
Under consideration for publication in J. Functional Programming 1

CPS Transformation of Flow Information

Jens Palsberg
Purdue University∗

Mitchell Wand
Northeastern University†

Abstract

We consider the question of how a continuation-passing-style (CPS) transformation changes
the flow analysis of a program. We present an algorithm that takes the least solution to
the flow constraints of a program and constructs in linear time the least solution to the
flow constraints for the CPS-transformed program.

Previous studies of this question used CPS transformations that had the effect of du-
plicating code, or of introducing flow sensitivity into the analysis. Our algorithm has the
property that for a program point in the original program and the corresponding program
point in the CPS-transformed program, the flow information is the same. By carefully
avoiding both duplicated code and flow-sensitive analysis, we find that the most accurate
analysis of the CPS-transformed program is neither better nor worse than the most ac-
curate analysis of the original. Thus a compiler that needed flow information after CPS
transformation could use the flow information from the original program to annotate some
program points, and it could use our algorithm to find the rest of the flow information
quickly, rather than having to analyze the CPS-transformed program.

1 Introduction

For simply-typed λ-calculus, typability is preserved across CPS transformation.
For a CPS transformation [[·]] of call-by-value terms, Meyer and Wand (1985) have
shown that if A ` e : t, then A* ` [[e]] : (t* → o) → o, where o is a type of answers,
where t* is defined inductively:

α* = α

(s→ t)* = s* → (t* → o) → o,

and where A*(x) = t* if A(x) = t. The function (·)* defines CPS transformation
of type information. In fact, for a related system, Wand (1985) showed that the
converse implication holds as well.

A series of papers (Palsberg & O’Keefe, 1995; Heintze, 1995; Palsberg, 1998;
Palsberg & Pavlopoulou, 2001) have suggested that flow analyses are analogous to
type systems. It is therefore natural to ask the question:

Is flow information preserved by a CPS transformation?

We show that for an untyped λ-calculus with constants and conditionals, a stan-
dard notion of 0-CFA flow analysis, and a carefully-formulated definition of the CPS

∗ Purdue University, Dept of Computer Science, W Lafayette, IN 47907, USA, pals-
berg@cs.purdue.edu.

† College of Computer Science, Northeastern University, 360 Huntington Avenue, 161CN, Boston,
MA 02115, USA, wand@ccs.neu.edu.

2 Jens Palsberg and Mitchell Wand

translation, flow information is preserved and reflected across CPS transformation.
More precisely, we show that if ϕ is the least (most accurate) flow analysis of E,
then ϕ∗ is the least flow analysis of cps(E), where (·)∗ is a linear-time computable
transformation of flow information.

Our algorithm has the property that for a program point in the original program
and the corresponding program point in the CPS-transformed program, the flow
information is the same. Thus, the algorithm does not change the flow information;
it merely extends it to cover the new program points.

Aside from its role in answering a theoretical question, our algorithm might be
useful in a compiler that needed flow information after CPS transformation. Rather
than analyzing the CPS-transformed program, it can instead CPS-transform flow
information for the source program. Depending on the amount of flow information
actually generated, doing this transformation (in time linear in the size of the
annotation) could be faster than reanalyzing the CPS-transformed program (in
time possibly cubic in the size of the transformed program). On the other hand,
for certain typed programs, Heintze and McAllester (1997) have shown that 0-CFA
flow information can be computed in O(n2) time. For such programs, a reanalysis
may be more attractive. Experiments are needed to get a firmer grip on these issues.

There is a range of previous work on the relationship between CPS transforma-
tion and flow analysis. In some previous work, where the studied frameworks are
somewhat different, flow analysis is not preserved across CPS transformation; see
section 5 for more detail. It is necessary to be careful in the formulation of both
the analysis and the CPS transformation to avoid the effects of code duplication
on flow-sensitivity.

In other work, independent of ours, Damian and Danvy (2000) have shown a
result that is similar to our result in Section 3. They consider a different CPS
transformation and they study terms in which all intermediate results are given a
name with a let-expression.

Our formulation of the CPS transformation introduces “administrative redexes”
(Plotkin, 1975). In a different paper, Damian and Danvy (2001) have extended
our work by showing that least solutions to the 0-CFA constraints are preserved
by administrative reductions. Their results apply to any CPS transformation in
which the administrative reductions are linear. A consequence of their results is
that our techniques are applicable to a CPS transformation that performed linear
administrative reductions. Non-linear administrative reductions would, of course,
duplicate code, leading to a non-preservation of leastness.

In previous work, Palsberg (1995) has shown that 0-CFA flow information is
still valid after beta-reduction. (The proof in (Palsberg, 1995) contained a subtle
error; Wand and Williamson (2002) subsequently corrected the error and simplified
the proof.) Note, though, that although linear reduction preserves leastness of flow
information, general beta-reduction does not. This parallels that principality of
types need not be preserved by beta-reduction.

In the following section we give an informal account of our approach to CPS
transformation of flow information, and in section 3 we present our algorithm and
main result. In section 4 we show a preservation theorem for flow types, and finally
in section 5 we discuss related work.

CPS Transformation of Flow Information 3

2 Summary of Our Approach

The principal difficulty in defining a CPS transformation of flow information is that
the CPS-transformed program contains program points that have no counterparts
in the source program. Our main observation is that this task becomes manageable
when we use a variant of Plotkin’s call-by-value CPS transformation that was in-
troduced by Danvy and Filinski (1992). Here is a part of Danvy and Filinski’s CPS
transformation, rewritten with our notation for labeling:

[[xl]] = λPlk.kKl @Al xl

[[λlx.e]] = λPlk.kKl @Al (λlx.λQlm.[[e]] @BL(e) (λRL(e)v.mMl @Cl vVL(e)))

[[e1 @l e2]] = λPlk.[[e1]] @BL(e1) (λRL(e1)v1.[[e2]] @BL(e2) (λRL(e2)v2.

(v
VL(e1)

1 @Gl v
VL(e2)

2)@Dl (λSlv.kKl @Al vl)))

We label all occurrences of expressions in the source and target programs; the func-
tion L maps a λ-term to its topmost label. The labels in the CPS-transformed
program are chosen such that the label of a λ-abstraction in the source program is
also the label of the corresponding λ-abstraction in the CPS-transformed program.
Many of the labels in the target program are obtained by applying a label trans-
former to a label in the source program. For example, Al denotes a label computed
from the label l. It is essential for our approach that we can compute Al from l, and
that we can compute l from Al. We use the notation L(e) to denote the topmost
label of e.

