Proving Class

Vasileios Koutavas

Northeastern University
vkoutav@ccs.neu.edu

Abstract

We present a sound and complete method for reasoning ahout co
textual equivalence between different implementationsla$ses

in an imperative subset of Java. Our technique successialiys
with public and private methods and fields, imperative fields
heritance, and invocations of callbacks. To the extent okoowl-
edge this is the first sound and complete proof method of equiv
alence between classes for such a subset of Java. Usingcbur te
nigue we were able to prove equivalences in examples withelig
order behavior, where previous methods for functionalwdakd-

mit limitations [17, 20]. We were also able to show equivakenbe-
tween classes that expose part of their state using pulitis fieide
part of their functionality using private methods, and atessible

by the surrounding context. Other reasoning techniquesléss-
based languages [2, 10] restrict the way a class commungivatie
and abstracts functionality from its context. We derive tagh-
nique following a methodology similar to our previous work o
functional [13] and object-based [12] languages, thus gtmphat
this methodology gives useful results in a diversity of laages.

Categories and Subject Descriptors F.3.2 [Logic and Meanings

of Program$: Semantics of Programming Languages—operational
semantics; D.3.3 Arogramming Languagés Language Con-
structs and Features—procedures, functions and subesutib.3.1
[Programming Languagés Formal Definitions and Theory—
semantics

General Terms theory, languages

Keywords contextual equivalence, bisimulations, lambda-calculus
higher-order procedures, imperative languages

1. Introduction

The class is a facility to divide, conceptually and textyafiro-
grams in small units that encode different parts of the enio-
gram behavior. This makes classes attractive for reuse efad-r
toring. But refactoring a class that is being used in a nunafer
programs comes with the responsibility that the new impletae
tion will not alter the behavior of these programs. To forizethis
property we adapt the standard notion of contextual ecgriva
between expressions from functional languages [16] to aliveq
alence between classes in class-based languages: clasaerd
C’ are contextually equivalent, if and only if, for alass table

[copyright notice will appear here]

Equivalence

Mitchell Wand

Northeastern University
wand@ccs.neu.edu

contextsC7 [], expressiong, and the empty stor@, the program
configurationgC7[C], 0, ¢) and(CT[C'], 0, e) have the same op-
erational behavior.

Using this definition directly for proving the equivalendetwo
sufficiently different implementations of a class is not gibke.
This is because of the quantification over all class tableexs,
but also because it is not strong enough to support an inaucti
proof which would require to consider not just equal, bubaks-
lated stores. CIU theorems [14] ease the quantification cupf
texts by considering only the evaluation contexts, but gimjlarly
are not strong enough in general to support an inductivef pAtso
to the extent of our knowledge CIU theorems have not beerieappl
to class-based languages.

Another way of reasoning about the behavior of class imple-
mentations is by using denotational methods (see [4, 1Bhoba-
tions are usually compositional in the sense that they pigertean-
ing of program fragments without the quantification overteats.
Nevertheless the usual denotational methods distinggisivaent
class implementations that have a different local storeaien
For example the two implementations of the Observer paitern
Figure 1 would have different denotations because they Hdve
ferent fields. Such equivalences can be dealt with by mettiads
build logical relations of denotations [3], or exploit peyfies of
some programs, such as ownership confinement [2]. Thes@dseth
though are still not complete in respect to contextual exjaiwe.

A more natural way to reason about the behavior of two pro-
gram fragments is by using bisimulations. Bisimulationgeni@-
troduced by Hennessy and Milner [7] for reasoning about te b
havior of concurrent programs. They were applied in sedaledl-
culi by Abramsky [1] and proven to be a congruence by Howe [8].
Sumii and Pierce later gave a bisimulation proof techniqhéchv
is sound and complete with respect to contextual equivaléma
language with dynamic sealing [19] and a language with s@eer
and polymorphic types [20]. Their key innovation was to tsiiie
bisimulations into parts, and associate each part with tmelie
tions of knowledge under which that part of the bisimulatiafds.
Building on that idea we were able to devise a technique fdvde
ing sound and complete definitions of bisimulation from atest:
based semantics [6]. We applied this method to derive diefirsiof
sound and complete bisimulation for a lambda calculus viithes
[13] and for an imperative object calculus [12]. We used ¢itesh-
nigues to prove non-trivial equivalences that involve lestare and
higher-order procedures [15].

Here we apply the same technique to derive a method for prov-
ing equivalence between classes in a subset of Java. One of th
differences from our previous work is that, in contrast vagpres-
sions, classes are static entities. The contexts of classeslass-
table contexts which are also static. These static engtiescon-
nected to the dynamic behavior of the program by the insttotis
of classes to objects. As a result the conditions that weveldor
two classes to be equivalent are mostly conditions on thsilples
instances of these classes.

2006/7/19

class Observable extends Object { class Observable extends Object {

private Observer[10] ovect; private Observer o;
private int count; private Observable next;
private int count;
Observable () {
super () ; Observable(){
count:=0; super () ;
this.ovect[1] := null; this.o := null;
e this.next := null;
this.ovect[10] := null this.count := 0
} }
public void add(Observer o){ public void add(Observer o){
if (count < 10) then if (this.count < 10) then
count:= count+l; this.count := this.count + 1;
ovect [counter] :=o if (this.next = null) then
else unit this.o := o;
} this.next := new Observable()
public void notifyAll(Object arg){ else
notify(1, arg) this.next.add (o)
} else unit
}
private void notify(int i, Object arg){ public void notifyAll(Object arg) {
if (i < count+1) then if (this.next != null) then
ovect[i] .notify(arg); this.o.notify(arg);
this.notify(i+l, arg) this.next.notifyAll(arg)
else unit else unit
} }
} }

Figure 1. Two implementations of the Observer pattern

Another difference is that the language we consider here has e Itis able to prove equivalences between classes with difter
runtime errors. We treat errors as constants that belonijtigpas: store behavior.
we require that if an operation.on an instance of a c!as;tee'sul e |tis able to prove equivalences of classes that invoke aekis,
an error, then the same operation on the correspondingioestat which is a higher-order feature in object-oriented langsag
a related class should also result in #aene error

In our language, classes can also hide some of their methods ® It successfully deals with inheritance, and with privated an

from the context by using therivate access modifier. As a result public interfaces of classes.

our technique deals with a larger set of examples than o#@r r e |t is derived by a method which is applicable to a variety
soning techniques for class-based languages [2, 10]. Fone, languages.

the two implementations of the Observer pattern shown inr€id.

would not be equivalent if the methods were all public. Gdassan In Section 2 we give the language that we study, and its static
also expose part of their state by making some of their fielddi@ and dynamic semantics. In Section 3 we start our method of-der
This creates some extra conditions for related classespwitkic ing a proof technique of equivalence by stating a definitiboom-
fields to ensure that their instances have the same behaviail f textual equivalence between classes, and a definition afuedy

the values that the context can assign to the public fields. for relations on classes; we then show that these two defiisiti

An interesting aspect of our language is that the context can coincide. In Section 4 we give a definition of contextual egui
also extend two related classes and override some of thécpubl lence for expressions and we connect it to contextual efguica
methods. One would think that our analysis would have beer@mo of classes. In Section 5 we attempt an abstract proof of adgqu
fine-grained if our language also alloweg®tected interface of for an arbitrary set, from which we find the conditions thas et
classes. In the contrary, the protected interface is irceffee same needs to satisfy in order to be adequate. We then formulateth
as the public interface. If extending a class and then méatipu conditions in a theorem of adequacy, the main theorem ofpidtis
ing protected fields and invoking protected methods camdisish per. Section 6 contains two example equivalences betwesses
two class implementations, then so does instantiatingléss @and and their proofs using the main theorem. Finally, in Sectid@and
then manipulating the same fields and invoking the same rdstho 8, we give some related work and our conclusions.

