
Proving Class Equivalence

Vasileios Koutavas
Northeastern University
vkoutav@ccs.neu.edu

Mitchell Wand
Northeastern University

wand@ccs.neu.edu

Abstract
We present a sound and complete method for reasoning about con-
textual equivalence between different implementations ofclasses
in an imperative subset of Java. Our technique successfullydeals
with public and private methods and fields, imperative fields, in-
heritance, and invocations of callbacks. To the extent of our knowl-
edge this is the first sound and complete proof method of equiv-
alence between classes for such a subset of Java. Using our tech-
nique we were able to prove equivalences in examples with higher-
order behavior, where previous methods for functional calculi ad-
mit limitations [17, 20]. We were also able to show equivalences be-
tween classes that expose part of their state using public fields, hide
part of their functionality using private methods, and are extensible
by the surrounding context. Other reasoning techniques forclass-
based languages [2, 10] restrict the way a class communicates with
and abstracts functionality from its context. We derive ourtech-
nique following a methodology similar to our previous work on
functional [13] and object-based [12] languages, thus showing that
this methodology gives useful results in a diversity of languages.

Categories and Subject Descriptors F.3.2 [Logic and Meanings
of Programs]: Semantics of Programming Languages—operational
semantics; D.3.3 [Programming Languages]: Language Con-
structs and Features—procedures, functions and subroutines; D.3.1
[Programming Languages]: Formal Definitions and Theory—
semantics

General Terms theory, languages

Keywords contextual equivalence, bisimulations, lambda-calculus,
higher-order procedures, imperative languages

1. Introduction
The class is a facility to divide, conceptually and textually, pro-
grams in small units that encode different parts of the entire pro-
gram behavior. This makes classes attractive for reuse and refac-
toring. But refactoring a class that is being used in a numberof
programs comes with the responsibility that the new implementa-
tion will not alter the behavior of these programs. To formalize this
property we adapt the standard notion of contextual equivalence
between expressions from functional languages [16] to an equiv-
alence between classes in class-based languages: classesC and
C ′ are contextually equivalent, if and only if, for allclass table

[copyright notice will appear here]

contextsCT [], expressionse, and the empty store∅, the program
configurations(CT [C], ∅, e) and(CT [C′], ∅, e) have the same op-
erational behavior.

Using this definition directly for proving the equivalence of two
sufficiently different implementations of a class is not possible.
This is because of the quantification over all class table contexts,
but also because it is not strong enough to support an inductive
proof which would require to consider not just equal, but also re-
lated stores. CIU theorems [14] ease the quantification overcon-
texts by considering only the evaluation contexts, but theysimilarly
are not strong enough in general to support an inductive proof. Also
to the extent of our knowledge CIU theorems have not been applied
to class-based languages.

Another way of reasoning about the behavior of class imple-
mentations is by using denotational methods (see [4, 11]). Denota-
tions are usually compositional in the sense that they give the mean-
ing of program fragments without the quantification over contexts.
Nevertheless the usual denotational methods distinguish equivalent
class implementations that have a different local store behavior.
For example the two implementations of the Observer patternin
Figure 1 would have different denotations because they havedif-
ferent fields. Such equivalences can be dealt with by methodsthat
build logical relations of denotations [3], or exploit properties of
some programs, such as ownership confinement [2]. These methods
though are still not complete in respect to contextual equivalence.

A more natural way to reason about the behavior of two pro-
gram fragments is by using bisimulations. Bisimulations were in-
troduced by Hennessy and Milner [7] for reasoning about the be-
havior of concurrent programs. They were applied in sequential cal-
culi by Abramsky [1] and proven to be a congruence by Howe [8].
Sumii and Pierce later gave a bisimulation proof technique which
is sound and complete with respect to contextual equivalence in a
language with dynamic sealing [19] and a language with recursive
and polymorphic types [20]. Their key innovation was to split the
bisimulations into parts, and associate each part with the condi-
tions of knowledge under which that part of the bisimulationholds.
Building on that idea we were able to devise a technique for deriv-
ing sound and complete definitions of bisimulation from a context-
based semantics [6]. We applied this method to derive definitions of
sound and complete bisimulation for a lambda calculus with store
[13] and for an imperative object calculus [12]. We used these tech-
niques to prove non-trivial equivalences that involve local store and
higher-order procedures [15].

Here we apply the same technique to derive a method for prov-
ing equivalence between classes in a subset of Java. One of the
differences from our previous work is that, in contrast withexpres-
sions, classes are static entities. The contexts of classesare class-
table contexts which are also static. These static entitiesare con-
nected to the dynamic behavior of the program by the instantiations
of classes to objects. As a result the conditions that we derive for
two classes to be equivalent are mostly conditions on the possible
instances of these classes.

1 2006/7/19

class Observable extends Object {
private Observer[10] ovect;
private int count;

Observable(){
super();
count:=0;
this.ovect[1] := null;
...
this.ovect[10] := null

}
public void add(Observer o){

if (count < 10) then
count:= count+1;
ovect[counter]:=o

else unit
}
public void notifyAll(Object arg){

notify(1, arg)
}

private void notify(int i, Object arg){
if (i < count+1) then
ovect[i].notify(arg);
this.notify(i+1, arg)

else unit
}

}

class Observable extends Object {
private Observer o;
private Observable next;
private int count;

Observable(){
super();
this.o := null;
this.next := null;
this.count := 0

}
public void add(Observer o){

if (this.count < 10) then
this.count := this.count + 1;
if (this.next = null) then

this.o := o;
this.next := new Observable()

else
this.next.add(o)

else unit
}
public void notifyAll(Object arg) {

if (this.next != null) then
this.o.notify(arg);
this.next.notifyAll(arg)

else unit
}

}

Figure 1. Two implementations of the Observer pattern

Another difference is that the language we consider here has
runtime errors. We treat errors as constants that belong to all types:
we require that if an operation on an instance of a class results in
an error, then the same operation on the corresponding instance of
a related class should also result in thesame error.

In our language, classes can also hide some of their methods
from the context by using theprivate access modifier. As a result
our technique deals with a larger set of examples than other rea-
soning techniques for class-based languages [2, 10]. For example,
the two implementations of the Observer pattern shown in Figure 1
would not be equivalent if the methods were all public. Classes can
also expose part of their state by making some of their fields public.
This creates some extra conditions for related classes withpublic
fields to ensure that their instances have the same behavior for all
the values that the context can assign to the public fields.

An interesting aspect of our language is that the context can
also extend two related classes and override some of the public
methods. One would think that our analysis would have been more
fine-grained if our language also allowed aprotected interface of
classes. In the contrary, the protected interface is in effect the same
as the public interface. If extending a class and then manipulat-
ing protected fields and invoking protected methods can distinguish
two class implementations, then so does instantiating the class and
then manipulating the same fields and invoking the same methods.
The real effect of inheritance to our reasoning is that when pub-
lic methods are invoked either the original body of the method, or
the body of a possible method that overrides it may be called.Our
technique, though, makes reasoning about invocations of unknown
implementations of methods easy because of the use of an induc-
tion hypothesis (see also [12]).

Our technique for reasoning about class equivalence has the
following benefits:

• It is a sound and complete method for proving contextual equiv-
alence of classes and expressions.

• It is able to prove equivalences between classes with different
store behavior.

• It is able to prove equivalences of classes that invoke callbacks,
which is a higher-order feature in object-oriented languages.

• It successfully deals with inheritance, and with private and
public interfaces of classes.

• It is derived by a method which is applicable to a variety
languages.

In Section 2 we give the language that we study, and its static
and dynamic semantics. In Section 3 we start our method of deriv-
ing a proof technique of equivalence by stating a definition of con-
textual equivalence between classes, and a definition of adequacy
for relations on classes; we then show that these two definitions
coincide. In Section 4 we give a definition of contextual equiva-
lence for expressions and we connect it to contextual equivalence
of classes. In Section 5 we attempt an abstract proof of adequacy
for an arbitrary set, from which we find the conditions that this set
needs to satisfy in order to be adequate. We then formulate these
conditions in a theorem of adequacy, the main theorem of thispa-
per. Section 6 contains two example equivalences between classes
and their proofs using the main theorem. Finally, in Sections 7 and
8, we give some related work and our conclusions.