We will now give an informal explanation of how to compute flow information
for some of the new program points. Consider first:

[[λlx.e]] = . . . (λlx.λQlm.. . . (mMl @Cl vVL(e))) . . .

Question: Where can (λlx.λQlm.. . . (mMl @Cl vVL(e))) be applied?

To answer that, suppose we have a set σ of labels of application points that tells us
where (λlx.e) in the source program can be applied. Suppose a ∈ σ, and consider
the CPS transformation of the application point labeled a:

[[e1 @a e2]] = . . . (v
VL(e1)

1 @Ga v
VL(e2)

2)@Da (λSav.. . .) . . .

We have that v1 will hold the value of evaluating [[e1]], so (λlx.λQlm.. . .) can be
applied at the application point labeled Ga. So, in general, (λlx.λQlm.. . .) can be
applied at application points labeled with labels from the set Gσ = { Gl | l ∈ σ }.
Below, we will use notation like Gσ for other label transformers than G.

Question: Where can (λQlm.. . . (mMl @Cl vVL(e))) be applied?

From above we have that (λQlm.. . .) can be the result of evaluating the expression
(v

VL(e1)

1 @Ga v
VL(e2)

2), so (λQlm.. . .) can be applied at application points labeled with
labels from the set Dσ.

Consider again [[λlx.e]].

Question: What are the labels of the λ-abstractions that can be applied at (mMl @Cl vVL(e))?

Consider the program point Da in [[e1 @a e2]]. The argument of the call is the λ-
abstraction (λSav.. . .), so the set of labels of the λ-abstractions that can be applied
at (mMl @Cl vVL(e)) is Sσ.

Consider next

[[e1 @a e2]] = . . . (v
VL(e1)

1 @Ga v
VL(e2)

2)@Da (λSav.. . .) . . .

4 Jens Palsberg and Mitchell Wand

Suppose we have a set π of labels of λ-abstractions that can be applied at e1 @a e2
in the source program. Due to our approach to labeling, the set of labels of λ-
abstractions that can be applied at (v

VL(e1)

1 @Ga v
VL(e2)

2) is also π.

Question: What is the set of functions that can be applied at the application labeled
Da?

From

[[λlx.e]] = . . . λlx.λQlm.. . . (mMl @Cl vVL(e)) . . .

we have that the set is Qπ. Consider again [[e1 @a e2]].

Question: Where can (λSav.. . .) be applied?

As analyzed above, it is applied at points (mMl @Cl vVL(e)) and we can express the
set of labels as Cπ.

Our algorithm for CPS transformation of flow information expands the above
observations to give a flow analysis for a whole CPS-transformed program.

3 Main Result

We will work with an initial Σ-algebra Lab of labels where Σ is:

. . . , l, a, . . . : Lab (an infinite collection of constant label symbols)

A,B,C,D, F,G,H1,H2, J,K,M,

N1, N2, P,Q,R, S, T, U, V,W,X, Y, Z : Lab→ Lab.

We apologize that there is no mnemonic significance to the names of the unary
operations. We will write the application of, say, A to l as Al. Notice that since
Lab is an initial Σ-algebra, the unary operations have ranges that are mutually
disjoint and disjoint from the set of constant label symbols. Furthermore, initiality
also implies that the operations are injective, so that we can, for example, recover
l from Al.

Our example language is defined by the grammar:

e ::= xl | ql | λlx.e | e1 @l e2 | e0 →l e1, e2.

We use q to range over a set of first-order constants that includes true, false. The con-
struct e0 →l e1, e2 is a conditional expression that branches depending on whether
e0 evaluates to true or false. A program is a closed expression. We use E to range
over programs. The labels are used solely to identify occurrences of terms; they do
not influence the evaluation of a program.

We will use the function L which maps a λ-term to its topmost label:

L(xl) = l

L(λlx.e) = l

L(e1 @l e2) = l

L(e0 →l e1, e2) = l

L(ql) = l.

We will study the following 0-CFA-style flow analysis. Given a program E, we let
Flow(E) denote the powerset of the set of labels of λ-abstractions occurring in E.

CPS Transformation of Flow Information 5

Moreover, we let FlowDom(E) denote the union of the set of labels of occurrences
of subterms of E, and the set

{ Ul | l is the label of a λ-abstraction in E }.

If l is the label of a λ-abstraction in E, then we use Ul as an implicit label of the
variable bound by that λ-abstraction. An alternative would be to use the name of
the variable as a label; we prefer to keep the name and the label separate.

A flow analysis of E is a total mapping

ϕ : FlowDom(E) → Flow(E)

such that

• for each xl occurring in E and bound by a λ-abstraction labeled l′, we have
ϕ(Ul′) = ϕ(l);

• for each λlx.e occurring in E, we have l ∈ ϕ(l);
• for each e1 @l′ e2 and each λlx.e occurring in E, we have that if l ∈ ϕ(L(e1))

then

ϕ(L(e2)) ⊆ ϕ(Ul)

ϕ(L(e)) ⊆ ϕ(l′);

• for each e0 →l e1, e2 occurring in E, we have

ϕ(L(e1)) ⊆ ϕ(l)

ϕ(L(e2)) ⊆ ϕ(l).

Notice that there are no constraints for constants. The domain FlowDom(E) →
Flow(E) is ordered by the pointwise ordering of functions induced by set inclusion.
We denote this ordering by ⊆. For a given program E, there is a ⊆-least flow
analysis which can be computed in O(n3) time where n is the size of the program
(Palsberg & Schwartzbach, 1994). The set of flow analyses of E is denoted by
FlowAnalysis(E).

For example, for the program λ1x.true2, we have

FlowDom(E) = { 1, 2 }
Flow(E) = { ∅, {1} }

and two flow analyses ϕ,ϕ′ where:

ϕ(1) = {1} ϕ′(1) = {1}
ϕ(2) = ∅ ϕ′(2) = {1}.

and ϕ ⊆ ϕ′. Notice that the constraint on λ-abstractions forces both ϕ and ϕ′ to
map the label 1 to the set {1}.

Notice that the constraint for a variable occurrence is an equality rather the
inclusion ϕ(Ul′) ⊆ ϕ(l). Both choices lead to the same ⊆-least flow analysis for a
given program, see Appendix C. We have chosen the equality constraint because it
enables a simple proof of Theorem 2, see below.