The real effect of inheritance to our reasoning is that whel+ p

lic methods are invoked either the original body of the mettay

the body of a possible method that overrides it may be caled. 2. Thelanguage FWI Java

technique, though, makes reasoning about invocationskafawn
implementations of methods easy because of the use of an-indu
tion hypothesis (see also [12]).

Our technique for reasoning about class equivalence has the
following benefits:

For the purposes of this work we choose to study an imperative

extension of Featherweight Java [9] which we call FWI Javze T

syntax of FWI Java is shown in Figure 2. The expressions of the

language are the object operations of Featherweight Jaxa (n

object, field lookup, method invocation, casting) with ttukeliion

of field update. The language has also constants, and a icoradlit

e |tis a sound and complete method for proving contextuahequi and a let-binding expression. Moreover fields and methodsiin
alence of classes and expressions. language can be declargdblic or private.

2 2006/7/19

The types of FWI Java are the class-name types, as well as thereferred to by the objects; the value stored in a locatiorthagype

ground typesvoid, int, andbool. There is aunit constant of
typevoid, true andfalse of typebool, and the integers of type
int.

The values of the language are constants or objects. Tlee latt
are structures that contain the name of the class which tisgni-
tiate, and a binding for each field of the class and its supssels
to the location in the store in which the value of the field iptke
We assume there is no shadowing of fields, something thatean b
achieved automatically by changing the names of all thediedd
include the name of the class in which they are defined.

FWI Java has also two kinds of errors: a cast ereeirf) for
invalid casting, and a null erronérr) for the case that a program
tries to perform an operation omall value.

Class definitions are similar to those of FW Java, defining the
name of the class, the class which it extends, the fields atttbohe
of the class, and the constructor of the class. We assuméhtirat
is a rootObject class, with no fields and methods, which doesn’t
extend any other class. In FWI Java there are alselic and
private access modifiers in the definitions of fields and methods
that specify the scope of these names. Public methods ads i
visible to all classes, while private methods and fields aibbe
only from the same class.

To allow private fields to be completely isolated from the-con
text, we used a different kind of constructors than in FW Java
stead of exposing as arguments to the constructors all this,fie
public and private, we allow a different definition of constiors.

s.l.type. In this way stores are used as store typings in the typing
judgments. The constamill has any class type defined in the
class table. The rest of the typing judgments for expressioa the
expected ones for a language like FWI Java.

CT t1 <: to are the subtyping judgments imposed by the
class-hierarchy and the reflexive and transitive propeFtye
typing judgments for method, class, and class-table diefivst
areC7T - M:OKin C, CT C:0OK, andC7T:0OK, respectively.
(CT F s, ¢e):0K is the typing judgment for program configurations.

In Figure 4 we give a small-step semantics for FWI Java. A
small-stepC7T + s,e — s1,e1 describes a transition from the
program configuratio@7 I s, e to the configuratio7 F s1,e;.

We also define—" to be the reflexive and transitive closure-of,
and —<* the reflexive and up t& — 1 steps transitive closure
of —. We also writeC7 | s, e| iff there existss;, w, such that
CT Fs,e—" s1,w.

We write in calligraphic font the meta-identifiers that deno
class-table, class, constructor, or method definitionsaMé@use an
overbar notation to denote syntactic sequence with arbiteagth.
When expanded, all the meta-identifiers in the sequencena a
tated with the appropriate subscripts; e.g. we wmiiyaC {F=1n,
instead ofobj C{f1 =l1, fo =l2,..., f

n — tn

3. Equivalence and Adequacy
We reason about the behavior of class implementations. Meus

The constructor of each class may have an arbitrary number of need to define class table contexts, relations on classeghain

arguments of any type and it must initialize all the fields lie t
class, possibly using its arguments. Moreover, just as inJEVH, a
call to the constructor of the superclass is made by the keywo
super before any local initialization of fields. The expressions
that are used to provide the argumentsstper and the values
to the field initializations may not refer to the special gatethis
(DontReferToSe(E)), ensuring that no uninitialized field is ever
used. As an example the following class definition is valicim
language:

class C extends Object{
public int f;
privateintg;
C(int x){super(); this.f := %(17,x); this.g :=

+(17,%); }}

Class tables are sets of classes. Well-formed class taglerd
atree hierarchy, where the root of the hierarchy is the al&gsct:

class Object extends -{Object(){}}

Object is the only class that doesn’t extend any other class. Fur-
thermore, all the classes in a well-formed class table hastendt
names. We test the well-formedness of a class table by thdécpte
wfClassHierarchyCT).

We will use meta-operations and the dot notation to perform
static lookup on class tables, methods, and fields. For eleamp
CT.C returns the definition of the class namédfrom the class
tableC7, andC7 .C'fields returns a sequence of all the field defi-

nitions in C' and its superclasses. A complete table of these meta-

operations and a description of their functionality is shaw Fig-
ure 6 of the Appendix.

extension to class tables.

Definition 3.1. Aclass table context7 [], is a set of class defini-
tions. Placing a class definition, or a sequence of class idefis,
in the hole of a class table context corresponds to set union:

cTe) ™ cT U {C)

Definition 3.2. R%* is a relation on classes iff it is a set of pairs
of class definitions, such that for d’,C’) € R°*®, and all class-
table context€ 7 |:

T[C]:0K <> CT[C']:0K

The above definition requires that we relate only class defini
tions that are interchangeable at compile time; i.e. répipone
with the other in a class-table context doesn't affect tipe tyidg-
ment of the program. In practice this means that the reldeesses
have the same name, extend the same superclass, and haamthe s
public interface.

Definition 3.3. If R®** is a relation on classes, then the following
is its extension to class tables:
CT[R™] % {(CT[C),CT[C) | (C,CT) € R,
CT [C]:OK}
We give the following definition of contextual equivalena® f
FWI Java:

Definition 3.4 (Contextual Equivalence €)). (=) is the largest
relation on classes such that for d€7,C7’) € CT[=], expres-

Stores are partial maps from locations to values. The type of Sionse, and types, such thaC7; 0; 0 - e:¢, we have:

the value stored in locatiohof stores is obtained bys.l.type. A
program configurations a triple composed by a class table, a store,
and a closed expression, writté - s, e. An initial configuration
is a program configuration that contains the empty store.