2. The language FWI Java
For the purposes of this work we choose to study an imperative
extension of Featherweight Java [9] which we call FWI Java. The
syntax of FWI Java is shown in Figure 2. The expressions of the
language are the object operations of Featherweight Java (new
object, field lookup, method invocation, casting) with the addition
of field update. The language has also constants, and a conditional
and a let-binding expression. Moreover fields and methods inour
language can be declaredpublic or private.

2 2006/7/19

The types of FWI Java are the class-name types, as well as the
ground typesvoid, int, andbool. There is aunit constant of
typevoid, true andfalse of typebool, and the integers of type
int.

The values of the language are constants or objects. The latter
are structures that contain the name of the class which they instan-
tiate, and a binding for each field of the class and its superclasses
to the location in the store in which the value of the field is kept.
We assume there is no shadowing of fields, something that can be
achieved automatically by changing the names of all the fields to
include the name of the class in which they are defined.

FWI Java has also two kinds of errors: a cast error (cerr) for
invalid casting, and a null error (nerr) for the case that a program
tries to perform an operation on anull value.

Class definitions are similar to those of FW Java, defining the
name of the class, the class which it extends, the fields and methods
of the class, and the constructor of the class. We assume thatthere
is a rootObject class, with no fields and methods, which doesn’t
extend any other class. In FWI Java there are alsopublic and
private access modifiers in the definitions of fields and methods
that specify the scope of these names. Public methods and fields are
visible to all classes, while private methods and fields are visible
only from the same class.

To allow private fields to be completely isolated from the con-
text, we used a different kind of constructors than in FW Java. In-
stead of exposing as arguments to the constructors all the fields,
public and private, we allow a different definition of constructors.
The constructor of each class may have an arbitrary number of
arguments of any type and it must initialize all the fields in the
class, possibly using its arguments. Moreover, just as in FWJava, a
call to the constructor of the superclass is made by the keyword
super before any local initialization of fields. The expressions
that are used to provide the arguments tosuper and the values
to the field initializations may not refer to the special variablethis
(DontReferToSelf(e)), ensuring that no uninitialized field is ever
used. As an example the following class definition is valid inour
language:

class C extends Object{
public intf;
private intg;
C(intx){super(); this.f := ∗(17, x); this.g := +(17, x); }}

Class tables are sets of classes. Well-formed class tables define
a tree hierarchy, where the root of the hierarchy is the classObject :

class Object extends ·{Object(){}}

Object is the only class that doesn’t extend any other class. Fur-
thermore, all the classes in a well-formed class table have distinct
names. We test the well-formedness of a class table by the predicate
wfClassHierarchy(CT).

We will use meta-operations and the dot notation to perform
static lookup on class tables, methods, and fields. For example
CT .C returns the definition of the class namedC from the class
tableCT , andCT .C.fields returns a sequence of all the field defi-
nitions inC and its superclasses. A complete table of these meta-
operations and a description of their functionality is shown in Fig-
ure 6 of the Appendix.

Stores are partial maps from locations to values. The type of
the value stored in locationl of stores is obtained bys.l.type. A
program configurationis a triple composed by a class table, a store,
and a closed expression, writtenCT ⊢ s, e. An initial configuration
is a program configuration that contains the empty store.

The typing rules of FWI Java are shown in Figure 3. The type
judgments for expressions have the formCT ; Γ; s ⊢ e:t . Γ is the
type environment. The stores is used to type-check the locations

referred to by the objects; the value stored in a location hasthe type
s.l.type. In this way stores are used as store typings in the typing
judgments. The constantnull has any class type defined in the
class table. The rest of the typing judgments for expressions are the
expected ones for a language like FWI Java.
CT ⊢ t1 <: t2 are the subtyping judgments imposed by the

class-hierarchy and the reflexive and transitive property.The
typing judgments for method, class, and class-table definitions
are CT ⊢ M:OK in C , CT ⊢ C:OK, andCT :OK, respectively.
(CT ⊢ s, e):OK is the typing judgment for program configurations.

In Figure 4 we give a small-step semantics for FWI Java. A
small-stepCT ⊢ s, e → s1, e1 describes a transition from the
program configurationCT ⊢ s, e to the configurationCT ⊢ s1, e1.
We also define→∗ to be the reflexive and transitive closure of→,
and→<k the reflexive and up tok − 1 steps transitive closure
of →. We also writeCT ⊢ s, e↓ iff there existss1 , w , such that
CT ⊢ s, e→∗ s1, w.

We write in calligraphic font the meta-identifiers that denote
class-table, class, constructor, or method definitions. Wealso use an
overbar notation to denote syntactic sequence with arbitrary length.
When expanded, all the meta-identifiers in the sequence are anno-
tated with the appropriate subscripts; e.g. we writeobj C {f = l},
instead ofobj C {f1 = l1, f2 = l2, . . . , fn = ln}.

3. Equivalence and Adequacy
We reason about the behavior of class implementations. Thuswe
need to define class table contexts, relations on classes, and their
extension to class tables.

Definition 3.1. A class table context, CT [], is a set of class defini-
tions. Placing a class definition, or a sequence of class definitions,
in the hole of a class table context corresponds to set union:

CT [C]
def
= CT ∪ {C}

Definition 3.2. Rcls is a relation on classes iff it is a set of pairs
of class definitions, such that for all(C,C′) ∈ Rcls, and all class-
table contextsCT []:

CT [C]:OK⇐⇒ CT [C′]:OK

The above definition requires that we relate only class defini-
tions that are interchangeable at compile time; i.e. replacing one
with the other in a class-table context doesn’t affect the type judg-
ment of the program. In practice this means that the related classes
have the same name, extend the same superclass, and have the same
public interface.

Definition 3.3. If Rcls is a relation on classes, then the following
is its extension to class tables:

CT [Rcls]
def
= {(CT [C], CT [C′]) | (C,C′) ∈ Rcls,

CT [C]:OK}

We give the following definition of contextual equivalence for
FWI Java:

Definition 3.4 (Contextual Equivalence (≡)). (≡) is the largest
relation on classes such that for all(CT , CT ′) ∈ CT [≡], expres-
sionse, and typest , such thatCT ; ∅; ∅ ⊢ e:t , we have:

CT ⊢ ∅, e↓ ⇐⇒ CT ′ ⊢ ∅, e↓

This definition does not give rise to a usable proof techniquefor
equivalence. We will instead give a definition of adequacy which
can be used in an inductive proof, and then show how adequacy
coincides with contextual equivalence.

We will define adequacy as a property of the following relations.

3 2006/7/19

PROGRAM CONFIGURATIONS: pconf ∈ CT × STORES× EXPRESSIONS
CLASS TABLES: CT ∈ P(CLASS DEFINITIONS)

CLASS DEFINITIONS: C ::= classC extends D{mod tf ;KM}
CONSTRUCTORDEFINITIONS: K ::= C (tx){super(e); this.f := e}

METHOD DEFINITIONS: M ::= mod tm(tx){e}

TYPES: t ::= void | int | bool | C
MODIFIERS: mod ::= public | private

EXPRESSIONS: e, d ::= v | x Values, Identifiers
| e.f | e.m(e) Field Lookup, Method Invocation
| newC (e) | (C)e Class Instantiation, Object Cast
| e.f := e | op(e) Field Update, Arithmetic Operators
| let x = e in e | if e then e else e Let Expression, Conditional

VALUES: v, u, w ::= c | o
CONSTANTS: c ::= unit | null | true | false | 0 | ±1 | ±2 | . . . Unit, Null, Booleans, Integers

OBJECTS: o ::= obj C {f = l}
ERRORS: ε ::= cerr | nerr Cast Error, Null Error

LOCATIONS: l, k
STORES: s ∈ LOCATIONS ⇀ VALUES

Figure 2. Syntax of FWI Java

Definition 3.5. A relation R is a set of tuples(s, s′, Rval,Rcls),
wheres, s ′ are stores,Rval is a relation on objects, andRcls is a
relation on classes.

