1

(CT ′ ⊢ s′, l′.m(v′):tm)
IHR

R (k) =⇒
Rℓ, Rcls, R ⊢ (CT ⊢ s, l.m(v):tm) ⊒<k+1

(CT ′ ⊢ s′, l′.m(v′):tm)

The differences between these conditions and the conditions of
Theorem 3.13 are the following:

• Condition 1 requires that related classes have the same pro-
tected interface. This is because the context can extend a class
and have access to its protected fields and methods.

• In condition 3 new objects contain all the fields of their super-
classes.

• Condition 4 requires that alsoprotected fields contain related
values. If we assume that we have two presumably equivalent
classesC andC′ that contain aprotected field f which may
not contain related values, then the context can distinguish the
two implementations by extending them with the following
class:

classD extends C{public tgetf (){this.f}}

Then by instantiatingD, invoking methods ofC until f does
not contain related values in the two implementations, and then
invoking the methodgetf , it can distinguish the two sides.

• Similarly condition 5 requires that related updates shouldalso
apply to protected fields. If two implementations of a classC
are not operationally equivalent when one of theirprotected

fields (e.g.f ) is updated with equivalent values, then the context
can distinguish these implementations by extending them with
the class:

classD extends C{public void setf (tx){this.f := x}}

• In a similar fashion, in condition 6 we need to test the behavior
of any relatedprotected (in addition topublic) methodm
that is defined in any(C,C′) ∈ Rcls. These methods may be
invoked on objects that instantiate subclasses ofC andC′. The
case thatm is overridden by a subclass defined in the context is
handled by the induction hypothesis. The only non-trivial case
is whenm is defined in a class inRcls. Furthermore, it may be
the case thatm invokes internally another methodg of the same
object which has been overridden by a subclass defined in the
context. Sinceg is overridden, it must be thatg is apublic or

protected method, and internal calls to them are handled by
the induction hypothesis in our method.

From the above we conclude that adding inheritance toJ1does
not affect the local reasoning of condition 6 when using our tech-
nique. This is because of the wide application of the induction hy-
pothesis to factor out many of the sub-cases.

For classes that don’t useprotected fields and methods, we
observe that conditions 1-5 of Theorem 3.13 imply the correspond-
ing conditions of Theorem 6.1. This is not true, though, for con-
dition 6, where in Theorem 6.1 method invocations are testedon
objects that instantiate any subclass of related classes, while in The-
orem 3.13 are tested only on objects of related classes. For example
the following two classes are equivalent inJ1but not inJ2:

C = classC{
C(){}
public bool m1(){true}
public bool m2(){this.m1()}}

C = classC{
C(){}
public bool m1(){true}
public bool m2(){true}}

A context containing the following subclass ofC can distin-
guish the two implementations:

classD extends C{
D(){super()}
public bool m1(){false}}

Therefore, extending the language with inheritance gives more
distinguishing power to the context. By overriding methodsthe
context can break invariants that hold forpublic andprotected
methods and are needed by other methods. The only way for a class
to maintain these invariants is to declare the methods that need to
satisfy themprivate.

7. The Cell Example inJ2

We adapt the two implementations of a Cell from Section 4 to the
languageJ2, and we show that the equivalence still holds.

C = class Cell extends Object{
private Ac;
Cell(){this.c := null}
public void set(Ao){this.c := o}
public Aget(){this.c}}

C′ = class Cell extends Object{
private Ac1, c2;
private int n;
Cell(){

this.c1 := null;
this.c2 := null;
this.n := 0}

public void set(Ao){
this.c1 := o;
this.c2 := o}

public Aget(){
this.n := this.n + 1;
if (even(this.n)) then this.c1 else this.c2}}

To prove the above two class implementations equivalent we
construct the following set:
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R = {(s, s′, Rℓ, Rcls) | ∃ CT , CT ′, lD, l′D, D, f1, v1, v′