The typing rules of FWI Java are shown in Figure 3. The type
judgments for expressions have the foff; I'; s | e:t. T is the
type environment. The storeis used to type-check the locations

CTF0,el < CT'F0,e|

This definition does not give rise to a usable proof technfque
equivalence. We will instead give a definition of adequacycivh
can be used in an inductive proof, and then show how adequacy
coincides with contextual equivalence.

We will define adequacy as a property of the following relagio

2006/7/19

PROGRAM CONFIGURATIONS,
CLASS TABLES:

CLASS DEFINITIONS:
CONSTRUCTORDEFINITIONS:
METHOD DEFINITIONS:

peonf € CT x STORESx EXPRESSIONS
CT € P(CLASSDEFINITIONS)

C ::= class C extends D{mod t f; K M}
K ::= C(tz){super(e); this.f :=e}
M = mod tm(tz){e}

TYPES t::=void | int | bool | C
MODIFIERS mod ::= public | private
EXPRESSIONS e,du=v|x Values, Identifiers
| e.f|em(e) Field Lookup, Method Invocation
| newC(e) | (C)e Class Instantiation, Object Cast
| e.f:=¢e]op(e) Field Update, Arithmetic Operators
| letz=eine|if etheneelsee Let Expression, Conditional
VALUES: v,u,wi=cl|o
CONSTANTS! c::=unit | null | true | false |0 | £1 | £2]... Unit, Null, Booleans, Integers
OBJECTS =objC{f=1}
ERRORS € 1= cerr | nerr Cast Error, Null Error
LOCATIONS: Lk
STORES s € LOCATIONS — VALUES

Figure 2. Syntax of FWI Java

Definition 3.5. A relationR is a set of tuplegs, s’, R™, R°'®),
wheres, s’ are stores,R" is a relation on objects, an®°*® is a
relation on classes.

For the definition of adequacy we also need to defieelated
values and expressions.

Definition 3.6. If R™ is a relation on objectsC7, CT’ class
tables, ands, s’ stores, then the following is a relation on values of

typet:

V[CT,CT',s,s", R"™ = (v,v") | (v,v") € R"™ U Idconst
CT;0; st w:t,
CT';0; 8" F':t}
U {(cerr, cerr), (nerr,nerr)}

Definition 3.7. If R™ is a relation on objectsC7, CT’ class
tables, ands, s” stores, then the following is a relation on closed
expressions of type

E[CT,CT',s,s', R

A
<
<
N2
m
iy
<
A

Obj(e) =0,
CT;0; st [v/z]e:t,

CT'; 0; 8"+ v /z]e:t}

By requiring thatObj(e) = @ in the above definition we force
all R-related expressions to use ortyrelated objects.
We now give the definition of adequate relations.

Definition 3.8 (Adequacy). R is adequate if and only if:

V(S,Sl,Rval, Rcls) c R
v(CT,CT") € C’T[Rds].
vt, V(e e) € B[CT,CT',s,s, R"™].
Vs, w.
(CTEs,e =" s1,w)
= Jsi,w’, R}
(CT'F s, e —* sh,w)
A((w,w") € VI[CT,CT', 51, s1, Ri™])
A((s1, 81, Ri*™, R%*®) € R)
A(R™ C R
and the reverse.

Adequate relations are sound and complete in the following
way.

Theorem 3.9 (Soundness)If R is adequate andd, 0, (), R°**) €
RthenR™® C (=).

Proof. Immediate by the definitions of adequacy and contextual
equivalence. a

Theorem 3.10 (Completeness)lf R°** C (=) then there exists
adequateR with (0, 0, 0, R°**) € R.

Proof. (Sketch) LetR*** C (=). ConstructR inductively, starting
with (§, 0,0, R***) € R as the base case, and adding tupleR in
using Definition 3.8. FoR{*! use the extension ak’" with the
objects that were created during the evaluation. If theie state
of R that distinguishes the two sides, then it means that theae is
context that would invalidate Definition 3.4. Thus the consted

R is adequate. |

4. Extension of Equivalence to Open Expressions

In this section we give a definition of contextual equivakere-
tween expressions which is closer to the standard one andrits

2006/7/19

CT;T;sket

ztel ¢ € {true, false} ce{xl,+2,---} class C extends D{---} € CT
CT;T; sk x:t CT;T; sk unit:void CT;T; sk c:bool CT;T; sk c:iint CT;T; sk null:C
CT;T;skeC CT;T;ske:C
_C eCT CT;T;stkeC CT;T; st this:Cy CT; F;s_Fthis:Cg
L€ Dom(s) CT;T; st this:Cy f € accessibl&CT, C, Co) m € accessibléCT, C, Co)
CT.C fields = mod t f | € accessibleCT, C, Co) mod t f € CT.C fields mod to—tm € CT.C.methods
CT Fs.l.type<:t tf e CT.C fields CT;T';sken:t CT;T; sk eo:tp
CT;T;skobjC{f=1}:C CT;T;ske.fit CT;T;ske.f:=ei:void CT;T; sk e.m(eo):t
CT .C.constr.type = t—C CT;T;skeD CT;T;skeD CT:;T;skety
CT;T;sket CT+-D<:C CTHC<:D C#D op.type= to—t
CT;T; sknewC(e):C CT;T;sk(Ce:C CT;T; sk (Ce:C CT;T; st op(e):t
CT;T; st ei:bool
CT;T';sker:ts CT;T'; sk ea:t CT;T';sk ety
CT;T,x:ty; sk et CT;T; sk es:t CThHti<:t

CT;T';skletx=ejine:t CT;T'; sk if e; then es else e3:t CT;T;sk et

CThHt1 <:tg CT ity <:ts CT.C.super = D
CTHt<:t CThFt <:t3 CTHC<:D

CT +M:OKin C

CT;x:t;,this:C; 0+ e:t CT.C.super =D overridablgC7, mod & —tm, D)
CT + mod tm(tix){e}:OKin C

CT - C:0OK CT:OK (CTF s,e):0K
K = C(tyz){super(e1); this.f :=e2}
CT.D.constr.type = t4—D
DontReferToSe([é7) CT;xity; Db er:ty

DontReferToSe(¢z) CT;xity; O+ exity {C}FC:0K CT:-OK
CT - M:OKin C wfClassHierarchy{C}) CT;0; sk et
CT F class C extends D{t; f;KM}:0K {C}:0K (CT Fs,e):0K

Figure 3. Typing of FWI Java

nection with €). To do this we need to define a family of relations Definition 4.2 (Class and Expression Contexts).
on open expressions:

C[] ::= class C extends D{
modty f;
_ . . . C(t E]); thi =F
Definition 4.1. A relation R**® on expressions is a set of tuples (dxt){sul()erg{ H[)}} is.f = B[]}
(T, e, e, t), such that for all class table§7: 1mod tm m