For the definition of adequacy we also need to defineR-related
values and expressions.

Definition 3.6. If Rval is a relation on objects,CT , CT ′ class
tables, ands, s′ stores, then the following is a relation on values of
typet :

Vt [CT , CT ′, s, s′, Rval]
def
= {(v, v′) | (v, v′) ∈ Rval ∪ Id const,

CT ; ∅; s ⊢ v:t ,
CT ′; ∅; s′ ⊢ v′:t}

∪ {(cerr, cerr), (nerr, nerr)}

Definition 3.7. If Rval is a relation on objects,CT , CT ′ class
tables, ands, s′ stores, then the following is a relation on closed
expressions of typet :

Et [CT , CT ′, s, s′, Rval]
def
=

{([v/x]e, [v′/x]e) | FV (e) ⊆ {x},

(v, v′) ∈ Rval,
Obj (e) = ∅,

CT ; ∅; s ⊢ [v/x]e:t ,

CT ′; ∅; s′ ⊢ [v′/x]e:t}

By requiring thatObj (e) = ∅ in the above definition we force
all R-related expressions to use onlyR-related objects.

We now give the definition of adequate relations.

Definition 3.8 (Adequacy). R is adequate if and only if:

∀(s, s′, Rval,Rcls) ∈ R.

∀(CT , CT ′) ∈ CT [Rcls].

∀ t,∀(e, e
′) ∈ Et [CT , CT ′, s, s′, Rval].

∀ s1, w.
(CT ⊢ s, e→∗ s1, w)
=⇒ ∃ s′1, w

′, Rval
1 .

(CT ′ ⊢ s′, e′ →∗ s′1, w
′)

∧((w, w′) ∈ Vt [CT , CT ′, s1, s
′

1, R
val
1])

∧((s1, s
′

1, R
val
1 ,Rcls) ∈ R)

∧(Rval ⊆ Rval
1)

and the reverse.

Adequate relations are sound and complete in the following
way.

Theorem 3.9 (Soundness).If R is adequate and(∅, ∅, ∅, Rcls) ∈
R thenRcls ⊆ (≡).

Proof. Immediate by the definitions of adequacy and contextual
equivalence.

Theorem 3.10 (Completeness).If Rcls ⊆ (≡) then there exists
adequateR with (∅, ∅, ∅, Rcls) ∈ R.

Proof. (Sketch) LetRcls ⊆ (≡). ConstructR inductively, starting
with (∅, ∅, ∅, Rcls) ∈ R as the base case, and adding tuples inR
using Definition 3.8. ForRval

1 use the extension ofRval with the
objects that were created during the evaluation. If there isa state
of R that distinguishes the two sides, then it means that there isa
context that would invalidate Definition 3.4. Thus the constructed
R is adequate.

4. Extension of Equivalence to Open Expressions
In this section we give a definition of contextual equivalence be-
tween expressions which is closer to the standard one and itscon-

4 2006/7/19

CT ; Γ; s ⊢ e:t

x:t ∈ Γ

CT ; Γ; s ⊢ x:t CT ; Γ; s ⊢ unit:void

c ∈ {true, false}

CT ; Γ; s ⊢ c:bool

c ∈ {±1,±2, · · · }

CT ; Γ; s ⊢ c:int

classC extends D{· · ·} ∈ CT

CT ; Γ; s ⊢ null:C

C ∈ CT
l ∈ Dom(s)

CT .C.fields = mod tf
CT ⊢ s.l.type <: t

CT ; Γ; s ⊢ obj C {f = l}:C

CT ; Γ; s ⊢ e:C
CT ; Γ; s ⊢ this:C0

f ∈ accessible(CT , C, C0)
tf ∈ CT .C.fields

CT ; Γ; s ⊢ e.f :t

CT ; Γ; s ⊢ e:C
CT ; Γ; s ⊢ this:C0

f ∈ accessible(CT , C, C0)
mod tf ∈ CT .C.fields
CT ; Γ; s ⊢ e1:t

CT ; Γ; s ⊢ e.f := e1:void

CT ; Γ; s ⊢ e:C
CT ; Γ; s ⊢ this:C0

m ∈ accessible(CT , C, C0)
mod t0→tm ∈ CT .C.methods

CT ; Γ; s ⊢ e0:t0

CT ; Γ; s ⊢ e.m(e0):t

CT .C.constr.type = t→C
CT ; Γ; s ⊢ e:t

CT ; Γ; s ⊢ newC (e):C

CT ; Γ; s ⊢ e:D
CT ⊢D <: C

CT ; Γ; s ⊢ (C)e:C

CT ; Γ; s ⊢ e:D
CT ⊢ C <: D C 6= D

CT ; Γ; s ⊢ (C)e:C

CT ; Γ; s ⊢ e:t0
op.type= t0→t

CT ; Γ; s ⊢ op(e):t

CT ; Γ; s ⊢ e1:t1
CT ; Γ, x:t1 ; s ⊢ e:t

CT ; Γ; s ⊢ let x = e1 in e:t

CT ; Γ; s ⊢ e1:bool
CT ; Γ; s ⊢ e2:t
CT ; Γ; s ⊢ e3:t

CT ; Γ; s ⊢ if e1 then e2 else e3:t

CT ; Γ; s ⊢ e:t1
CT ⊢ t1 <: t

CT ; Γ; s ⊢ e:t

CT ⊢ t1 <: t2

CT ⊢ t <: t

CT ⊢ t1 <: t2 CT ⊢ t2 <: t3

CT ⊢ t1 <: t3

CT .C.super = D

CT ⊢ C <: D

CT ⊢M:OK in C

CT ; x:t1 , this:C ; ∅ ⊢ e:t CT .C.super = D overridable(CT ,mod t1→tm,D)

CT ⊢mod tm(t1 x){e}:OK in C

CT ⊢ C:OK CT :OK (CT ⊢ s, e):OK

K = C (tx x){super(e1); this.f := e2}
CT .D.constr.type = td→D

DontReferToSelf(e1) CT ; x:tx ; ∅ ⊢ e1:td
DontReferToSelf(e2) CT ; x:tx ; ∅ ⊢ e2:tf

CT ⊢M:OK in C

CT ⊢ classC extends D{tf f ;KM}:OK

{C} ⊢ C:OK

wfClassHierarchy({C})

{C}:OK

CT :OK
CT ; ∅; s ⊢ e:t

(CT ⊢ s, e):OK

Figure 3. Typing of FWI Java

nection with (≡). To do this we need to define a family of relations
on open expressions:

Definition 4.1. A relation Rexp on expressions is a set of tuples
(Γ, e, e′, t), such that for all class tablesCT :

CT ; Γ; ∅ ⊢ e:t ⇐⇒ CT ; Γ; ∅ ⊢ e′:t

This definition requires “compile-time” interchangeability of
related expressions, in the same sense of Definition 3.2.

We also define the necessary class and expression contexts, and
the extension of relations on expressions to relations on class tables:

Definition 4.2 (Class and Expression Contexts).