1,

lB, l′B , B, f2, v2, v′

2, lC , l′C , m, f3, v3, v′

3 :

s = [lD = obj D{f1 = v1}]

[lB = obj B {f2 = v2}]

[lC = obj C {c = lB , f3 = v3}]

s′ = [l′D = obj D{f1 = v′

1}]

[l′B = obj B {f2 = v′

2}]

[lC = obj C {c1 = l′B, c2 = l′B, n = m, f3 = v′

3
}]

Rcls = {(C, C′)}

Rℓ = {(lD, l′D), (lB , l′B), (lC , l′C)}

(v1, v′

1), (v2, v′

2), (v3, v′

3
) ∈ Vt [CT , CT ′, s, s′, Rℓ]

(CT , CT ′) ∈ CT [Rcls]
CT ⊢ B <: A
CT ⊢ C <: Cell}

Again we constructed this set by inspecting the conditions of
adequacy forJ2. The resulting set differs from the one in Section 4
at the bold-faced parts. In this set we need to take into account the
subclasses ofA andCell, which may have extra fields. Subclasses
of Cell may have also overridden the methodsset andget. Even
in this case the equivalence holds, since the implementation of each
of the two methods doesn’t depend on the other. In the case, for
example, that the methodset called internally the methodget,
inheritance may had broken the equivalence, as we discussedin the
previous section.

However, even considering arbitrary subclasses ofCell, prov-
ing the adequacy conditions forJ2is not substantially harder than
proving them forJ1.

8. J3: Adding Downcasting toJ2

Our last extension adds a cast expression toJ2, creating language
J3. The casting operator allows both explicit upcasting and down-
casting. The latter is a non type-safe operation which introduces
one more error to the language,cerr. The extra syntax, typing rules
and operational semantics for casting are shown in Figure 6.

9. Adequacy inJ3

The addition of a casting operation has minimal effect on the
technical machinery we have set up so far. The first thing we need
to do is to add the new error to the set of answers of typet.

Definition 9.1. If Rℓ is a relation on object references,CT , CT ′

class tables, ands, s′ stores, then we define the following relation
on answers of typet:

At [CT , CT ′, s, s′, Rℓ]
def
= Vt [CT , CT ′, s, s′, Rℓ]
∪ {(cerr, cerr), (nerr, nerr)}

The rest of the definitions remain the same throughout our
technique.

The second and last place where we need to consider the new
cast expression is in the abstract proof of Conjecture 3.10 for J3.
We need to consider one more case fore0; namely the case when
e0 = (C)e1. This case, though, is handled immediately by the
induction hypothesis and thus it does not add any extra conditions
of adequacy on the setR. Theorem 6.1 holds also forJ3.

From the analysis discussed above we conclude that downcast-
ing (and casting in general) does not give to the context any extra
distinguishing power. Therefore its presence does not affect con-
textual equivalence.

10. An Example With Callbacks
We consider the adaptation toJ3of an example from Meyer and
Sieber [18]. We have two implementations of aCounter class,
one containing a private counter g, initialized to zero and then
increased by two only by the methodinc. There is also a method
callP, which takes as an argument an instance of an some classA,
provided by the context.A is assumed to have a methodP which can
accept as arguments instances of the classCounter. By proving
this equivalence we show thatg can be accessed only through the
methodinc, and thus it will always contain an even number. To
do that we will need to reason about the behavior of calls toP,
the implementation of which is unknown to us. We manage this by
using the induction hypothesis.