E[]
E[]==1[]| B[].f | E[].m(E]]) | newC(E]]) | (C)E[]
| E[].f —E[]Iop(E[]) |lete = E[]in B[]
| if F[] then E|[] else E|[]
CT.T;0Fet<=CT;T;0F€:t
Definition 4.3. If R®*® is a relation on expressions, then the fol-
lowing is its extension to class tables:

This definition requires “compile-time” interchangeatyiliof CTIR™ Y {(cT[CT, cTIC[e]]) | (T,e, €, t) € R™™,
related expressions, in the same sense of Definition 3.2. CT[C[e]):0K

We also define the necessary class and expression contaxts, a —
the extension of relations on expressions to relationsasscbbles: CT[C[e']]:0K}

5 2006/7/19

CTts,e— s1,e1

CT.C.constr = C(tx){super(e7); this.f :=e2}
CT.C.super = D

CT + s,newC(T) — s, [v/z](newD(e7); this.f := &)c
1. & Dom(s)
CT Fs,(obj D{fq=la};this.f. :=Tc)c — s[le = ve], 0bj C{fa = ld, fe = I}

CTFs,0bjC{f=1}.fi — s,8.l; CT + s,null.f; — s,nerr
CT.C.m = mod tm(t; z){e}
CT & s,0bj C{f =1}.m(T) — s, [v/x,0bj C{f = 1}/thisle ~ CT F s,null.m(7) — s,nerr

CTFs,0bjC{f =1}.f;:=v — s[l; < v],unit CT F s,null.f; :=v — s,nerr
CT-C<:D CTHC «£:D
CTFs,(D)objC{f =1} —s,00jC{f =1} CT + s,(D)null — s,null CT Fs,(D)objC{f =1} — s,cerr

CTFs,letz=vine — s,[v/z]e CT F s,if true thene; else e — s,e1 CT F s,if false thene; elseex — s, €2

Evaluation Context%s
€| BlE]
(1711 m()lvm(v,[]f?

(]
if [] theneelsee| op(7,[],€)

=e|vf:=[] |letz =[] ine

:57[] e)c

newC(3,[].,2) | (O)]] |[]

|] .f:
([];this.f :==€)c | (v;this.f:

‘C’T}—S,E[e] — s1, Elei] ‘

CTFs,e— s1,e1
CT + s,Ele] — s1, Elei] CTts,E[e] — s1,¢

Figure 4. Small-step Operational Semantics of FWI Java

Contextual equivalence of expressions in FWI Javais defmed 5. Proof Obligations for Adequacy

be the following relation: One may show the equivalence between two class implemensati

Definition 4.4 (Contextual Equivalence of Expressions=.)). by constructing a sét and then prove its adequacy by an induction

(=.) is the largest relation between expressions, such that for based on Definition 3.8. The construction of the appropriie
all (CT,CT') € CT[=.], expressiong, and typest, such that not obvious, though. Moreover for eaBone would have to repeat

CT;0; 0+ et andCT”; 0; O - e:t, we have: the entire proof of adequacy. . .
, Our goal in this section is to find the sufficient propertieRof
CTH0,el < CT kel that would make the proof of adequacy to go through. These-pro

erties will serve as a guide to the constructiofRofFurthermore we
will show that proving just these conditions on a set is eajeint

Theorem 4.5. (T', ¢, €', t) € (=.) if and only if R*** € (=), and to doing the inductive proof for that set.

We now give the connection between)(and &.):

for fresh identifiers;: To do this we investigate the class of all inductive proofseuh
on Definition 3.8 by abstracting over the concrete strucafr&

R = {class C extends Object{public tm(t, y){[y/z]e}}, and attempting to prove adequacy. This abstract proof levba
class C extends Object{public tm(t,y){[y/z]e’}})} sub-cases of the induction that don’t go through just by gisie

I'=t,z induction hypothesis, but also require that the state® shtisfy

some extra properties, tipeoof obligationsof R.
] As we will show in the examples, the individual proof obliga-
Proof. Appendix. o tions forR give a guideline on how to construct such an adequate
set. Furthermore proving these conditions requires Idest ¢fian

In the above theorem we rename the free variables inside thethe full-blown induction.

related expressions, in order to avoid erroneous captwirthe Conjecture 5.1 (Abstract Proof of Adequacy). For some relation
special variablehis. R, R is adequate.

6 2006/7/19

Proof. The proof consists of two inductions, one for the forward

direction of Definition 3.8 and one for the reverse directibhe
induction hypothesis of the former is:

[H(K) =
v(s,s’, R™, R"*) € R.
v(CT,CT') € CT[R®)].
Vi, V(e e') € B[CT,CT',s,s, R™.
V81, w.
(CT +s,e —=<F 51, w)
= Jsi,w', R}
(CT' 5", e =" sh,w')

A((w,w") € Vi[CT,CT’, 51,51, R*])
A ((517 5l17 R‘lla17 RCls) € R)
A (Rval g Rxllal)

We will show that for allk, IH (k) holds. We assume the
induction hypothesis fak, and we will show that it holds far + 1.

Let (e, ¢’) = ([v/x]eo, [v'/x]eo), for someeo, v, v’, such that
FV(eo) C {T}, Obj(eo) = B, (v,v') € R™, CT;0;sF
[v/z]eo:t, CT"; 0; s' - [v' [x]eo:t. We proceed by cases ep. We
demonstrate here only the case of method invocation:

If eo = e1.m(ez) then we have

CT Fs,[v/z)(er.m(ez)) =< s1,w 1)

We have the following cases:

e w=cand

CT + s, [v/z]([e1]-m(e3)) —<"
thus:

s1, [v/z](le].m(e2)) — s1,¢

CT Fs,[v/zler —<F s1,¢ (2
By (2) andIH (k) we get that there exist;, R{**, such that:

CTFs' v /z]er —" s1,¢

A(s1,s1, R, R €eR

/\Rval g R\lral

Al(e,€) € RT™
and furthermore:

CT+ s, [/a)(er.m(ez)) = si, [/x]([e]. m(e2)) — si,e
e w=cand
CT b 5, [o7a) ([er)-m (7))

—<F 51, [v/z)([w1].m(ez))
= [v/m]_(w1.m([€21]7a))

<k s21, [v/x](w1.m([w21], €2))
= [v/x](w1.m(w217 [622]75))

—F 5951, /@] (w1.m(W3, [e2,],23))
—<F s, [v/a](wr.m (W3, [¢], €2))

— 82j5,€
thus:
CT +s,[v/zler =< s1,un 3)
CT F s1,[v/xlea; —=F so1, w2, (4)
CTt 52 9, [v/xlez; 1 —<F 8251, W2j-1 (5)

CTFSQj,h[%]ezj —><k 82j78 (6)

By (3)-(6) and the induction hypothesisiatwe get, that there exist
sh, wi, RY, s), wh, R¥L, such that:

CT s, [v'/z]er —* sy, w)
A((s1, 87, R, R®) € R)
A (Rval g Rxlral)
A(wri,wy) € Ri™

CT ks, [[x)eas — s2f, w2}
A ((8217 S2l17 R2‘{al7 RClS) € R)
ARE® C Roi™)

A(war,way) € Rot™

CT + 825, [m]egj,l —" s, way
A((s2j-1,82)_1, R2j*1, R®) € R)
/\(Rzgajz C RZ;ajl)

/\(ng,hwg},l) € Rg‘ﬁll

CT b sof_y, [v' [wlea; —" safj, e
A (525, 825, R2;a17 R%") €R)
A (Rz;a,ll - Rz;al)
Al(g,e) € RoJ

Therefore

CTF&, [v’/x]([el].m(gﬁ
s o (whm (€] 3)

and ((s2;, s25, R25™, R°*®) € R) and (R™ C R.}™), as re-
quired.

e w = nerr and

CT s, [v/x&l].m(ﬁ))
<K 51, [o/z)(mu11].m(e3))
— [o/a] (a1 1. m(fe21], 73))
<K s, o/ (11 ([w2n], @)

= [v/z](null.m (w21, [e22], €2))

—<F 59, [v/x](null.m(w3))
— Sop,Nerr

thus:

CT s, [v/z]er —<F s1,null (7

CT t+ s1,[v/x]ea; —<k S21, W21 8

CTH+ S2n—1, [m]t?Zn _><k S2p, W2p (9)

By (7)-(9) andIH (k) we get that there exist,, w}, R}, s}, w},
Ry, such that:

CTF s [[z]er =7 si)
A((s1, 81, Ri™, R) € R)
A (Rval g Rxlral)
/\(w17w,1) S Rlval

2006/7/19

CT & 51, [v' Jx]eay — 827, wal

A((s21, 525, Ra'™, B9®) € R) Forall (s,s’, R"™, R**) € R,and all(C,C") € R**, with

A(RY C Rt C = class C extends D{---public tm(tzz){---} -}

A(war, wa}) € RaT C = class C’ extends D'{---public /m/(tLx){---}---}
wehaveC' =C',D=D"t=t, m=m', %, = tL,

’ * ’ ’
CT F S2n—1; ['U//CC]egn — S2p, W2,

A((52n, 521, Ry, R7®) € R " o
(520, 52 2)) The second condition o®°** is implied by Definition 3.2. As-

A(R2i2y C Roy) suming these conditions and becagse, w;) € R{* we get that
A(wap, walh) € Ry wh = obj C{---},andCT’'.C.m = public tm(t, z){e5}.
It remains to show that for al(s,s’, R™, R®**) € R, all
and therefore: (0bj C'{--},0bj C{--}) € R*, and allm with CT.C.m =

CTHs, [v [x](er.m(e3)) —* sy, [v'/z]([null].m(ws)) — s}, nerr public tm(tzz){es} andC7'.C.m = public tm(lzx){es},
/ T !/ ’ val
and((san, sl, Ra™™, B9) € R), (R™ C Ry"™), (nerr, nerr) € and for all(u,uw’) € V¢[CT,CT',s,s", R™], s1, w we have

R2}?, as required. (CTF s, [u/z)em —<F s1,w)
e w#cand = Js1,w’, R
— - (CT'F &, [u'/x]e), —* s1,w")
CTE s, [v/al(ed].m(E) B A(w,w') € V,[CT,CT", 51,5, R™™))
=" 51, [v/z]([wi].m(e2)) = [v/z](wi.m([e2], €2)) A((s1,), R, R) € R)
—<F 501, v/z](wr.m([w21],82)) = [v/x](wi.m (w21, [e2s], E2)) A(R™ C RY™)

—<F $2,, (w1.m(W3)) There are two cases:
— S2q,, [w2/]es
—<F 53,0 ¢ Methodm is defined in the class-table context (possibly extend-

ing a class fromk** and overriding methoah of that class).

_Il_vaﬁ;(_?w = obj C{:+-} andCT.C.m = public tm(ts x){es}. In this case we have; = ¢} and we can apply immediately the
’ _ - induction hypothesis to get what is required.
CT ks, [v/zler == s1,w1 (10) e Methodm is defined in clas®), which is inR<**, CT+C <: D,
CT + 51, [v/zlear —<* s21, w2, (11) and m is not overridden betweer' and D. To prove the

conjecture we need th& will satisfy the following condition:

CT = S2n—1, [’U/_:E]ezn —><k S2pn, W2n (12)

CT + son, [wa/z]es —<F s3,w (13) For all (s,s’,R™,R) € R, al (CT,CT") ¢
By (10)-(12) and the induction hypothesiskatve get: CT[R®], all (D,D’) € R%*, with D.classname = D,
, — . all (objC{---},0bjC{---}) € Vp[CT,CT',s,s',R™],
CT ks, [v//z]er —" s1,w) all m with C7.C.m.defclass = D, and CT.C.m =
A((s1, 8}, R, R € R) public tm(t,x){es}, CT'.C.m = public tm(t,z){es},
AR™ C R and for all (u,w') € V=[CT,CT",s,s', R™], s1, w, we have|

/\(w17w1/) € Rlval IH(k)

ACT F5,0bj C{f = 1}.m(@) —<"! 51,0
CT + sy, [V /x)ear —* s2k,wa) = Jsp,w R
’ R val Rcls R (CT/ '7 8’7 Ob]C{f/ = l/}‘m(u,) _)* 8/1711)/)
/\((82178217 21) €) /\((w,w') € Vt[CT7CT/7317'SI17R‘1Ia1])
A (R C RoT) A((s1,s1, R{™, R®) € R)
/\(Rval g Rxllal)

val

A (w21, w2]) € RaY

CT & 5251, [V [x]e2n, —" 520, w2y, If R satisfies the above condition then we can show what is
A((S29, 520, B2, R®*) € R) required for this case.
AR C Rt
val We continue similarly for the rest of the casesepf a

A (w21, wa]) € Rl

To continue our proof we need th&f** satisfies the following
two conditions: In Theorem 5.4 we summarize all conditions frthat we
found by the above abstract proof. First we give a notationrite

PR E—— - down the inductive cases and the induction hypotheses (@ne f
For all (s,s’,R™,R**) € R, and all (objC{ -}, each direction).

obj C'{---}) € R™, we haveC = C’.

8 2006/7/19

Definition 5.2 (Inductive Cases).

R™ R R© (CT Fs,eit) C<F (CT s, ¢'st)

Vs1,w
((e,e’) € B|CT,CT,s,s', R™))
AN(CT + 5,€ —<F 51, w)

—— Hsl,w Rval

(C’T'}—s e —* s, w')
/\(() € Vt[CT cT’ 8178/17R‘{al])

((81781,Rva1 Rcls) c]R)
(Rval g Rval)

and R™, R™ R (CT + s,e:t) I<F (CT' F s, ¢:t) for the
reverse.