The function cps transforms a whole program E to a CPS target term:

cps(E) = λXL(E)k.[[E]] @BL(E) (λRL(E)v.kYL(E) @ZL(E) vVL(E))

[[xl]] = λPlk.kKl @Al xl

[[λlx.e]] = λPlk.kKl @Al (λlx.λQlm.[[e]] @BL(e) (λRL(e)v.mMl @Cl vVL(e)))

[[e1 @l e2]] = λPlk.[[e1]] @BL(e1) (λRL(e1)v1.[[e2]] @BL(e2) (λRL(e2)v2.

6 Jens Palsberg and Mitchell Wand

(v
VL(e1)

1 @Gl v
VL(e2)

2)@Dl (λSlv.kKl @Al vl)))

[[e0 →l e1, e2]] = λPlk.(λJlm.[[e0]] @BL(e0) (λRL(e0)w.wVL(e0) →Fl

[[e1]] @BL(e1) (λRL(e1)v1.m
H1

l @N1
l v

VL(e1)

1),

[[e2]] @BL(e2) (λRL(e2)v2.m
H2

l @N2
l v

VL(e2)

2))

) @Wl (λTlv.kKl @Al vl)

[[ql]] = λPlk.kKl @Al ql.

Notice that the CPS translation does not duplicate contexts across conditional
expressions, as is sometimes done by CPS transformations used in compilers (Appel,
1992; Danvy et al., 1996).

All the CPS terms that can result from the CPS transformation can be generated
from the following grammar:

Simple ::= xl | ql | λlx.Tail

Tail ::= Simple | Tail@l Simple | Simple →l Tail,Tail.

The grammar can also generate terms that are not the result of the CPS transfor-
mation. While tighter grammars can be constructed, we hope that our grammar
may help build intuition about the structure of CPS terms.

The labeling of occurrences of subterms in cps(E) follows three guidelines. For
every occurrence in E of a subterm e with label l, we have:

• [[e]] = λPlk.e′, where L(e′) is either Al′ , Bl′ , or Wl′ , and each occurrence of k
is labeled Kl;

• [[e]] occurs in cps(E) as part of a subterm [[e]] @BL(e) (λRL(e)v.. . .), where the
body of λRL(e) is labeled with one of Zl′ , Cl′ , Bl′ , Dl′ , Fl′ , N1

l′ , N
2
l′ , and

the single occurrence of v is labeled VL(e); and
• there is a subterm kKl @Al e′, where L(e′) = l.

The result of using the guidelines is that:

• [[e]] is a λ-abstraction with label PL(e) which will be applied at an application
point labeled BL(e) and

• [[e]] will take an argument (a continuation) with label RL(e) which will be
applied at an application point labeled AL(e).

In the setting of simply-typed λ-calculus, these consequences can be stated in a
particularly succinct way, see Theorem 4 below. The use of the guidelines also
enables succinct proofs, particularly of Lemma 6; see below.

Note that:

FlowDom(E) ⊆ FlowDom(cps(E))

Flow(E) ⊆ Flow(cps(E)).

If all occurrences of subterms of E are labeled distinctly, then the same is true
of cps(E). We will henceforth assume that the occurrences of subterms of E are
labeled distinctly and only with constant label symbols.

The function (·)* transforms flow information for a program E to flow information
for the program cps(E):

(·)* : (FlowDom(E) → Flow(E)) → (FlowDom(cps(E)) → Flow(cps(E))).

We will present the definition of ϕ* in table form.

CPS Transformation of Flow Information 7

• For the whole program E, where L(E) = l:
a ϕ*(a)

Xl {Xl}
Yl ∅
Zl ∅
UXl

∅
• For all labels l of occurrences of subterms of E:

a ϕ*(a)

l ϕ(l)
Pl {Pl}
Kl {Rl}
Rl {Rl}
Vl ϕ(l)
Al ∅
Bl ∅
UPl

{Rl}
URl

ϕ(l)
• For λlx.e occurring in E:

a ϕ*(a)

Cl ∅
Ql {Ql}
Ml { Sl′ | e1 @l′ e2 occurs in E and l ∈ ϕ(L(e1)) }
UQl

{ Sl′ | e1 @l′ e2 occurs in E and l ∈ ϕ(L(e1)) }
Ul ϕ(Ul)

• For e1 @l e2 occurring in E:
a ϕ*(a)

Dl ∅
Sl {Sl}
Gl { Ql′ | l′ ∈ ϕ(L(e1)) }
USl

ϕ(l)
• For e0 →l e1, e2 occurring in E:

a ϕ*(a)

Jl {Jl}
UJl

{Tl}
Fl ∅
H1

l {Tl}
H2

l {Tl}
N1

l ∅
N2

l ∅
Wl ∅
Tl {Tl}
UTl

ϕ(l)

Informal justification of the cases of l, Ul, Ml, UQl
, Gl, Vl in the definition of ϕ*

were given, explicitly or implicitly, in Section 2. We will now provide some intuition

8 Jens Palsberg and Mitchell Wand

for the other cases. First notice that if L(E) = l, then

cps(E) = λXlk.[[E]] @Bl (λRlv.kYl @Zl vVl).

We are interested in the flow analysis of cps(E) in an empty context, so (λXl)
is never applied, and therefore

ϕ*(Yl) = ϕ*(Zl) = ϕ*(UXl
) = ∅.

The initial continuation is (λRlv.kYl @Zl vVl), and since the flow information for
the result of applying it is the empty set, that is, ϕ*(Zl) = ∅, we have that 1) the
flow information for the result of applying any continuation is the empty set, so
ϕ*(Al) = ϕ*(Wl) = ∅; and 2) the flow information for the body of any continuation
is the empty set, so for all a ∈ {Cl, Bl, Dl, Fl, N

1
l , N

2
l }, we have ϕ*(a) = ∅.

For the λ-abstractions occurring in cps(E), with labels Xl, Pl, Rl, Ql, Sl, Jl, Tl, we
have that for any label a in that list, ϕ*(a) = {a}.