C[] ::= classC extends D{
mod tf f ;

C (tx){super(E []); this.f := E []}

mod tm m(tx){E []}}

E [] ::= [] | E [].f | E [].m(E []) | newC (E []) | (C)E []

| E [].f := E [] | op(E []) | let x = E [] inE []
| ifE [] then E [] else E []

Definition 4.3. If Rexp is a relation on expressions, then the fol-
lowing is its extension to class tables:

CT [Rexp]
def
= {(CT [C[e]], CT [C[e ′]]) | (Γ, e, e′, t) ∈ Rexp,

CT [C[e]]:OK,

CT [C[e ′]]:OK}

5 2006/7/19

CT ⊢ s, e→ s1, e1

CT .C.constr = C (tx){super(e1); this.f := e2}
CT .C.super = D

CT ⊢ s, newC (v)→ s, [v/x](newD(e1); this.f := e2)C

lc 6∈ Dom(s)

CT ⊢ s, (obj D{fd = ld}; this.fc := vc)C → s[lc = vc], obj C {fd = ld, fc = lc}

CT ⊢ s, obj C {f = l}.fi → s, s.li CT ⊢ s, null.fi → s, nerr

CT .C.m = mod tm(tx x){e}

CT ⊢ s,obj C {f = l}.m(v)→ s, [v/x, obj C {f = l}/this]e CT ⊢ s, null.m(v)→ s, nerr

CT ⊢ s,obj C {f = l}.fi := v → s[li← v], unit CT ⊢ s, null.fi := v → s, nerr

CT ⊢ C <: D

CT ⊢ s, (D)obj C {f = l} → s, obj C {f = l} CT ⊢ s, (D)null→ s, null

CT ⊢ C ≮: D

CT ⊢ s, (D)obj C {f = l} → s, cerr

CT ⊢ s, let x = v in e→ s, [v/x]e CT ⊢ s, if true then e1 else e2 → s, e1 CT ⊢ s,if false then e1 else e2 → s, e2

Evaluation Contexts

E ::=E | E [E]
E ::= [] | [] .f | [] .m(e) | v.m(v, [] , e) | newC (v, [] , e) | (C)[] | [] .f := e | v.f := [] | let x = [] in e
| if [] then e else e | op(v, [] , e) | ([] ; this.f := e)C | (v; this.f := v, [] , e)C

CT ⊢ s,E [e]→ s1,E [e1]

CT ⊢ s, e→ s1, e1

CT ⊢ s,E [e]→ s1,E [e1] CT ⊢ s, E [ε]→ s1, ε

Figure 4. Small-step Operational Semantics of FWI Java

Contextual equivalence of expressions in FWI Java is definedto
be the following relation:

Definition 4.4 (Contextual Equivalence of Expressions (≡e)).
(≡e) is the largest relation between expressions, such that for
all (CT , CT ′) ∈ CT [≡e], expressionse, and typest , such that
CT ; ∅; ∅ ⊢ e:t andCT ′; ∅; ∅ ⊢ e:t , we have:

CT ⊢ ∅, e↓ ⇐⇒ CT ′ ⊢ ∅, e↓

We now give the connection between (≡) and (≡e):

Theorem 4.5. (Γ, e, e′, t) ∈ (≡e) if and only ifRcls ∈ (≡), and
for fresh identifiersy:

Rcls = {classC extends Object{public tm(tx y){[y/x]e}},

classC extends Object{public tm(tx y){[y/x]e′}})}
Γ = tx x

Proof. Appendix.

In the above theorem we rename the free variables inside the
related expressions, in order to avoid erroneous capturingof the
special variablethis.

5. Proof Obligations for Adequacy
One may show the equivalence between two class implementations
by constructing a setR and then prove its adequacy by an induction
based on Definition 3.8. The construction of the appropriateR is
not obvious, though. Moreover for eachR one would have to repeat
the entire proof of adequacy.

Our goal in this section is to find the sufficient properties ofR
that would make the proof of adequacy to go through. These prop-
erties will serve as a guide to the construction ofR. Furthermore we
will show that proving just these conditions on a set is equivalent
to doing the inductive proof for that set.

To do this we investigate the class of all inductive proofs based
on Definition 3.8 by abstracting over the concrete structureof R
and attempting to prove adequacy. This abstract proof reveals the
sub-cases of the induction that don’t go through just by using the
induction hypothesis, but also require that the states ofR satisfy
some extra properties, theproof obligationsof R.

As we will show in the examples, the individual proof obliga-
tions forR give a guideline on how to construct such an adequate
set. Furthermore proving these conditions requires less effort than
the full-blown induction.

Conjecture 5.1 (Abstract Proof of Adequacy).For some relation
R, R is adequate.

6 2006/7/19

Proof. The proof consists of two inductions, one for the forward
direction of Definition 3.8 and one for the reverse direction. The
induction hypothesis of the former is:

IH (k) =

∀(s, s
′, Rval,Rcls) ∈ R.

∀(CT , CT ′) ∈ CT [Rcls].

∀ t,∀(e, e
′) ∈ Et [CT , CT ′, s, s′, Rval].

∀ s1, w.
(CT ⊢ s, e→<k s1, w)
=⇒ ∃ s′1, w

′, Rval
1 .

(CT ′ ⊢ s′, e′ →∗ s′1, w
′)

∧((w, w′) ∈ Vt [CT , CT ′, s1, s
′

1, R
val
1])

∧((s1, s
′

1, R
val
1 ,Rcls) ∈ R)

∧(Rval ⊆ Rval
1)

We will show that for allk, IH (k) holds. We assume the
induction hypothesis fork, and we will show that it holds fork+1.

Let (e, e′) = ([v/x]e0, [v′/x]e0), for somee0, v, v′, such that
FV (e0) ⊆ {x}, Obj (e0) = ∅, (v, v′) ∈ Rval, CT ; ∅; s ⊢
[v/x]e0:t , CT ′; ∅; s′ ⊢ [v′/x]e0:t . We proceed by cases one0. We
demonstrate here only the case of method invocation:

If e0 = e1.m(e2) then we have

CT ⊢ s, [v/x](e1.m(e2))→
<k+1 s1, w (1)

We have the following cases:

• w = ε and

CT ⊢ s, [v/x]([e1].m(e2))→
<k s1, [v/x]([ε].m(e2))→ s1, ε

thus:

CT ⊢ s, [v/x]e1 →
<k s1, ε (2)

By (2) andIH (k) we get that there exists ′1 , Rval
1 , such that:

CT ⊢ s′, [v′/x]e1 →
∗ s′1, ε

∧(s1, s
′

1, R
val
1 ,Rcls) ∈ R

∧Rval ⊆ Rval
1

∧(ε, ε) ∈ Rval
1

and furthermore:

CT ⊢ s′, [v′/x](e1.m(e2))→
∗ s′1, [v′/x]([ε].m(e2))→ s′1, ε

• w = ε and

CT ⊢ s, [v/x]([e1].m(e2))

→<k s1, [v/x]([w1].m(e2))

= [v/x](w1.m([e21], e2))

→<k s21, [v/x](w1.m([w21], e2))

= [v/x](w1.m(w21, [e22], e2))
· · ·

→<k s2j−1, [v/x](w1.m(w2, [e2j], e2))

→<k s2j , [v/x](w1.m(w2, [ε], e2))
→ s2j , ε

thus:

CT ⊢ s, [v/x]e1 →
<k s1, w1 (3)

CT ⊢ s1, [v/x]e21 →
<k s21, w21 (4)

. . .

CT ⊢ s2j−2, [v/x]e2j−1 →
<k s2j−1, w2j−1 (5)

CT ⊢ s2j−1, [v/x]e2j →
<k s2j , ε (6)

By (3)-(6) and the induction hypothesis atk , we get, that there exist
s ′1 , w ′

1 , Rval
1 , s ′2 , w ′

2 , Rval
2 , such that:

CT ⊢ s′, [v′/x]e1 →
∗ s′1, w

′

1

∧ ((s1, s
′

1, R
val
1 ,Rcls) ∈ R)

∧ (Rval ⊆ Rval
1)

∧ (w1, w
′

1) ∈ Rval
1

CT ⊢ s′1, [v′/x]e21 →
∗ s2

′

1, w2
′

1

∧ ((s21, s2
′

1, R2
val
1 ,Rcls) ∈ R)

∧ (Rval
1 ⊆ R2

val
1)

∧ (w21, w2
′

1) ∈ R2
val
1

. . .