Definition 5.3 (Inductive Hypotheses).

HE(k) <

v(s,s’, R, R®) € R.
v(CT,CT') € CT[R].
vt,(e,e') € E[CT,CT,s,8', R™).
R"™ R RF (CT Fs,e:t) C<F
(CT'F§',¢e't)

and IHE (k) for the reverse.
Our main theorem is the following.

Theorem 5.4 (Adequacy Conditions).A relationR is adequate
if and only if for all states(s, s’, R"*, R®**) of R the following
conditions are satisfied:

1. (Same interfacesBor all (C,C’) € R, with

C = class C extends D{publict; f1;privatet2 fo;
C(tg :Cg){ . .}7
public tama(tszs5){ -},
private t¢me(trz7){...}}

C' = class O extends D'{publict) f;privatet} f5;
'tz s)f- -}
public tym}(thzh){ -},
private tmy(thal){...}}
we haveC = C', D = D', t; =t}, fr =[], ts =1,
t4 = tj‘,m4 = mg,ﬁzg
2. (Related instances.For all (objC{---},0bjC'{---}) €
Rval’ C — C/.
3. (Enough instancesfor all (CT,CT’) € CT[R**], all C €
CT, with C.classname = C andC7 .C'.constr.type = t—C,
and for all (v,v") € V5[CT,CT’,s,s’, R"™]

IHE(k) =
R™ R RF (CT I s,newC(v):C) C<FT!
(CT'F s' newC(V'):C)

IHE(k) =
R™ R R (CT I s,newC(v):C) 3
(CT'Fs' newC(v):C)

4. (Related public fields.)For all (C7,CT') € CT[R%],
(objC{f =1}, 0biC{f =1}) € R™, publict;fi €
CT .Cfields, we have

(s.li,s'.15) € V,[CT,CT',s,s", R™]

5. (Related updates.)For all (C7,CT") € CT[R™),
(objC{f =1}, 0biC{f =1I'}) € R™, publict;fi €

<k+1

CT .C.fields, and (v,v") € V,,[CT,CT’,s,s’, R™], we have

(s[l; «v], s'[l; — '], R"™, R™"®) € R

6. (Related public methods§or all (CT,CT') € CT[R],
(D,D') € R%, with D.classname = D, all
(objC{---},0bjC{---}) € Vp[CT,CT',s,s', R™], all m
withC7T.C.m.defclass = D, andpublict,, m € CT.C.methods,
with CT.C.m = public tm(tzz){es}, CT'.C.om =
public tm(t,z){es}, and for all (v,v’) €
V&[CT,CT',s,s', R"™], we have

IHE(k) =
R™ R RF (CTF s, objC’{f 1}.m(T):ty) C<FF
(CT' 8,0 C{f =1}.m():ty)

IHE (k) =
R™ R Rt (CTFs,0bj C{f = 1}.m(0):ty) I<F
(CT, F s’ , 0bj C{f = }m(/):tm)

Proof. Immediate by the proof analysis of Conjecture 5.1. O

The first condition of Theorem 5.4 requires that relatedsgas
have the same public interface. The second condition resjtinat
related objects instantiate related classes. The thirdigon re-
quires thatR relates all possible objects that can be created by
the constructors. Conditions 4 and 5 test that related pdielids
can be assigned all the possible well-typed related vahresonly
those.

The last condition tests the behavior of related public mesh
It considers only the methods that are defined in a clagaken
from R°*®, but the instances on which these methods are invoked
are all the possible instances of subclasseB .of

Most of the above conditions contain a quantification over al
possible class tables that contain the related classesisTheces-
sary in order to specify the well-typed values, and to usedHac-
tion relation. As we will see in the examples that followsthuan-
tification does not introduce any difficulty in the proofs ofuéva-
lence. This is because we never need to reason about theidrehav
of methods and classes defined in the class-table contéxtg s
these cases are handled by the induction hypothesis.

6. Examples
6.1 Cells

Here we give two implementations of a Cell class. The firshés t
usual one, while the other is somewhat more complicated imgus
two, instead of one, private fields to keep the stored obpaud,
a counter to decide which one to return when gee method is
invoked. These implementations have sufficiently differstore
behavior and the usual denotational models would assiderelift
denotations and thus distinguish them.

C = class Cell extends Object{
privateObjectc;
Cell(Objecto){this.c:=o}
public voidset(Objecto){this.c:=o}
public Object get(){this.c}}

2006/7/19

C' = classCell extends Object{
privateObjectcl, c2;
private intn;

Cell(Objecto){
this.cl:=o;
this.c2:=o;
this.n:=0}

public voidset(Objecto){
this.cl:=o;
this.c2:=o}

public Object get(){
this.n:=this.n+ 1;
if (even(this.n)) then this.cl else this.c2}}

To prove the above two class implementations equivalent we
construct the following set:

R = {(s,s, R"™, R") | 3CT, f1, k1, k), v1,v}, D,
fa, ko, kb va, 08, L, ler, Lo, Ly u, u!/,m, C
s = k1 = vi][ke = v2][lc = u]
s = [k} = vi][k) = v}l = v/, lea = v/, 1, = m)
R ={(C,C)}
R™ = {(obj D{f1 = k1}, 0bj D{f1 = ki })}
(Ob]C{fz = /(3270 = lc},
obj C{f2 = klh,cl =lc1,c2 =lca,n =1,})
CTFC <:Cell
CT = D #£:Cell
(1)1,1)1), (U27Ué)7 (u7 U,) € Rval}

We choose this particuldR by inspecting the conditions of
Theorem 5.4. Condition 1 is obviously satisfied ®yandC’. To
satisfy conditions 2 and 3 we add R¥** the instances of any class
C, sub-type ofCell, and any class), not a sub-type ofell.
These are the classes of any possible class table. Furtreemeo
construct the stores and s’ in the appropriate way to keep the
values of the fields of these instances. The values storéd &md
k} are related ink"!, since these are fields of identical classes in
the class table; similarly for the values storedkinandk}. From
this we conclude that conditions 4 and 5 are satisfied.

We also require that the values stored in the private fields of
Cell to be related ink"*. This is an invariant of the equivalence
between the two implementations @11 and is going to help us
prove condition 6.

To prove condition 6 we consider an arbitrary tuple
(s,s', R™ R°™) € R, and an arbitrary pair of related class ta-
bles(CT,CT') € CT[R®*]. The only pair of related class defini-
tions in R°** is (C,C"). For anyo = 0bj C{f2; = ka2i,c = lcs},

o 0bj C{f2; = kaj,cl = lc1;, 2 = leag,n = Iy}, With
(0,0") € Veenn[CT,CT, 5,5, R™] we have tha€7T -C <:Cell,
CT'FC <:Cell.

We now consider anypublict,—tm € C7.C.methods.
These are the methogdset andset.