C = class Counter extends Object{
private int g;
C(){this.g := 0}
public int callP(Ao){

o.P(this);
if even(this.g) then 0 else 1}

public void inc(){this.g := this.g + 2}}

C′ = class Counter extends Object{
C(){}
public int callP(Ao){o.P(this); 0}
public void inc(){unit}}

We construct the following set:

R = {(s, s′, Rℓ, Rcls) | ∃ CT , CT ′, lD, l′D, D, f1, v1, v′

1,

lB, l′B, B, f2, v2, v′

2, lC , l′C , n, f3, v3, v′

3 :

s = [lD = obj D{f1 = v1}]

[lB = obj B {f2 = v2}]

[lC = obj C {g = 2n, f3 = v3}]

s′ = [l′D = obj D{f1 = v′

1}]

[l′B = obj B {f2 = v′

2}]

[lC = obj C {f3 = v′

3}]
Rcls = {(C, C′)}

Rℓ = {(lD, l′D), (lB , l′B), (lC , l′C)}

(v1, v′

1), (v2, v′

2), (v3, v′

3) ∈ Vt [CT , CT ′, s, s′, Rℓ]
(CT , CT ′) ∈ CT [Rcls]
CT ⊢B <: A
CT ⊢ C <: Counter}

The tuples ofR consist of related stores that contain related
objects of the classesB, C, D. B represents any possible subclass
of the classA andC any possible subclass of classCounter. D are
all the other classes that may be defined by the context.

We need to show thatR satisfies Theorem 6.1. The interesting
case is to show condition 6 for methodcallP.

Consider arbitrary(s, s′, Rℓ, Rcls) ∈ R, and (CT , CT ′) ∈
CT [Rcls]. For any(lCi, l

′

Ci) ∈ VCounter [CT , CT ′, s, s′, Rℓ] with
s.lCi = obj Counter{g = 2n, · · ·}, s′.l′Ci = obj Counter{· · ·},
and any(lBj , l

′

Bj) ∈ VA[CT , CT ′, s, s′, Rℓ], we need to show for
anyk:

IHL
R (k) =⇒
Rℓ, Rcls, R ⊢ (CT ⊢ s, lCi.callP(lBj):int ) ⊑<k+1

(CT ′ ⊢ s′, l′Ci.callP(l
′

Bj):int )

and the reverse.
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EXPRESSIONS: e ::= · · · | (C)e Cast Expression
ERRORS: ε ::= · · · | cerr Cast Error

CT ; Γ; s ⊢ e:t

CT ; Γ; s ⊢ e:D
CT ⊢D <: C

CT ; Γ; s ⊢ (C)e:C

CT ; Γ; s ⊢ e:D
CT ⊢ C <: D C 6= D

CT ; Γ; s ⊢ (C)e:C

CT ⊢ s, e→ s1, e1

CT ⊢ C <: D

CT ⊢ s, (D)obj C {f = l} → s, obj C {f = l} CT ⊢ s, (D)null→ s, null

CT ⊢ C ≮: D

CT ⊢ s, (D)obj C {f = l} → s, cerr

Evaluation Contexts

E ::= · · · | (C)[ ]

Figure 6. Syntax, Typing, and Operational Semantics ofJ3(differences withJ2)

We assumeIHL
R (k) and for anys1 andc:

CT ⊢ s, lCi.callP(lBj)→
<k+1 s1, c

=⇒ CT ⊢ s, lBj .P(lCi)→
<k s1, unit

Because the last derivation has fewer thank steps and

(s, s′, Rℓ, Rcls) ∈ R,
(lBj .P(lCi), l

′

Bj .P(l
′

Ci)) ∈ Evoid [CT , CT ′, s, s′, Rℓ]

we can apply the induction hypothesis and get that there exist s′1,
Rℓ such that:

CT ′ ⊢ s′, l′Bj .P(l
′

Ci)→
∗ s′1, unit

(s1, s
′

1, R
ℓ
1, R

cls) ∈ R,
Rℓ ⊆ Rℓ

1

Thus the invariant that the fieldg will contain an even number in
stores1, after the call toP, is maintained and thereforec = 0.
Furthermore

CT ′ ⊢ s′, l′Ci.callP(l
′

Bj)→
∗ s′1, 0

and by this we are done.
In this example we didn’t need to worry about the implementa-

tion of A and its methodP, since our use of the induction hypothesis
abstracts over them.