Suppose L(e) = l. We have that [[e]] occurs in cps(E) as part of a subterm

[[e]] @Bl (λRlv.. . .),

and that

[[e]] = λPlk.. . .,

so the unique argument supplied to the λ-abstraction with label Pl is another λ-
abstraction with label Rl, hence ϕ*(UPl

) = {Rl}. Notice that cps(E) contains the
redex

(λJlm.. . .) @Wl (λTl),

so ϕ*(UJl
) = {Tl}. Finally, the cases of Kl, URl

,Ml, USl
, UTl

,H1
l ,H

2
l follow easily

from cases we have already explained.
One last definition: if ψ ∈ FlowDom(cps(E)) → Flow(cps(E)), then we let ψE

denote the restriction of ψ to FlowDom(E).
Both (·)* and (·)E can be computed in linear time. While this is immediate in the

case of (·)E , let us consider how it can be done in the case of (·)*. We assume that
the labels in E are presented as numbers from an interval 1..n, and that we are given
the flow information ϕ ∈ FlowAnalysis(E) as an array over 1..n of linked lists of
labels. We also require each entry in the array to contain information about the
form of the syntax tree node the label stems from, and the labels of the immediate
descendants in the syntax tree. We will represent ϕ* as a two-dimensional array over
1..n and the 32 kinds of derived labels that we use in the definition of ϕ*. (The two-
dimensional array can easily be flattened to a one-dimensional array, if so desired.)
We fill the two-dimensional array during a single traversal of the representation of
ϕ. The main problem in computing ϕ* is to compute ϕ*(Ml) (which is equal to
ϕ*(UQl

)), for an occurrence of λlx.e in E. This can be done by, for each label of
an occurrence of an application e1 @l′ e2, finding the entry ϕ(L(e1)), and for each
element of the list for ϕ(L(e1)), extending the list for Ml with Sl′ . This requires an
amount of work which for each application e1 @l′ e2 is linear in the size of ϕ(L(e1)),
so the total amount of work is linear in the size of ϕ.

We now present our main results.

Theorem 1
If ϕ ∈ FlowAnalysis(E), then ϕ* ∈ FlowAnalysis(cps(E)). Moreover, if ψ ∈
FlowAnalysis(cps(E)), then ψE ∈ FlowAnalysis(E).

CPS Transformation of Flow Information 9

Proof
See Appendix A.

Based on Theorem 1, we will from now on consider the two mappings (·)* and
(·)E to have the functionalities:

(·)* : FlowAnalysis(E) → FlowAnalysis(cps(E))

(·)E : FlowAnalysis(cps(E)) → FlowAnalysis(E),

and we will ignore that both were originally defined on larger domains.
The following theorem states two basic relationships between (·)* and (·)E .

The first part of the theorem says that (·)* followed by (·)E is the identity on
FlowAnalysis(E). The second part of the theorem says that if we (1) analyze
cps(E), (2) restrict the result to the source term E using (·)E , and then (3) build
an analysis of cps(E) using (·)*, then we get a result that is at least as good as the
initial analysis of cps(E). The reason is that (·)* chooses the best solution for the
labels in FlowDom(cps(E)) \ FlowDom(E).

Theorem 2
If ϕ ∈ FlowAnalysis(E), then (ϕ*)E = ϕ. Moreover, if ψ ∈ FlowAnalysis(cps(E)),
then (ψE)* ⊆ ψ.

Proof
See Appendix B.

Both (·)* and (·)E are monotone functions, and since they satisfy Theorem 2,
it is an immediate consequence that they form a Galois connection, that is, for all
ϕ ∈ FlowAnalysis(E), and for all ψ ∈ FlowAnalysis(cps(E)), we have ϕ* ⊆ ψ if
and only if ϕ ⊆ ψE .

Theorem 3
(Main Result) If ϕ is the least flow analysis of a program E, and ψ is the least
flow analysis of cps(E), then ϕ* = ψ and ϕ = ψE .

Proof
From ϕ being least we have ϕ ⊆ ψE . From ψ being least we have ψ ⊆ ϕ*. Since
(·)* and (·)E form a Galois connection, ϕ ⊆ ψE implies ϕ* ⊆ ψ. Hence ϕ* = ψ.
From that and Theorem 2 we have ψE = (ϕ*)E = ϕ.

4 Flow Types

We have shown that 0-CFA-style flow information can be maintained by CPS trans-
formation. This parallels the classical result that typability with simple types can
be maintained by CPS transformation. We will now show that typability with flow
types can be maintained by CPS transformation. Flow types have been studied
by Tang and Jouvelot (1994), Heintze (1995), Wells, Dimock, Muller, and Turbak
(1997), and others. The idea is that if an expression has the flow type

s π−→
σ
t

then π is a set of labels of λ-abstractions to which the expression can evaluate, and
σ is a set of labels of application points where those λ-abstractions can be applied.

We will consider flow types, in the style of (Wells et al., 1997), generated by the
grammar:

t ::= α | t π−→
σ
t,

10 Jens Palsberg and Mitchell Wand

where α ranges over a set of base types that includes boolean, and where π, σ range
over finite subsets of Lab. Among the types is a distinguished type o of answers. A
type environment is a partial function with finite domain which maps λ-variables
to types. We use the notation A[x : τ] to denote an environment which maps x to
τ , and maps y, where y 6= x, to A(y). A type judgment has the form A ` e : t, and
it means that in the type environment A, the expression e has type t. Formally, this
holds when it is derivable by a finite derivation-tree using the rules below, taken
from (Wells et al., 1997).

A[x : t] ` x : t (1)

A[x : s] ` e : t
A ` λlx.e : s π−→

σ
t

(l ∈ π) (2)

A ` e1 : s π−→
σ
t A ` e2 : s

A ` e1 @l e2 : t
(l ∈ σ) (3)

A ` e0 : boolean A ` e1 : t A ` e2 : t
A ` e0 →l e1, e2 : t

(4)

A ` ql : boolean (5)

If σ ⊆ Lab, then we write Aσ = { Al | l ∈ σ }, and similarly for other unary
operations on Lab. We can now define a CPS transformation of flow types:

α* = α

(s π−→
σ
t)* = s* π−−→

Gσ
(t* Sσ−−→

Cπ
o) Qπ−−→

Dσ
o .

Define also A*(x) = t* if A(x) = t.

Theorem 4
If A ` e : t, then A* ` [[e]] : (t* {RL(e)}−−−−−→{AL(e)}

o) {PL(e)}−−−−−→{BL(e)}
o.

Proof
By induction on the structure of the derivation of A ` e : t.

Notice that Theorem 4 corresponds to the first half of Theorem 1. We do not have
counterparts to the rest of our results for the untyped case.

5 Related Work

Nielson (1982) showed for an imperative language that an analysis based on a
continuation semantics can be more precise than an analysis based on a direct
semantics. Similarly, Muylaert-Filho and Burn (1993) showed for a call-by-name
language that CPS transformation can improve an analysis.