In the case ofet we havel,—t = void—0bject. Further-
more:

CT Fs,o.get() =" s,u;
CT' ks, 0 .get() =" §'[ln; — m+1],uj
wheres’.l,,; = m. Moreover:
(wi, 1)) € Vonjees|CT,CT" 5,8 [In; — m+1], R™]

and(s, §'[ln; «— m-+1], R™, R°"®) € R.
Similarly for the case ofet we havel,—t¢ = Object—void.
Let (u,u’) € Vavject [CT,CT, s, 5", R™']. We have:

CT ts,0.set(u) —" s[le; < ul,unit
CT'E s, 0 set(u) =" s'[les; — u][lez; < v'],unit

10

and(s[le; < u], 8'[lers < u][le2; < u'], R™, R®*®) € R.

6.2 The Observer Pattern

Here we will prove the equivalence of the two implementagioh
the Observer pattern, shown in Figure 1. For the purposeliof t
example, we assume that the language is extended in thewssyal
with vectors.

As before we construct a s& that will satisfy the adequacy
conditions of Theorem 5.4. This set is shown in Figure 5, wher
C andC’ are the two related definitions of tld®servable class.
As in the previous example, it is easy to see fRaatisfies condi-
tions 1-5 of Theorem 5.4.

It remains to show condition 6 for the public methossd
andnotifyAll. Consider an arbitrary tuples, s’, R'*', R°*®) €
R, and an arbitrary pair of related class tablg¥,C7’) €
CT[R®®]. For any

0= 0bj C{f2; = ka;,ovects = l1;,- -
count = lc;},
o' = 0bj C{f2; = k24,0 = l};,next = l;,41;, count = I, }

with (0,0") € Vabservanie [CT,CT, s, 8", R'*'] we have tha€7 -
C <:0bservable, C7'F C <:0Observable.

We need to show that the applications ofadd(u) and
o' .add(u'), where(u,u') € Vovserver[CT,CT’,s,s’, R™], both
terminate, and the final states are describeRl.itWe do this by two
easy inductions om;, one for each implementation afid.

Next we need to show condition 6 for invocations of the
applyAll method. We do this in two steps: first we show that
the invokingapplyAll on both sides causes the invocation of the
notify method on the objects; ;, ..., u,; on the left-hand side,
and on the objects’;, ..., u},; on the right-hand side. We do this
by an induction on the first argument of thetify method for the
left-hand side, and an induction on the size of the linkeddisthe
right-hand side.

Then we need to show that each invocation@fify on the re-
lated objects will not break condition 6; i.e. for &, s, R"*, R°'®)
€ R, al (C7T,CT') € CT[R®™)], and all (v,v") €
Vobserver [CT7 CT’7 S, 8’7 Rval], we have:

IHE(k) =
R™, R RF (CT F s,uj;.notify(v):void) C<F

(CT'+ ', u}; notify(v'):void)

,ovectio = l10;,

and the reverse. Here we don't specify the concrete definiio
the Observer class. Instead we rely on the quantification over all
related well-typed class tables to consider all class difirs of
Observable that have the rightotify method. Furthermore, we
know that the computation;;.notify (o) will terminate ink steps,
since it is a sub-computation of the invocationnotifyAll(o)
which terminates irk + 1 steps. Therefore we can apply the in-
duction hypothesigH & (k) and conclude that the above formula is
true. This concludes the proof of equivalence of the two eanm@n-
tations of0bservable.

7. Related Work

Banerjee and Naumann in [2] present a method for reasoning
about the equivalence of programs in a subset of Java, sitoila
FWI Java. Their technique is based on a denotational model in
which they build a simulation relation of denotations. Thesg a
notion of confinemento restrict certain pointers to the heap, and
show that if two class tables are confined and there is a stionla
between their denotations, then these class tables anaatanii It

is not clear if this technique is complete. This is becausg ton't
show that there is a simulation relation for any two equinbbnd
confined class-tables, but also because the technique $edphd

2006/7/19

R = {(SvslvRvalvRCIsH HCTv flvkhk‘/lvvlvvivaC: f27k27ké7v27vé7llv e 7l107U17 e

, U10,

! / / !
lc7lc7nvlly"' 7ln+17u17"'

/ / / / / .
y Un 415 lnwtl: ce :lnwtn+17 01,7 3 0p4q ¢

s = lk1 = vi][ke = vel][li = u1,- -+ ,l10 = w10, lc =n]

s = [k = vp][ky = o]l = uf, - -

Rcls — {(070/)}

7 — 7 7 — 7
7ln+1 7un+1vlnwt1 =07,

Rval — {(Ob]D{fl = k1}7 Ob]D{fl

7 — T
7lnwtn+1 = Op4t1s It =n]

k1)),

(0bj C{f2 = ka,0ovect:1 =11, -

,ovectig = lio, count = [},

obj C{fz = k2,0 =1} ,next =1,

CT C <:0Observable
CT F D £:0Observable

count = I.})}

nxtl?

0;j = obj Observable {o = I/, nest =1,

nxtj+1-

count =1;},1<j<n

('Ul,'l)i), (U27Ué)7 (ulyull)7 e (U‘nvu{n) € Rval

Up+1 = ... = Uip =null

ul, 1 = Opy1 =null}

Figure 5. SetR for the Observer Pattern Equivalence

to reason only about confined class tables. Furthermoreriotis
obvious how this technique can be extended to contextuavaqu
lence of classes, a stronger property than whole prograrvaequ
lence. Our method gives a sound and complete proof techfdque
exactly this stronger property. We were able to show contdixt
equivalent all of their examples, and others not expressibtheir
language, that make use of different private interfacebef¢lated
classes (e.g. our Observer pattern example).

Another technique for reasoning about contextual equiae
in a class-based language is the one from Jeffrey and Rathke i
[10]. They study a Java-like language for which they define-a s
mantic trace equivalence and show that it is sound and caenple
with respect to testing equivalence. This is an elegantnigcie
which can be used to prove equivalences like the adaptationro
examples to their language using an inductive proof as tleeiron
Section 5. The difference with our work is that is that thaydgta
significantly different language. The most important featof that
language, that ours does not have, is a package systemdtrattse
the interaction of classes with their context. Classes atevisi-
ble through the package barriers. Therefore they are nensitile
by classes in other packages and the state of each class@gua
teed to be private. Only interfaces and instances of clabs¢fm-
plement these interfaces are shared between packagesthében
restrictions the interaction of classes with the contexiobges an
interaction of messages. When packages have the samedaterf
and they communicate though teememessages with the context,
then these packages are equivalent. This technique is ptitap
ble to FWI Java where the interaction of classes with theitext
is more complex, and equivalent classes communicate witbah-
text throughrelatedmessages and through the store.

8. Conclusions and Future Work

In the future we would also like to see whether our method can
benefit from ideas in closely related areas, like Separdtagic
[18].

References

[1] Samson Abramsky. The lazy lambda calculus. In David Anég,
editor, Research Topics in Functional Programmijmmages 65-116.
Addison-Wesley, 1990.