CT ⊢ s2
′

j−2, [v′/x]e2j−1 →
∗ s2

′

j−1, w2
′

j−1

∧ ((s2j−1, s2
′

j−1, R2
val
j−1,R

cls) ∈ R)

∧ (R2
val
j−2 ⊆ R2

val
j−1)

∧ (w2j−1, w2
′

j−1) ∈ R2
val
j−1

CT ⊢ s2
′

j−1, [v′/x]e2j →
∗ s2

′

j , ε

∧ ((s2j , s2
′

j , R2
val
j ,Rcls) ∈ R)

∧ (R2
val
j−1 ⊆ R2

val
j)

∧ (ε, ε) ∈ R2
val
j

Therefore

CT ⊢ s′, [v′/x]([e1].m(e2))

→∗ s2
′

j , [v′/x](w′

1.m(w′

2, [ε], e2))
→ s2

′

j , ε

and ((s2j , s2
′

j , R2
val
j ,Rcls) ∈ R) and (Rval ⊆ R2

val
j), as re-

quired.

• w = nerr and

CT ⊢ s, [v/x]([e1].m(e2))

→<k s1, [v/x]([null].m(e2))

= [v/x](null1.m([e21], e2))

→<k s21, [v/x](null.m([w21], e2))

= [v/x](null.m(w21, [e22], e2))
· · ·

→<k s2n, [v/x](null.m(w2))
→ s2n, nerr

thus:

CT ⊢ s, [v/x]e1 →
<k s1, null (7)

CT ⊢ s1, [v/x]e21 →
<k s21, w21 (8)

. . .

CT ⊢ s2n−1, [v/x]e2n →
<k s2n, w2n (9)

By (7)-(9) andIH (k) we get that there exists ′1 , w ′

1 , Rval
1 , s ′2 , w ′

2 ,
Rval

2 , such that:

CT ⊢ s′, [v′/x]e1 →
∗ s′1, w

′

1

∧ ((s1, s
′

1, R
val
1 ,Rcls) ∈ R)

∧ (Rval ⊆ Rval
1)

∧ (w1, w
′

1) ∈ R1
val

7 2006/7/19

CT ⊢ s′1, [v′/x]e21 →
∗ s2

′

1, w2
′

1

∧ ((s21, s2
′

1, R2
val
1 ,Rcls) ∈ R)

∧ (Rval
1 ⊆ R2

val
1)

∧ (w21, w2
′

1) ∈ R2
val
1

. . .

CT ⊢ s2
′

n−1, [v′/x]e2n →
∗ s2

′

n, w2
′

n

∧ ((s2n, s2
′

n, R2
val
n ,Rcls) ∈ R)

∧ (R2
val
n−1 ⊆ R2

val
n)

∧ (w2n, w2
′

n) ∈ R2
val
n

and therefore:

CT ⊢s′, [v′/x](e1.m(e2))→
∗ s′1, [v′/x]([null].m(w2))→ s′1, nerr

and((s2n, s2
′

n, R2
val
n ,Rcls) ∈ R), (Rval ⊆ R2

val
n), (nerr, nerr) ∈

R2
val
n , as required.

• w 6= ε and

CT ⊢ s, [v/x]([e1].m(e2))

→<k s1, [v/x]([w1].m(e2)) = [v/x](w1.m([e21], e2))

→<k s21, [v/x](w1.m([w21], e2)) = [v/x](w1.m(w21, [e22], e2))
· · ·
→<k s2n, (w1.m(w2))

→ s2n, [w2/x]e3

→<k s3, w

wherew1 = obj C {· · ·} andCT .C.m = public tm(tx x){e3}.
Thus:

CT ⊢ s, [v/x]e1 →
<k s1, w1 (10)

CT ⊢ s1, [v/x]e21 →
<k s21, w21 (11)

. . .

CT ⊢ s2n−1, [v/x]e2n →
<k s2n, w2n (12)

CT ⊢ s2n, [w2/x]e3 →
<k s3, w (13)

By (10)-(12) and the induction hypothesis atk we get:

CT ⊢ s′, [v′/x]e1 →
∗ s′1, w

′

1

∧ ((s1, s
′

1, R
val
1 ,Rcls) ∈ R)

∧ (Rval ⊆ Rval
1)

∧ (w1, w1
′) ∈ R1

val

CT ⊢ s′1, [v′/x]e21 →
∗ s2

′

1, w2
′

1

∧ ((s21, s2
′

1, R2
val
1 ,Rcls) ∈ R)

∧ (Rval
1 ⊆ R2

val
1)

∧ (w21, w2
′

1) ∈ R2
val
1

. . .

CT ⊢ s2
′

n−1, [v′/x]e2n →
∗ s2

′

n, w2
′

n

∧ ((s2n, s2
′

n, R2
val
n ,Rcls) ∈ R)

∧ (R2
val
n−1 ⊆ R2

val
n)

∧ (w21, w2
′

1) ∈ R2
val
1

To continue our proof we need thatRcls satisfies the following
two conditions:

For all (s, s′, Rval,Rcls) ∈ R, and all (obj C {· · ·},
obj C′ {· · ·}) ∈ Rval, we haveC = C′.

For all (s, s′, Rval,Rcls) ∈ R, and all(C, C′) ∈ Rcls, with

C = classC extends D{· · · public tm(tx x){· · ·} · · ·}

C = classC ′
extends D ′{· · · public t′ m′(t′x x){· · ·} · · ·}

we haveC = C′, D = D′, t = t ′, m = m ′, tx = t ′x ,

The second condition onRcls is implied by Definition 3.2. As-
suming these conditions and because(w1, w

′

1) ∈ Rval
1 we get that

w′

1 = obj C {· · ·}, andCT ′.C.m = public tm(tx x){e′3}.
It remains to show that for all(s, s′, Rval,Rcls) ∈ R, all

(obj C {· · ·}, obj C {· · ·}) ∈ Rval, and allm with CT .C.m =
public tm(tx x){e3} andCT ′.C.m = public tm(tx x){e′3},
and for all(u, u′) ∈ Vtx

[CT , CT ′, s, s′, Rval], s1, w we have

(CT ⊢ s, [u/x]em →
<k s1, w)

=⇒ ∃ s′1, w
′, Rval

1 .

(CT ′ ⊢ s′, [u′/x]e′m →
∗ s′1, w

′)
∧ ((w, w′) ∈ Vt [CT , CT ′, s1, s

′

1, R
val
1])

∧ ((s1, s
′

1, R
val
1 ,Rcls) ∈ R)

∧ (Rval ⊆ Rval
1)

There are two cases:

• Methodm is defined in the class-table context (possibly extend-
ing a class fromRcls and overriding methodm of that class).
In this case we havee3 = e′3 and we can apply immediately the
induction hypothesis to get what is required.

• Methodm is defined in classD , which is inRcls, CT ⊢C<:D,
and m is not overridden betweenC and D . To prove the
conjecture we need thatR will satisfy the following condition:

For all (s, s′, Rval,Rcls) ∈ R, all (CT , CT ′) ∈
CT [Rcls], all (D,D′) ∈ Rcls, with D.classname = D ,
all (obj C {· · ·}, obj C {· · ·}) ∈ VD [CT , CT ′, s, s′, Rval],
all m with CT .C.m.defclass = D , and CT .C.m =
public tm(tx x){e3}, CT ′.C.m = public tm(tx x){e′3},
and for all (u, u′) ∈ Vtx

[CT , CT ′, s, s′, Rval], s1, w, we have

IH (k)
∧CT ⊢ s, obj C {f = l}.m(u)→<k+1 s1, w

=⇒ ∃ s′1, w
′, Rval

1 .
(CT ′ ⊢ s′, obj C {f ′ = l′}.m(u′)→∗ s′1, w

′)
∧((w, w′) ∈ Vt [CT , CT ′, s1, s

′

1, R
val
1])

∧((s1, s
′

1, R
val
1 ,Rcls) ∈ R)

∧(Rval ⊆ Rval
1)

If R satisfies the above condition then we can show what is
required for this case.

We continue similarly for the rest of the cases ofe0 .