Sabry and Felleisen (1994) concluded that the gain in precision in these examples
is solely due to the duplication of the analysis of continuations. For example, at a call
site and at a conditional the continuation may be duplicated for each possible path,
thereby enabling separate analysis for each copy. Thus a flow-insensitive analysis
of the transformed program corresponds to a flow-sensitive analysis of the original.
One contribution of the current paper is an attempt to separate the consequences
of the CPS transformation from those of this duplication.

Sabry and Felleisen (1994) gave an example in which a CPS transformation de-
creased the precision of an analysis. They studied a CPS transformation for a
call-by-value language, together with a flow analysis. Their example program is:

(let (a1 (f 1)) (let (a2 (f 2)) a2))

CPS Transformation of Flow Information 11

where f is bound to λx.x. After their CPS transformation, the program becomes:

(f 1 (λa1.(f 2 (λa2.(k a2)))))

where f is bound to λx.λk1.(k1 x), and k is bound to a continuation. Before CPS
transformation the analysis finds that a1 is constant (= 1), while after CPS trans-
formation the analysis fails to find that information.

However, the analysis of Sabry and Felleisen is an operational abstract interpre-
tation of a program:

• For the source program, the analysis first reaches the call site (f 1), and at
this point x gets bound to 1, and thus a1 gets bound to 1. When the analysis
later reaches the call site (f 2), the new value for x becomes a merge of the
old value 1 and the new value 2. The value of a1 is unchanged.

• For the CPS program, the analysis first performs the call

(f 1 (λa1.(f 2 (λa2.(k a2)))))

where x gets bound to 1 and k1 gets bound to (λa1.(f 2 (λa2.(k a2)))). A
little later, the analysis performs the call (f 2 (λa2.(k a2))), the new value
for x becomes a merge of 1 and 2, and the new value for k1 becomes a set
consisting of both (λa1.(f 2 (λa2.(k a2)))) and (λa2.(k a2)). Finally, when
the analysis in the end performs the call (k1 x), the analysis applies each of
the two continuations to the value of x and merges the results. During that
final call, both a1 and a2 get bound to the merge of 1 and 2.

Sabry and Felleisen state that “the loss of information is due to the confusion of
distinct procedure returns” (Sabry & Felleisen, 1994). For example, the two calls
(f 1) and (f 2) become confused in the CPS program.

Our results suggest a different explanation, namely that the operational nature of
the Sabry-Felleisen analysis introduced flow-sensitivity into the analysis. We instead
use a monovariant, constraint-based flow analysis, and we get the same result for
corresponding program points in the two programs. If the analysis is monovariant,
then there is exactly one flow variable for each occurrence of an expression in the
program. There is no notion of “getting to (f 1) before getting to (f 2).” In the
source program above, there is one flow variable for x and one flow variable for
a1, and in the least solution of the constraints, both will be assigned a merge of 1
and 2. Thus, “confusion of distinct procedure returns” happens both when we use
a monovariant flow analysis on the source program and when we use it on the CPS
program.

Our result supports the conclusion of Sabry and Felleisen that the improvement
in analysis in the transformed program is due to the duplication of program points.
Our result shows that using a CPS transformation that does not duplicate program
points leads to no improvement in the analysis.

While our CPS transformation preserves 0-CFA flow information, the situation
is different for binding-time analysis. Damian and Danvy (2000) showed that CPS
transformation does lead to improved binding-time information for a standard no-
tion of binding-time analysis. Notably, the improvement is not due to the dupli-
cation of program points. Damian and Danvy also showed that for an enhanced
binding-time analysis, CPS transformation does not lead to improved binding-time
information.

12 Jens Palsberg and Mitchell Wand

6 Concluding Remarks

It seems to be straightforward to extend our result to a language with more features.
Our experience is a good sign of that: we first proved our result for the language
without conditional expressions, while codifying and using the three guidelines for
the labeling of occurrences of subexpressions, and we then used the guidelines to
extend the result to conditional expressions. We found that the statement and proof
of Lemma 6 needed no change at all, and the proofs of the other lemmas could be
extended easily to cover the new cases.

Future work may include extending our results to polyvariant flow analysis, and
investigations of whether flow information is preserved by call-by-name CPS trans-
formations.

Acknowledgments Thanks to Fritz Henglein and Didier Rémy for helpful discus-
sions. Thanks to Bob Muller and Joe Wells for the LATEX macro for formatting π−→

σ
.

Palsberg was supported by a National Science Foundation Faculty Early Career
Development Award, CCR–9734265. Wand was supported in part by the National
Science Foundation under grants CCR-9629801 and CCR-9804115.

Appendix A: Proof of Theorem 1

Theorem 1 follows immediately from Lemmas 5 and 7. The proof of Lemma 7 uses
Lemma 6. Lemma 6 is also used in Appendix B.

Lemma 5
If ϕ ∈ FlowAnalysis(E), then ϕ* ∈ FlowAnalysis(cps(E)).

Proof
We proceed by case analysis on the expressions in cps(E). Consider first an ex-
pression in cps(E) of the form xl, bound by a λ-abstraction labeled l′. There are
two cases. If ` ∈ FlowDom(E), then ϕ(Ul′) = ϕ(l), and from the definition of ϕ*

we have ϕ*(Ul′) = ϕ(Ul′) and ϕ*(l) = ϕ(l), so we conclude ϕ*(Ul′) = ϕ*(l). If
l 6∈ FlowDom(E), then a straightforward case analysis of l shows that ϕ*(Ul′) =
ϕ*(l).

Consider next the eight forms of λ-abstractions in cps(E). For λax.e, where a ∈
{Xl, Pl, Rl, Ql, Sl, Jl, Tl}, it is immediate from the definition of ϕ* that a ∈ {a} =
ϕ*(a). The remaining case is

[[λlx.e]] = . . . (λlx.. . .)

By assumption we have l ∈ ϕ(l), and from the definition of ϕ* we have ϕ*(l) = ϕ(l),
so we conclude l ∈ ϕ*(l).