11. Related Work
Banerjee and Naumann in [3] present a method for reasoning about
whole-program equivalence in a subset of Java, similar toJ3. Their
technique is based on a denotational model in which they build a
simulation relation of denotations. They use a notion ofconfine-
mentto restrict certain pointers to the heap, and show that if two
class tables are confined and there is a simulation between their de-
notations, then these class tables are equivalent. It is notclear if this
technique is complete. This is because the authors don’t show that
there is a simulation relation for any two equivalent and confined
class-tables, but also because the technique seems helpfulto rea-
son only about confined class tables. Furthermore it is not obvious
how this technique can be extended to contextual equivalence of
classes, a stronger property than whole program equivalence. Our

method gives a sound and complete proof technique for exactly this
stronger property. Using our technique we were able to show con-
textually equivalent all of their examples.

Another technique for reasoning about contextual equivalence
in a class-based language is the one from Jeffrey and Rathke in [12],
which follows their work on concurrent objects [13]. They study a
Java-like language for which they define a semantic trace equiva-
lence and show that it is sound and complete with respect to test-
ing equivalence. This is an elegant technique which can be used to
prove equivalences like the adaptation of our examples to their lan-
guage. Doing these proofs with their method would require toshow
that two modules have the same traces, which we believe would
result in introducing bisimulations similar to ours and doing a full-
blown inductive proof as the one shown in the abstract proof of
Conjecture 3.10. The difference with our work is that they study a
significantly different language. The most important feature of that
language, that ours does not have, is a package system that restricts
the interaction of classes with their context. Classes are not visi-
ble through the package barriers. Therefore they are not extensible
by classes in other packages and the state of each class is guaran-
teed to be private. Only interfaces and instances of classesthat im-
plement these interfaces are shared between packages. Withthese
restrictions the interaction of classes with the context becomes an
interaction of messages. When packages have the same interface
and they communicate though thesamemessages with the context,
then these packages are equivalent. This technique is not applica-
ble toJ3 where the interaction of classes with their context is more
complex, and furthermore it doesn’t study the effect of inheritance
to class equivalence.

In the same spirit as Jeffrey and Rathke,Ábrahám et al. [1] give
a fully abstract trace semantics, with respect to may testing, for
a concurrent class-based language. Their work focuses on classes
that don’t support inheritance, much like ourJ1language, and all
fields and methods are public.

12. Conclusions and Future Work
We have presented a sound and complete method for reasoning
about class equivalence in a subset of Java. This is the first such
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method that successfully deals with inheritance, as well aspublic
and private interfaces of classes and imperative fields. We were able
to use this method to prove equivalences in a number of interesting
examples.

We have also used our technique to study the effect of inher-
itance on contextual equivalence. Moreover we have shown that
adding a cast operator in a language with inheritance is a conserva-
tive extension,

We have seen that our method can deal with the null-pointer and
cast exceptions of Java. We would like to investigate further in this
direction and see if our technique can prove contextual equivalence
in a language with more advanced control effects (e.g. [7]).

In the future we would also like to see whether our method can
benefit from ideas in closely related areas, like SeparationLogic
[22].
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A. Appendix

C.classname Returns the class name de-
fined by the class definitionC.

CT .C.super Returns the name of the im-
mediate superclass ofC.

CT .C.constr Returns the constructor defi-
nition of classC.

CT .C.constr.type Returns the constructor type
of classC

CT .C.fields Returns a sequence of all of
the field definitions (public
and private) of classC and all
its superclasses.

CT .C.methods Returns a sequence of all
the method definitions (pub-
lic and private) that can be in-
voked on an instance of class
C.

CT .C.m.defclass Traverses up the class hierar-
chy, starting from classC and
returns the first name of the
class in which methodm is
defined.

Figure 7. Meta-Functions
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