In Theorem 5.4 we summarize all conditions forR that we
found by the above abstract proof. First we give a notation towrite
down the inductive cases and the induction hypotheses (one for
each direction).

8 2006/7/19

Definition 5.2 (Inductive Cases).

Rval, Rcls, R ⊢ (CT ⊢ s, e:t) ⊑<k (CT ′ ⊢ s′, e′:t)
def
=

∀ s1, w.
((e, e′) ∈ Et [CT , CT ′, s, s′, Rval])
∧(CT ⊢ s, e→<k s1, w)

=⇒ ∃ s′1, w
′, Rval

1 .
(CT ′ ⊢ s′, e′ →∗ s′1, w

′)
∧((w, w′) ∈ Vt [CT , CT ′, s1, s

′

1, R
val
1])

∧((s1, s
′

1, R
val
1 ,Rcls) ∈ R)

∧(Rval ⊆ Rval
1)

and Rval,Rcls, R ⊢ (CT ⊢ s, e:t) ⊒<k (CT ′ ⊢ s′, e′:t) for the
reverse.

Definition 5.3 (Inductive Hypotheses).

IH L
R(k)

def
=

∀(s, s
′, Rval,Rcls) ∈ R.

∀(CT , CT ′) ∈ CT [Rcls].

∀ t, (e, e′) ∈ Et [CT , CT ′, s, s′, Rval].
Rval,Rcls, R ⊢ (CT ⊢ s, e:t) ⊑<k

(CT ′ ⊢ s′, e′:t)

andIHR
R (k) for the reverse.

Our main theorem is the following.

Theorem 5.4 (Adequacy Conditions).A relation R is adequate
if and only if for all states(s, s′, Rval,Rcls) of R the following
conditions are satisfied:

1. (Same interfaces.)For all (C, C′) ∈ Rcls, with

C = classC extends D{public t1 f1; private t2 f2;
C (t3 x3){. . .},

public t4 m4(t5 x5){· · ·},

private t6 m6(t7 x7){. . .}}

C′ = classC
′

extends D
′{public t′1 f ′

1; private t′2 f ′

2;

C ′(t′3 x′

3){. . .},

public t′4 m′

4(t
′

5 x′

5){· · ·},

private t′6 m′

6(t
′

7 x′

7){. . .}}

we haveC = C′, D = D′, t1 = t ′1 , f1 = f ′

1, t3 = t ′3 ,

t4 = t ′4 , m4 = m ′

4 , t5 = t ′5 .
2. (Related instances.)For all (obj C {· · ·}, obj C′ {· · ·}) ∈

Rval, C = C′.
3. (Enough instances.)For all (CT , CT ′) ∈ CT [Rcls], all C ∈
CT , with C.classname = C andCT .C.constr.type = t→C ,
and for all (v, v′) ∈ Vt [CT , CT ′, s, s′, Rval]

IH L
R(k) =⇒
Rval,Rcls, R ⊢ (CT ⊢ s, newC (v):C) ⊑<k+1

(CT ′ ⊢ s′, newC (v′):C)
IHR

R (k) =⇒
Rval,Rcls, R ⊢ (CT ⊢ s, newC (v):C) ⊒<k+1

(CT ′ ⊢ s′, newC (v′):C)

4. (Related public fields.)For all (CT , CT ′) ∈ CT [Rcls],
(obj C {f = l}, obj C {f ′ = l′}) ∈ Rval, public ti fi ∈
CT .C.fields, we have

(s.li, s
′.l′i) ∈ Vti [CT , CT ′, s, s′, Rval]

5. (Related updates.)For all (CT , CT ′) ∈ CT [Rcls],
(obj C {f = l}, obj C {f ′ = l′}) ∈ Rval, public ti fi ∈

CT .C.fields, and(v, v′) ∈ Vti [CT , CT ′, s, s′, Rval], we have

(s[li← v], s ′[l′i← v′], Rval,Rcls) ∈ R

6. (Related public methods.)For all (CT , CT ′) ∈ CT [Rcls],
(D,D′) ∈ Rcls, with D.classname = D , all
(obj C {· · ·}, obj C {· · ·}) ∈ VD [CT , CT ′, s, s′, Rval], all m
withCT .C.m.defclass = D , andpublic tm m ∈ CT .C.methods,
with CT .C.m = public tm(tx x){e3}, CT ′.C.m =

public tm(tx x){e′3}, and for all (v, v′) ∈
Vtx

[CT , CT ′, s, s′, Rval], we have

IHL
R(k) =⇒
Rval,Rcls, R ⊢ (CT ⊢ s, obj C {f = l}.m(v):tm) ⊑<k+1

(CT ′ ⊢ s′, obj C {f ′ = l′}.m(v′):tm)
IHR

R (k) =⇒
Rval,Rcls, R ⊢ (CT ⊢ s, obj C {f = l}.m(v):tm) ⊒<k+1

(CT ′ ⊢ s′, obj C {f ′ = l′}.m(v′):tm)

Proof. Immediate by the proof analysis of Conjecture 5.1.

The first condition of Theorem 5.4 requires that related classes
have the same public interface. The second condition requires that
related objects instantiate related classes. The third condition re-
quires thatR relates all possible objects that can be created by
the constructors. Conditions 4 and 5 test that related public fields
can be assigned all the possible well-typed related values,and only
those.

The last condition tests the behavior of related public methods.
It considers only the methods that are defined in a classD taken
from Rcls, but the instances on which these methods are invoked
are all the possible instances of subclasses ofD .

Most of the above conditions contain a quantification over all
possible class tables that contain the related classes. This is neces-
sary in order to specify the well-typed values, and to use thereduc-
tion relation. As we will see in the examples that follow, this quan-
tification does not introduce any difficulty in the proofs of equiva-
lence. This is because we never need to reason about the behavior
of methods and classes defined in the class-table contexts, since
these cases are handled by the induction hypothesis.

6. Examples
6.1 Cells

Here we give two implementations of a Cell class. The first is the
usual one, while the other is somewhat more complicated by using
two, instead of one, private fields to keep the stored object,and
a counter to decide which one to return when theget method is
invoked. These implementations have sufficiently different store
behavior and the usual denotational models would assign different
denotations and thus distinguish them.

C = class Cell extends Object{
private Objectc;
Cell(Objecto){this.c := o}
public voidset(Objecto){this.c := o}
public Objectget(){this.c}}

9 2006/7/19

C′ = class Cell extends Object{
private Objectc1, c2;
private intn;
Cell(Objecto){

this.c1 := o;
this.c2 := o;
this.n := 0}

public voidset(Objecto){
this.c1 := o;
this.c2 := o}

public Objectget(){
this.n := this.n + 1;
if (even(this.n)) then this.c1 else this.c2}}

To prove the above two class implementations equivalent we
construct the following set:

R = {(s, s′, Rval,Rcls) | ∃ CT , f1, k1, k′

1, v1, v′

1, D,

f2, k2, k′

2, v2, v′

2, lc, lc1, lc2, ln, u, u′, m, C :
s = [k1 = v1][k2 = v2][lc = u]

s′ = [k ′

1 = v ′

1][k ′

2 = v ′

2][lc1 = u′, lc2 = u′, ln = m]
Rcls = {(C, C′)}

Rval = {(obj D{f1 = k1}, obj D{f1 = k′

1})}

(obj C {f2 = k2, c = lc},

obj C {f2 = k′

2, c1 = lc1, c2 = lc2, n = ln})
CT ⊢ C <: Cell

CT ⊢D ≮: Cell

(v1, v′

1), (v2, v′

2), (u, u′) ∈ Rval}

We choose this particularR by inspecting the conditions of
Theorem 5.4. Condition 1 is obviously satisfied byC andC′. To
satisfy conditions 2 and 3 we add inRval the instances of any class
C , sub-type ofCell, and any classD , not a sub-type ofCell.
These are the classes of any possible class table. Furthermore we
construct the storess and s ′ in the appropriate way to keep the
values of the fields of these instances. The values stored ink1 and
k ′

1 are related inRval, since these are fields of identical classes in
the class table; similarly for the values stored ink2 andk ′

2 . From
this we conclude that conditions 4 and 5 are satisfied.