Consider next the eight forms of applications in cps(E):

kYL(E) @ZL(E) vVL(E) (6)

(λPlk.e′) @Bl (λRl) (7)

kKl @Al e′ (8)

[[e1 @l′ e2]] = . . . v1
VL(e1) @Gl′ v2

VL(e2) . . . (9)

[[e1 @l′ e2]] = . . . (v1VL(e1) @Gl′ v
VL(e2)

2) @Dl′ (λSl′) . . . (10)

[[λlx.e′]] = . . .mMl @Cl vVL(e′) . . . (11)

[[e0 →l e1, e2]] = . . . (λJlm.e′) @Wl (λTl) (12)

[[e0 →l e1, e2]] = . . .mHi
l @Ni

l v
VL(ei)

i . . . , i ∈ {1, 2}. (13)

CPS Transformation of Flow Information 13

We consider each of them in turn:

• (6). We have ϕ*(YL(E)) = ∅, so ϕ* has the desired property.
• (7). We have ϕ*(Pl) = {Pl}. A case analysis of the possibilities for the body
e′ shows that L(e′) is of the form Aa, Ba, or Wa, hence ϕ*(L(e′)) = ∅. We
conclude ϕ*(Rl) = {Rl} = ϕ*(UPl

) and ϕ*(L(e′)) = ∅ = ϕ*(Bl).
• (8). We have ϕ*(Kl) = {Rl}. A case analysis of the possibilities for the

body, say e′′, of the λ-abstraction with label Rl shows that L(e′′) is of the
form Za, Ba, Ca, Da, Fa, N1

a , or N2
a , hence ψ*(L(e′′)) = ∅. Notice that the

argument e′ has the property L(e′) = l. We conclude ϕ*(l) = ϕ(l) = ϕ*(URl
)

and ϕ*(L(e′′)) = ∅ = ϕ*(Al).
• (9). We have ϕ*(VL(e1)) = ϕ(L(e1)). Suppose l ∈ ϕ*(VL(e1)) and suppose

that in cps(E) we have (λlx.λQl) and that in E we have (λlx.e). From
ϕ ∈ FlowAnalysis(E) and l ∈ ϕ(L(e1)) we have ϕ(L(e2)) ⊆ ϕ(Ul). We
conclude ϕ*(VL(e2)) = ϕ(L(e2)) ⊆ ϕ(Ul) = ϕ*(Ul) and ϕ*(Ql) = {Ql} ⊆
{ Qa | a ∈ ϕ(L(e1)) } = ϕ*(Gl′).

• (10). We have ϕ*(Gl′) = { Ql | l ∈ ϕ(L(e1)) }. Suppose Ql ∈ ϕ*(Gl′),
hence l ∈ ϕ(L(e1)). In cps(E) we have (λQlm.e) and we have ϕ*(L(e)) = ∅.
We conclude ϕ*(Sl′) = {Sl′} ⊆ { Sl′ | e1 @l′ e2 occurs in E and l ∈
ϕ(L(e1)) } = ϕ*(UQl

) and ϕ*(L(e)) = ∅ = ϕ*(Dl′).
• (11). We have ϕ*(Ml) = { Sl′ | e1 @l′ e2 occurs in E and l ∈ ϕ(L(e1)) }.

Suppose Sl′ ∈ ϕ*(Ml). In cps(E) we have (λSl′ v.kKl′ @Al′ vl′). From ϕ ∈
FlowAnalysis(E) and l ∈ ϕ(L(e1)) we have ϕ(L(e′)) ⊆ ϕ(l′). We conclude
ϕ*(VL(e′)) = ϕ(L(e′)) ⊆ ϕ(l′) = ϕ*(USl′) and ϕ*(Al′) = ∅ = ϕ*(Cl).

• (12). We have ϕ*(Jl) = {Jl}. Moreover, L(e′) = BL(e0), hence ϕ*(L(e′)) = ∅.
We conclude ϕ*(Tl) = {Tl} = ϕ*(UJl

) and ϕ*(L(e′)) = ∅ = ϕ*(Wl).
• (13). Suppose i ∈ {1, 2}. We have ϕ*(Hi

l) = {Tl}. The body, say e′′, of the
λ-abstraction with label Tl satisfies L(e′′) = Al, hence ϕ*(L(e′′)) = ∅. From
ϕ ∈ FlowAnalysis(E) we have ϕ(L(ei)) ⊆ ϕ(l). We conclude ϕ*(VL(ei)) =
ϕ(L(ei)) ⊆ ϕ(l) = ϕ*(UTl

).

Consider finally conditionals in cps(E):

[[e0 →l e1, e2]] = . . .→Fl (. . .@BL(e1) . . .), (. . .@BL(e2) . . .) . . .

We have ϕ*(BL(ei)) = ∅ = ϕ*(Fl), where i ∈ {1, 2}.

Lemma 6
If ψ ∈ FlowAnalysis(cps(E)), and l is a label of an occurrence of a subterm of E,
then ψ(l) ⊆ ψ(Vl).

Proof
For each l which labels an occurrence of a subterm of E, we have in cps(E) the
expressions:

[[e]] @Bl (λRl) (14)

kKl @Al e′ (15)

where L(e) = L(e′) = l. From L([[e]]) = PL(e) = Pl and (14) we have Rl ∈ ψ(Rl) ⊆
ψ(UPl

). We have that kKl is bound by a λ-abstraction with label Pl, so ψ(UPl
) =

ψ(Kl). From Rl ∈ ψ(UPl
) = ψ(Kl) and (15) we have ψ(l) ⊆ ψ(URl

). The variable
occurrence labeled Vl is bound by a λ-abstraction labeled Rl, so ψ(URl

) = ψ(Vl).
We conclude ψ(l) ⊆ ψ(URl

) = ψ(Vl).

14 Jens Palsberg and Mitchell Wand

Lemma 7
If ψ ∈ FlowAnalysis(cps(E)), then ψE ∈ FlowAnalysis(E).

Proof
We proceed by case analysis on the expressions in E. Consider first an expression
in E of the form xl, bound by a λ-abstraction labeled l′. We have

[[xl]] = . . . xl . . .

where xl is bound in cps(E) by a λ-abstraction labeled l′, so we have ψ(Ul′) = ψ(l),
hence ψE(Ul′) = ψE(l).

Consider next an expression in E of the form λlx.e. We have

[[λlx.e]] = . . . (λlx.. . .) . . .

so we have l ∈ ψ(l), hence l ∈ ψE(l).
Consider next an expression in E of the form e1 @l′ e2. Suppose we have λlx.e in

E such that l ∈ ψE(L(e1)). We need to show:

ψE(L(e2)) ⊆ ψE(Ul)

ψE(L(e)) ⊆ ψE(l′).