[2] Anindya Banerjee and David A. Naumann. Ownership comfieiet
ensures representation independence for object-origmoggtams.J.
ACM, 52(6):894-960, 2005.

[3] Nina Bohr and Lars Birkedal. Relational reasoning fauesive types
and references. Submitted for publication, May 2006.

[4] William R. Cook. A denotational semantics of inheritanclechnical
Report CS-89-33, 1989.

[5] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba.
syntactic theory of sequential contrdlheoretical Computer Science
52(3):205-237, 1987.

[6] Matthias Felleisen. The Calculi of Lambda-v-cs Conversion: A
Syntactic Theory of Control and State in Imperative Higbeder
Programming Language$hD thesis, Indiana University, 1987.

[7] Matthew Hennessy and Robin Milner. On observing nornueitgism
and concurrency. IfICALP, pages 299-309, 1980.

[8] Douglas J. Howe. Proving congruence of bisimulationuindtional
programming language$nformation and Computatiqri24(2):103—
112, February 1996.

[9] Atshushi Igarashi, Benjamin Pierce, and Philip Wadteratherweight
Java: A minimal core calculus for Java and GJ. In Loren M&ssn
editor, Proceedings of the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages & Agdics
(OOPSLA'99) volume 34(10), pages 132146, N. Y., 1999.

We have presented a sound an complete method for reasoning[10] A. S. A. Jeffrey and J. Rathke. Java jr.: Fully abstraece

about contextual equivalence in a subset of Java. This metho
successfully deals with inheritance, public and privateriiaces of
classes, and imperative fields. We were able to use this mhétho
prove equivalences in examples with different local staeavior,
and higher-order features like the invocations of calllsack

We have seen that our method can deal with the null-pointér an
cast exceptions of Java. We would like to investigate furtimethis
direction and see if our technique can prove contextuahatprice
in a language with more advanced control effects (e.g. [5]).

11

semantics for a core Java languagePtoc. European Symposium on
Programming volume 3444 ol ecture Notes in Computer Science
pages 423-438. Springer-Verlag, 2005.

[11] Samuel Kamin. Inheritance in smalltalk-80: A denaiatl definition.
In Proceedings 15th Annual ACM Symposium on Principles of
Programming Languagepages 80-87, 1988.

[12] Vasileios Koutavas and Mitchell Wand. Bisimulatiors tintyped
imperative objects. In Peter Sestoft, edifdrpc. ESOP 2006v0lume
3924 ofLecture Notes in Computer Scienpages 146-161, Berlin,

2006/7/19

Heidelberg, and New York, 2006. Springer-Verlag.

[13] Vasileios Koutavas and Mitchell Wand. Small bisimidat for
reasoning about higher-order imperative programsPrisceedings
33rd ACM Symposium on Programming Languagegjes 141-152,
January 2006.

[14] lan A. Mason and Carolyn L. Talcott. Equivalence in ftional
languages with effectslournal of Functional Programmingl:287—
327,1991.

[15] Albert R. Meyer and Kurt Sieber. Towards fully abstraemantics
for local variables: Preliminary report. Broceedings 15th Annual
ACM Symposium on Principles of Programming Languageses
191-203, 1988.

[16] James H. Morris, Jr.Lambda Calculus Models of Programming
LanguagesPhD thesis, MIT, Cambridge, MA, 1968.

[17] Andrew Pitts and lan Stark. Operational reasoning torctions
with local state. In Andrew Gordon and Andrew Pitts, editors
Higher Order Operational Techniques in Semantigages 227-273.
Publications of the Newton Institute, Cambridge Univgr§itess,
1998.

John C. Reynolds. Separation logic: A logic for sharadable data
structures. InProc. 17th IEEE Symposium on Logic in Computer
Sciencepages 55-74, Washington, DC, USA, 2002. IEEE Computer
Society.

(18]

[19] Eijiro Sumii and Benjamin C. Pierce. A bisimulation fdynamic
sealing. InProceedings 31st Annual ACM Symposium on Principles
of Programming Languagepages 161-172, New York, NY, USA,

2004. ACM Press.

Eijiro Sumii and Benjamin C. Pierce. A bisimulation foype
abstraction and recursion. [Rroceedings 32nd Annual ACM
Symposium on Principles of Programming Languageses 63—
74, New York, NY, USA, 2005. ACM Press.

[20]

A. Appendix
Here we show the proof of Theorem 4.5.

Definition A.1. CT < C7; U C7T; is the ternary relation defined
by the smallest congruence” < C7; containing

(e, (newX ()).m(%))
and the smallest s€7; containing the class definition
X = class X extends Object{public tm(Z, y){[y/z]e}}
forall e, z, t, t.., and for someX, y, m, such that:
CT;xily; Ok et
XgCT
CT:0K

Lemma A.2. If CT < CT1 U CT,, thenCT; UCT7:0K, and for
all storess, expressiong, and types such thatC7; §; s - e:t we
haveCT: U CT; 0; s - e:t.

Proof. By induction on the structure @f7, C71, C7s. a

LemmaA.3. If CT < CT: U C7T>, then for all stores;, expressions
e, and typeg, such thatC7T; (); s - e:t, we have

CTtks,e]l <= ChUChLEs,el
Proof. As in [20]. |
The proof of Theorem 4.5 follows:

Proof. The forward direction is done by inspection of the defini-
tions of &.) and €), and becaus€'T[=] C CT[=.].

12

For the reverse direction let
R™® = {(class X extends Object{public tm(t,y){[y/z]e}},

class X extends Object{public tm(t, y){[y/x]e'}})}

andR*® C (=).

Also let R®? = {(T,e,€’,t)}, wherel' = z:t,. Take any
(CT,CT') € CT[R®™], eo, andt, such thatX is not a class name
inCT,CT;0;0F eo:t,andCT 0, eo].

ConstructC7y, CT>, CT{, andC7T; such that:

CT X CTLUCT

CT' < CT/ uCT
CT> = {class X extends Object{public tm (T, y){[y/z|e}}}
CT; = {class X extends Object{public tm(t, y){[y/z]e'}}}

We have:
CT+ @7 eol

& CTiUCTED el by Lemma A.3
CT/UCT/F0,e0] (CTyUCT,,CT{ UCT;) € CT[=]
CT'+0,e0] by Lemma A.3

a

Returns the class name dle-
fined by the class definitiod.

C.classname

CT .C.super Returns the name of the class
that C' extends.
CT.C.constr Returns the constructor defi-

nition of classC'.

Returns the constructor type
of classC

CT .C.constr.type

CT .C fields Returns a sequence of all of
the field definitions (public
and private) of clasg’ and all
its superclasses.

CT .C.methods Returns a sequence of all

the method definitions (pub-
lic and private) that can be in-
voked on an instance of class
C.

Traverses up the class hierar-
chy, starting from clas§’ and
returns the first name of the
class in which methodn is
defined.

CT .C.m.defclass

Figure 6. Meta-Functions

2006/7/19