We also require that the values stored in the private fields of
Cell to be related inRval. This is an invariant of the equivalence
between the two implementations ofCell and is going to help us
prove condition 6.

To prove condition 6 we consider an arbitrary tuple
(s, s′, Rval,Rcls) ∈ R, and an arbitrary pair of related class ta-
bles(CT , CT ′) ∈ CT [Rcls]. The only pair of related class defini-
tions inRcls is (C, C′). For anyo = obj C {f2i = k2i, c = lci},
o′ = obj C {f2i = k2

′

i, c1 = lc1i, c2 = lc2i, n = lni}, with
(o, o′) ∈ VCell[CT , CT ′, s, s′, Rval] we have thatCT ⊢C<:Cell,
CT ′ ⊢ C <: Cell.

We now consider anypublic tx→tm ∈ CT .C.methods.
These are the methodsget andset.

In the case ofget we havetx→t = void→Object . Further-
more:

CT ⊢ s, o.get()→∗ s, ui

CT ′ ⊢ s′, o′.get()→∗ s ′[lni←m+1], u′

i

wheres′.lni = m. Moreover:

(ui, u
′

i) ∈ VObject [CT , CT ′, s, s ′[lni←m+1], Rval]

and(s, s ′[lni←m+1], Rval,Rcls) ∈ R.
Similarly for the case ofset we havetx→t = Object→void .

Let (u, u′) ∈ VObject [CT , CT ′, s, s′, Rval]. We have:

CT ⊢ s, o.set(u)→∗ s[lci← u], unit
CT ′ ⊢ s′, o′.set(u′)→∗ s ′[lc1 i ← u ′][lc2i← u′], unit

and(s[lci← u], s ′[lc1 i ← u ′][lc2i← u′], Rval,Rcls) ∈ R.

6.2 The Observer Pattern

Here we will prove the equivalence of the two implementations of
the Observer pattern, shown in Figure 1. For the purposes of this
example, we assume that the language is extended in the usualway
with vectors.

As before we construct a setR that will satisfy the adequacy
conditions of Theorem 5.4. This set is shown in Figure 5, where
C andC′ are the two related definitions of theObservable class.
As in the previous example, it is easy to see thatR satisfies condi-
tions 1-5 of Theorem 5.4.

It remains to show condition 6 for the public methodsadd
andnotifyAll. Consider an arbitrary tuple(s, s′, Rval,Rcls) ∈
R, and an arbitrary pair of related class tables(CT , CT ′) ∈
CT [Rcls]. For any

o = obj C {f2i = k2i, ovect1 = l1i, · · · , ovect10 = l10i,
count = lci},

o′ = obj C {f2i = k2i, o = l′1i, next = l′nxt1i, count = l′ci}

with (o, o′) ∈ VObservable [CT , CT ′, s, s′, Rval] we have thatCT ⊢
C <: Observable, CT ′ ⊢ C <: Observable.

We need to show that the applications ofo.add(u) and
o′.add(u′), where(u, u′) ∈ VObserver [CT , CT ′, s, s′, Rval], both
terminate, and the final states are described inR. We do this by two
easy inductions onni , one for each implementation ofadd.

Next we need to show condition 6 for invocations of the
applyAll method. We do this in two steps: first we show that
the invokingapplyAll on both sides causes the invocation of the
notify method on the objectsu1i, . . . ,uni on the left-hand side,
and on the objectsu′

1i, . . . ,u′

ni on the right-hand side. We do this
by an induction on the first argument of thenotify method for the
left-hand side, and an induction on the size of the linked list for the
right-hand side.

Then we need to show that each invocation ofnotify on the re-
lated objects will not break condition 6; i.e. for all(s, s′, Rval,Rcls)
∈ R, all (CT , CT ′) ∈ CT [Rcls], and all (v, v′) ∈
VObserver [CT , CT ′, s, s′, Rval], we have:

IHL
R(k) =⇒
Rval,Rcls, R ⊢ (CT ⊢ s, uji.notify(v):void) ⊑<k

(CT ′ ⊢ s′, u′

ji.notify(v
′):void)

and the reverse. Here we don’t specify the concrete definition of
theObserver class. Instead we rely on the quantification over all
related well-typed class tables to consider all class definitions of
Observable that have the rightnotify method. Furthermore, we
know that the computationuji.notify(o) will terminate ink steps,
since it is a sub-computation of the invocationoi.notifyAll(o)
which terminates ink + 1 steps. Therefore we can apply the in-
duction hypothesisIHL

R(k) and conclude that the above formula is
true. This concludes the proof of equivalence of the two implemen-
tations ofObservable.

7. Related Work
Banerjee and Naumann in [2] present a method for reasoning
about the equivalence of programs in a subset of Java, similar to
FWI Java. Their technique is based on a denotational model in
which they build a simulation relation of denotations. Theyuse a
notion of confinementto restrict certain pointers to the heap, and
show that if two class tables are confined and there is a simulation
between their denotations, then these class tables are equivalent. It
is not clear if this technique is complete. This is because they don’t
show that there is a simulation relation for any two equivalent and
confined class-tables, but also because the technique seemshelpful

10 2006/7/19

R = {(s, s′, Rval,Rcls)
˛

˛∃CT , f1, k1, k′

1, v1, v′

1, D, C, f2, k2, k′

2, v2, v′

2, l1, · · · , l10, u1, · · · , u10,

lc, l′c, n, l′1, · · · , l
′

n+1, u
′

1, · · · , u
′

n+1, l
′

nxt1, · · · , l
′

nxtn+1
, o′1, · · · , o

′

n+1 :

s = [k1 = v1][k2 = v2][l1 = u1, · · · , l10 = u10, lc = n]

s = [k ′

1 = v ′

1][k ′

2 = v ′

2][l′1 = u′

1, · · · , l
′

n+1 = u′

n+1, l
′

nxt1 = o′1, · · · , l
′

nxtn+1
= o′n+1, l

′
c = n]

Rcls = {(C, C′)}

Rval = {(obj D{f1 = k1}, obj D{f1 = k′

1}),

(obj C {f2 = k2, ovect1 = l1, · · · , ovect10 = l10, count = lc},

obj C {f2 = k2, o = l′1, next = l′nxt1, count = l′c})}
CT ⊢ C <: Observable

CT ⊢D ≮: Observable

oj = obj Observable{o = l′j+1, next = l′nxtj+1
, count = l′cj}, 1 ≤ j ≤ n

(v1, v′

1), (v2, v′

2), (u1, u′

1), · · · (un, u′

n) ∈ Rval

un+1 = . . . = u10 = null

u′

n+1 = on+1 = null}

Figure 5. SetR for the Observer Pattern Equivalence

to reason only about confined class tables. Furthermore it isnot
obvious how this technique can be extended to contextual equiva-
lence of classes, a stronger property than whole program equiva-
lence. Our method gives a sound and complete proof techniquefor
exactly this stronger property. We were able to show contextually
equivalent all of their examples, and others not expressible in their
language, that make use of different private interfaces of the related
classes (e.g. our Observer pattern example).

Another technique for reasoning about contextual equivalence
in a class-based language is the one from Jeffrey and Rathke in
[10]. They study a Java-like language for which they define a se-
mantic trace equivalence and show that it is sound and complete
with respect to testing equivalence. This is an elegant technique
which can be used to prove equivalences like the adaptation of our
examples to their language using an inductive proof as the one in
Section 5. The difference with our work is that is that they study a
significantly different language. The most important feature of that
language, that ours does not have, is a package system that restricts
the interaction of classes with their context. Classes are not visi-
ble through the package barriers. Therefore they are not extensible
by classes in other packages and the state of each class is guaran-
teed to be private. Only interfaces and instances of classesthat im-
plement these interfaces are shared between packages. Withthese
restrictions the interaction of classes with the context becomes an
interaction of messages. When packages have the same interface
and they communicate though thesamemessages with the context,
then these packages are equivalent. This technique is not applica-
ble to FWI Java where the interaction of classes with their context
is more complex, and equivalent classes communicate with the con-
text throughrelatedmessages and through the store.