We have in cps(E) the expressions:

[[e1 @l′ e2]] = . . . v1
VL(e1) @Gl′ v2

VL(e2) . . . (16)

[[e1 @l′ e2]] = . . . (v1VL(e1) @Gl′ v
VL(e2)

2)@Dl′ (λSl′ v.. . . vl′ . . .) . . . (17)

[[λlx.e]] = . . .mMl @Cl vVL(e) (18)

From Lemma 6 we have ψ(L(e1)) ⊆ ψ(VL(e1)). It follows that l ∈ ψE(L(e1)) =
ψ(L(e1)) ⊆ ψ(VL(e1)), so from (16) and the observation that the body of the
λ-abstraction labeled l is labeled Ql, we have ψ(VL(e2)) ⊆ ψ(Ul) and ψ(Ql) ⊆
ψ(Gl′). From Lemma 6 we have ψ(L(e2)) ⊆ ψ(VL(e2)), so ψE(L(e2)) = ψ(L(e2)) ⊆
ψ(VL(e2)) ⊆ ψ(Ul) = ψE(Ul). From Ql ∈ ψ(Ql) ⊆ ψ(Gl′) and (17) we have ψ(Sl′) ⊆
ψ(UQl

). The variable occurrence labeled Ml is bound by a λ-abstraction labeled Ql,
so ψ(UQl

) = ψ(Ml). It follows that Sl′ ∈ ψ(Sl′) ⊆ ψ(UQl
) = ψ(Ml), so from (18) we

have ψ(VL(e)) ⊆ ψ(USl′). From Lemma 6 we have ψ(L(e)) ⊆ ψ(VL(e)). The variable
occurrence labeled l′ is bound by a λ-abstraction labeled Sl′ , so ψ(USl′) = ψ(l′).
We conclude ψE(L(e)) = ψ(L(e)) ⊆ ψ(VL(e)) ⊆ ψ(USl′) = ψ(l′) = ψE(l′).

Consider finally an expression in E of the form e0 →l e1, e2. For i ∈ {1, 2}, we
have

ψE(L(ei)) = ψ(L(ei)) L(ei) ∈ FlowDom(E)
⊆ ψ(VL(ei)) Lemma 6
⊆ ψ(UTl

) mHi
l @Ni

l v
VL(ei)

i , Tl ∈ ψ(Hi
l)

= ψ(l) vl is bound by λTl

= ψE(l) l ∈ FlowDom(E).

Appendix B: Proof of Theorem 2

It is straightforward to show that if ϕ ∈ FlowAnalysis(E), then (ϕ*)E = ϕ. We
will now prove that if ψ ∈ FlowAnalysis(cps(E)), then (ψE)* ⊆ ψ.

Proof

CPS Transformation of Flow Information 15

Suppose a ∈ FlowDom(cps(E)) and l ∈ FlowDom(E). We proceed by case analysis
on a.

• If a ∈ {Xl, Pl, Rl, Ql, Sl, Jl, Tl}, then (ψE)*(a) = {a}. Since a is the label of
a λ-abstraction we have a ∈ ψ(a). We conclude (ψE)*(a) ⊆ ψ(a).

• If a ∈ {Yl, Zl, UXl
, Al, Bl, Cl, Dl, Fl, N

1
l , N

2
l ,Wl}, then (ψE)*(a) = ∅ ⊆ ψ(a).

• If a ∈ {l, Ul}, then (ψE)*(a) = ψ(a).
• If a ≡ Vl, then from Lemma 6 we have (ψE)*(a) = ψ(l) ⊆ ψ(a).
• If a ≡ Gl and e1 @l e2 occurs in E, then (ψE)*(a) = { Ql′ | l′ ∈ ψE(L(e1)) }.

SupposeQl′ ∈ (ψE)*(a). From Lemma 6 we have l′ ∈ ψE(L(e1)) = ψ(L(e1)) ⊆
ψ(VL(e1)). In cps(E) we have the expression

v
VL(e1)

1 @Gl v
VL(e2)

2

and since the body of the λ-abstraction in cps(E) labeled l′ is labeled Ql′ , we
have ψ(Ql′) ⊆ ψ(Gl). We have Ql′ ∈ ψ(Ql′), so we conclude Ql′ ∈ ψ(Gl).

• If a ≡ UQl
and λlx.e occurs E, then

(ψE)*(a) = { Sl′ | e1 @l′ e2 occurs in E and l ∈ ψE(L(e1)) }.

Suppose Sl′ ∈ (ψE)*(a), such that e1 @l′ e2 occurs in E. In cps(E) we have

[[e1 @l′ e2]] = . . . (v
VL(e1)

1 @Gl′ v
VL(e2)

2) @Dl′ (λSl′)

and we have established already that Ql ∈ ψ(Gl′). This gives Sl′ ∈ ψ(Sl′) ⊆
ψ(UQl

).
• If a ≡ UPl

, then (ψE)*(a) = {Rl} and we have in cps(E)

[[e]] @Bl (λRl)

where L([[e]]) = Pl. It follows that Pl ∈ ψ(L([[e]])), so Rl ∈ ψ(Rl) ⊆ ψ(UPl
).

• If a ≡ UJl
, then (ψE)*(a) = {Tl} and we have in cps(E):

(λJl

.. . .) @Wl (λTl).

It follows that Tl ∈ ψ(Tl) ⊆ ψ(UJl
).

• If a ∈ {Kl, URl
,Ml, USl

, UTl
,H1

l ,H
2
l }, then there is also a related label b ∈

FlowDom(cps(E)), namely UPl
, Vl, UQl

, l, l, UJl
, UJl

, respectively, such that
(ψE)*(a) = (ψE)*(b) and such that we have already established above that
(ψE)*(b) ⊆ ψ(b). Moreover, ψ(a) = ψ(b). To see that in the case of a ≡ Kl

and b ≡ UPl
, notice that Kl is the label of a variable bound by a λ-abstraction

labeled Pl, so ψ(UPl
) = ψ(Kl). Similar remarks apply to the other six cases.

We conclude (ψE)*(a) = (ψE)*(b) ⊆ ψ(b) = ψ(a).

In the last item of the above proof, notice that if the constraint for a variable
occurrence were an inclusion rather than an equality, then our proof technique would
not work. For example, if a ≡ URl

and b ≡ Vl, then we would have ψ(URl
) ⊆ ψ(Vl)

rather than ψ(URl
) = ψ(Vl), so we would only derive ψ(b) ⊇ ψ(a).

Appendix C: Equalities versus Inclusions

A full-blown flow analysis of E is a total mapping

ϕ : FlowDom(E) → Flow(E)

16 Jens Palsberg and Mitchell Wand

which is defined in the same way as a flow analysis of E, except that for each xl

occurring in E and bound by a λ-abstraction labeled l′, we have ϕ(Ul′) ⊆ ϕ(l)
(rather than ϕ(Ul′) = ϕ(l)).

Theorem 8
For a program E, let ϕ′ be the ⊆-least full-blown flow analysis, and let ϕ be the
⊆-least flow analysis. We have ϕ′ = ϕ.

Proof
First notice that every flow analysis is also a full-blown flow analysis. Hence, ϕ′ ⊆ ϕ.
Second, define

ϕ′′(l) =

ϕ′(Ul′) for xl occurring in E and

bound by a λ-abstraction labeled l′

ϕ′(l) otherwise.

Since ϕ′ is a flow analysis of E, we have that for any xl occurring in E and bound
by a λ-abstraction labeled l′, ϕ′ satisfies ϕ′(Ul′) ⊆ ϕ′(l), so ϕ′′ ⊆ ϕ′.

To see that ϕ′′ is a flow analysis of E, notice ϕ′′ satisfies the constraints for
variable occurrences. Notice also that in the remaining constraints, if xl occurs in
E, then ϕ′′(l) occurs in constraints of the form ϕ′′(l) ⊆ ϕ′′(l′) for some l′, or ϕ(l)
may be used in a conditional statement of the form

if a ∈ ϕ′′(l), then ϕ′′(l′) ⊆ ϕ′′(l′′),

for some l′, l′′. Thus, from the definition of ϕ′′ and ϕ′ being a flow analysis of E,
we have that ϕ′′ is a flow analysis of E.

Since ϕ is the ⊆-least flow analysis of E, we have that ϕ ⊆ ϕ′′.
Putting it all together, we have that

ϕ′′ ⊆ ϕ′ ⊆ ϕ ⊆ ϕ′′,

so ϕ′ = ϕ.

References

Appel, Andrew W. (1992). Compiling with continuations. Cambridge University Press.

Damian, Daniel, & Danvy, Olivier. (2000). Syntactic accidents in program analysis: On
the impact of the CPS transformation. Pages 209–220 of: Proceedings of ICFP’00, ACM
SIGPLAN International conference on functional programming.

Damian, Daniel, & Danvy, Olivier. (2001). CPS transformation of flow information, part
II: Administrative reductions. Tech. rept. RS–01–40. BRICS, University of Aarhus.

Danvy, Olivier, & Filinski, Andrzej. (1992). Representing control, a study of the CPS
transformation. Mathematical structures in computer science, 2(4), 361–391.

Danvy, Olivier, Malmkjær, Karoline, & Palsberg, Jens. (1996). Eta-expansion does the
Trick. ACM Transactions on programming languages and systems, 18(6), 730–751.

Heintze, Nevin. (1995). Control-flow analysis and type systems. Pages 189–206 of: Pro-
ceedings of sas’95, international static analysis symposium. Springer-Verlag (LNCS
983).

Heintze, Nevin, & McAllester, David. (1997). Linear-time subtransitive control flow analy-
sis. Pages 261–272 of: Proceedings of ACM SIGPLAN 1997 conference on programming
language design and implementation.

Meyer, Albert R., & Wand, Mitchell. (1985). Continuation semantics in typed lambda-
calculi. Pages 219–224 of: Proceedings of Logics of programs. Springer-Verlag (LNCS
193).

CPS Transformation of Flow Information 17

Muylaert-Filho, J., & Burn, G. (1993). Continuation passing transformation and abstract
interpretation. Proceedings of first Imperial College, Department of Computing, Work-
shop on theory and formal methods.

Nielson, Flemming. (1982). A denotational framework for data flow analysis. Acta Infor-
matica, 18, 265–287.

Palsberg, Jens. (1995). Closure analysis in constraint form. ACM Transactions on pro-
gramming languages and systems, 17(1), 47–62. Preliminary version in Proceedings of
CAAP’94, Colloquium on Trees in Algebra and Programming, Springer-Verlag (LNCS
787), pages 276–290, Edinburgh, Scotland, April 1994.

Palsberg, Jens. (1998). Equality-based flow analysis versus recursive types. ACM Trans-
actions on programming languages and systems, 20(6), 1251–1264.

Palsberg, Jens, & O’Keefe, Patrick M. (1995). A type system equivalent to flow analysis.
ACM Transactions on programming languages and systems, 17(4), 576–599. Preliminary
version in Proceedings of POPL’95, 22nd Annual SIGPLAN–SIGACT Symposium on
Principles of Programming Languages, pages 367–378, San Francisco, California, Jan-
uary 1995.

Palsberg, Jens, & Pavlopoulou, Christina. (2001). From polyvariant flow information
to intersection and union types. Journal of functional programming, 11(3), 263–317.
Preliminary version in Proceedings of POPL’98, 25th Annual SIGPLAN–SIGACT Sym-
posium on Principles of Programming Languages, pages 197–208, San Diego, California,
January 1998.

Palsberg, Jens, & Schwartzbach, Michael I. (1994). Object-oriented type systems. John
Wiley & Sons.

Plotkin, Gordon D. (1975). Call-by-name, call-by-value and the λ-calculus. Theoretical
computer science, 1, 125–159.

Sabry, Amr, & Felleisen, Matthias. (1994). Is continuation-passing useful for data flow
analysis? Pages 1–12 of: Proceedings of SIGPLAN’94 conference on programming lan-
guage design and implementation.

Tang, Yan Mei, & Jouvelot, Pierre. (1994). Separate abstract interpretation for control-
flow analysis. Pages 224–243 of: Proceedings of tacs’94, theoretical aspects of computing
software. Springer-Verlag (LNCS 789).

Wand, Mitchell. (1985). Embedding type structure in semantics. Pages 1–6 of: Proceedings
of popl’85, 12nd annual symposium on principles of programming languages.

Wand, Mitchell, & Williamson, Galen B. (2002). A modular, extensible proof method
for small-step flow analyses. Pages 213–227 of: Métayer, Daniel Le (ed), Proceedings
of ESOP 2002, 11th European symposium on programming, held as part of the joint
european conference on theory and practice of software, ETAPS 2002, Grenoble, France,
April, 2002. Springer-Verlag (LNCS 2305).

Wells, J. B., Dimock, Allyn, Muller, Robert, & Turbak, Franklyn. (1997). A typed inter-
mediate language for flow-directed compilation. Proceedings of tapsoft’97, theory and
practice of software development. Springer-Verlag (LNCS 1214).