8. Conclusions and Future Work
We have presented a sound an complete method for reasoning
about contextual equivalence in a subset of Java. This method
successfully deals with inheritance, public and private interfaces of
classes, and imperative fields. We were able to use this method to
prove equivalences in examples with different local store behavior,
and higher-order features like the invocations of callbacks.

We have seen that our method can deal with the null-pointer and
cast exceptions of Java. We would like to investigate further on this
direction and see if our technique can prove contextual equivalence
in a language with more advanced control effects (e.g. [5]).

In the future we would also like to see whether our method can
benefit from ideas in closely related areas, like SeparationLogic
[18].

References
[1] Samson Abramsky. The lazy lambda calculus. In David A. Turner,

editor, Research Topics in Functional Programming, pages 65–116.
Addison-Wesley, 1990.

[2] Anindya Banerjee and David A. Naumann. Ownership confinement
ensures representation independence for object-orientedprograms.J.
ACM, 52(6):894–960, 2005.

[3] Nina Bohr and Lars Birkedal. Relational reasoning for recursive types
and references. Submitted for publication, May 2006.

[4] William R. Cook. A denotational semantics of inheritance. Technical
Report CS-89-33, 1989.

[5] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba.A
syntactic theory of sequential control.Theoretical Computer Science,
52(3):205–237, 1987.

[6] Matthias Felleisen. The Calculi of Lambda-v-cs Conversion: A
Syntactic Theory of Control and State in Imperative Higher-Order
Programming Languages. PhD thesis, Indiana University, 1987.

[7] Matthew Hennessy and Robin Milner. On observing nondeterminism
and concurrency. InICALP, pages 299–309, 1980.

[8] Douglas J. Howe. Proving congruence of bisimulation in functional
programming languages.Information and Computation, 124(2):103–
112, February 1996.

[9] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler.Featherweight
Java: A minimal core calculus for Java and GJ. In Loren Meissner,
editor, Proceedings of the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA‘99), volume 34(10), pages 132–146, N. Y., 1999.

[10] A. S. A. Jeffrey and J. Rathke. Java jr.: Fully abstract trace
semantics for a core Java language. InProc. European Symposium on
Programming, volume 3444 ofLecture Notes in Computer Science,
pages 423–438. Springer-Verlag, 2005.

[11] Samuel Kamin. Inheritance in smalltalk-80: A denotational definition.
In Proceedings 15th Annual ACM Symposium on Principles of
Programming Languages, pages 80–87, 1988.

[12] Vasileios Koutavas and Mitchell Wand. Bisimulations for untyped
imperative objects. In Peter Sestoft, editor,Proc. ESOP 2006, volume
3924 ofLecture Notes in Computer Science, pages 146–161, Berlin,

11 2006/7/19

Heidelberg, and New York, 2006. Springer-Verlag.

[13] Vasileios Koutavas and Mitchell Wand. Small bisimulations for
reasoning about higher-order imperative programs. InProceedings
33rd ACM Symposium on Programming Languages, pages 141–152,
January 2006.

[14] Ian A. Mason and Carolyn L. Talcott. Equivalence in functional
languages with effects.Journal of Functional Programming, 1:287–
327, 1991.

[15] Albert R. Meyer and Kurt Sieber. Towards fully abstractsemantics
for local variables: Preliminary report. InProceedings 15th Annual
ACM Symposium on Principles of Programming Languages, pages
191–203, 1988.

[16] James H. Morris, Jr.Lambda Calculus Models of Programming
Languages. PhD thesis, MIT, Cambridge, MA, 1968.

[17] Andrew Pitts and Ian Stark. Operational reasoning for functions
with local state. In Andrew Gordon and Andrew Pitts, editors,
Higher Order Operational Techniques in Semantics, pages 227–273.
Publications of the Newton Institute, Cambridge University Press,
1998.

[18] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. InProc. 17th IEEE Symposium on Logic in Computer
Science, pages 55–74, Washington, DC, USA, 2002. IEEE Computer
Society.

[19] Eijiro Sumii and Benjamin C. Pierce. A bisimulation fordynamic
sealing. InProceedings 31st Annual ACM Symposium on Principles
of Programming Languages, pages 161–172, New York, NY, USA,
2004. ACM Press.

[20] Eijiro Sumii and Benjamin C. Pierce. A bisimulation fortype
abstraction and recursion. InProceedings 32nd Annual ACM
Symposium on Principles of Programming Languages, pages 63–
74, New York, NY, USA, 2005. ACM Press.

A. Appendix
Here we show the proof of Theorem 4.5.

Definition A.1. CT 4 CT1 ∪ CT2 is the ternary relation defined
by the smallest congruenceCT 4 CT1 containing

(e, (newX ()).m(x))

and the smallest setCT2 containing the class definition

X = classX extends Object{public tm(tx y){[y/x]e}}

for all e, x, t, tx, and for someX, y, m, such that:

CT ; x:tx ; ∅ ⊢ e:t

X 6∈ CT

CT :OK

Lemma A.2. If CT 4 CT1 ∪ CT2, thenCT1 ∪ CT2:OK, and for
all storess, expressionse, and typest such thatCT ; ∅; s ⊢ e:t we
haveCT1 ∪ CT2; ∅; s ⊢ e:t .

Proof. By induction on the structure ofCT , CT1, CT2.

Lemma A.3. If CT 4 CT1 ∪ CT2, then for all storess, expressions
e, and typest, such that:CT ; ∅; s ⊢ e:t , we have

CT ⊢ s, e↓ ⇐⇒ CT1 ∪ CT2 ⊢ s, e↓

Proof. As in [20].

The proof of Theorem 4.5 follows:

Proof. The forward direction is done by inspection of the defini-
tions of (≡e) and (≡), and becauseCT [≡] ⊆ CT [≡e].

For the reverse direction let

R
cls = {(classX extends Object{public tm(tx y){[y/x]e}},

classX extends Object{public tm(tx y){[y/x]e′}})}

andRcls ⊆ (≡).
Also let Rexp = {(Γ, e, e′, t)}, whereΓ = x:tx . Take any

(CT , CT ′) ∈ CT [Rexp], e0, andt, such thatX is not a class name
in CT , CT ; ∅; ∅ ⊢ e0:t , andCT ⊢ ∅, e0↓.

ConstructCT1, CT2, CT ′

1 , andCT ′

2 such that:

CT 4 CT1 ∪ CT2

CT ′

4 CT ′

1 ∪ CT
′

2

CT2 = {classX extends Object{public tm(tx y){[y/x]e}}}

CT ′

2 = {classX extends Object{public tm(tx y){[y/x]e′}}}

We have:

CT ⊢ ∅, e0↓
⇔ CT1 ∪ CT2 ⊢ ∅, e0↓ by Lemma A.3
⇔ CT ′

1 ∪ CT
′

2 ⊢ ∅, e0↓ (CT1 ∪ CT2, CT ′

1 ∪ CT ′

2) ∈ CT [≡]
⇔ CT ′ ⊢ ∅, e0↓ by Lemma A.3

C.classname Returns the class name de-
fined by the class definitionC.

CT .C.super Returns the name of the class
thatC extends.

CT .C.constr Returns the constructor defi-
nition of classC .

CT .C.constr.type Returns the constructor type
of classC

CT .C.fields Returns a sequence of all of
the field definitions (public
and private) of classC and all
its superclasses.

CT .C.methods Returns a sequence of all
the method definitions (pub-
lic and private) that can be in-
voked on an instance of class
C .

CT .C.m.defclass Traverses up the class hierar-
chy, starting from classC and
returns the first name of the
class in which methodm is
defined.

Figure 6. Meta-Functions

12 2006/7/19

