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Many languages use syntactic sugar to define parts of their surface language in terms of a smaller core. Thus
some properties of the surface language, like its scoping rules, are not immediately evident. Nevertheless,
ides, refactorers, and other tools that traffic in source code depend on these rules to present information
to users and to soundly perform their operations. In this paper, we show how to lift scoping rules defined
on a core language to rules on the surface, a process of scope inference. In the process we introduce a new
representation of binding structure—scope as a preorder—and present a theoretical advance: proving that a
desugaring system preserves α-equivalence even though scoping rules have been provided only for the core
language. We have also implemented the system presented in this paper.
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1 INTRODUCTION
Syntactic sugar is pervasive in language technology. Language designers use it to shrink the size of
a surface language to a small core, to make it tractable for processing. In addition, programmers
use it to define domain-specific languages, and—if their language provides macros or other meta-
programming capabilities—even to extend their language. Thus, syntactic sugar is a valuable
weapon in the programming arsenal.

Unfortunately, syntactic sugar also obscures the relationship between the user’s source program
and the program that is actually type-checked, analyzed, or evaluated. In particular, traditionally,
scoping rules are defined on the core language, not on the surface. However, many tools depend on
source representations. For instance, editors need to know the surface language’s scoping in order
to perform auto-complete, distinguish free from bound variables, or draw arrows to show bound
and binding instances. Likewise, refactorers need to know binding structure to perform correct
transformations. These tools become harder to construct if scoping is only known for the core
language.
Many tools that exploit binding information for the source do so by desugaring the program

and obtaining its binding in the core language (this, for instance, is the approach used by Dr-
Racket [Findler et al. 2002] for overlaying binding arrows on the source). However, this approach
is far from ideal. It requires tools to be able to desugar programs and to resolve binding in the
core language. This is an intimate level of knowledge of a language, though: syntactic sugar is
supposed to be an abstraction, so external tools should ideally be unaware that a language even
has syntactic sugar. Additionally, this approach fails completely if the source program cannot be
desugared because it is incomplete or syntactically invalid (as programs are most of the time while
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editing). It is therefore better to disentangle the editor from the language, providing the editor
precisely what it needs: scoping rules for the surface language.

We therefore present a static inference process that, given a specification of syntactic sugar1 and
scoping rules on a core language, automatically constructs scoping rules for the surface language.
The inferred rules are guaranteed to give the same binding structure to a surface program as that
programwould have in the core language after desugaring (theorem 5.4). Essentially, scope inference
“pushes scope back through the sugar”. We can think of this as statically lifting a “lightweight
semantics” of the language. Thus it is a precursor to lifting other notions of semantics (whether
type-checking rules or the evaluation rules themselves), though of course the mechanics of doing
so will depend heavily on the semantics itself.

The intended application of this work is as follows:

(1) Begin with a core language with known scoping rules, and a set of pattern-based desugaring
rules. (We give a formal description of scope in section 3, and a language for specifying scope
in section 4.)

(2) Infer surface language scoping rules from the core scoping rules. (We give a scope inference
algorithm in section 5, and show how to make it hygienic in section 7.)

(3) Add these inferred scoping rules to various tools that can exploit them (Sublime, Atom,
CodeMirror, etc.).

An alternative approachwould be to specify scoping rules for the surface language, and verify that
they are consistent with the core language. This approach has been advocated for scoping [Herman
and Wand 2008; Stansifer and Wand 2014], type systems [Lorenzen and Erdweg 2013], and formal
semantics [Fisher and Shivers 2006]. However, this assumes that language developers are always
programming language experts who are knowledgeable about binding, able to verify consistency,
and willing to do this extra work. These are particularly unsafe assumptions for domain-specific
languages, which we believe are a strong use case for our technique.

Contributions and Outline
Modelling Scope In section 3, we give a formal description of scope as a preorder (which
we motivate through examples in section 2). This preorder then defines the name binding
structure of a program, such as where variable references are bound, and which variable
declarations shadow others.

Binding Specification Language In section 4, we present a binding specification language,
i.e., a language for specifying the name binding structure of a programming language. This
specification makes it possible to compute the scope structure (a preorder) of concrete
programs in that language.

Scope Inference In section 5, we show how to infer these scoping rules through syntactic
sugar. This is our main contribution. We describe our implementation and provide case
studies in section 6, and prove that—given reasonable assumptions—desugaring after scope
inference will be hygienic in section 7.

Due to space limitations, we omit some proofs and lemmas. They can be found in the supplement
(http://cs.brown.edu/research/plt/dl/icfp2017/), which contains an extended version of the paper.
To reduce the burden on readers, we have aligned lemma and definition numbers between the two
versions: thus some lemma numbers are skipped here.

1 We make no assumption that the core language is a subset of the surface language, so our results can be applied to, e.g.,
EDSLs.
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2 TWOWORKED EXAMPLES
We will begin by building up to our scope inference technique via two worked examples. They
are slightly simplified for expository purposes. Section 4 describes the generalization, and
sections 6.1-6.3 provide examples. (While the generalization is sometimes important, it has no effect
on the examples of this section.)

2.1 Example: Single-arm Let
For the first example, consider a simple Let construct that allows only a single binding:

t ::“ pLet xd t1 t2q “Let xd equal t1 in t2”
| . . .

(Here the superscript d indicates that this occurrence of the variable x is a declaration of x .) In
general, we will distinguish declarations, i.e., binding sites, from references, i.e., use sites.)
This Let may be desugared to Apply and Lambda by the following desugaring rule, which we

will write using s-expressions:
pLet ‚1 ‚2 ‚3q ñ pApply pLambda ‚1 ‚3q ‚2q

Now suppose that we know the scoping rules of Apply and Lambda, and wish to derive what the
scoping rules for Let must be, given the desugaring rule and assuming the language is statically and
lexically scoped. More precisely, we wish to find a scoping rule for Let such that the desugaring
rules preserve binding structure (and thus neither cause variable capture nor cause variables to
become unbound).

The first step will be to write down what we know about the scope on the rhs (right hand side)
of the rule. Pictorially, we might draw:

(rhs)

Apply

Lambda

‚1 ‚3

‚2

where the dotted lines show the tree structure of the ast, and where the teal/solid arrow means
that the Lambda’s parameter (‚1) can be used in its body (‚3). Similarly, there are no arrows among
the children of Apply because function application does not introduce any binding.

We also know from lexical scope that any declarations in scope at a node in an ast should also
be in scope at its children. This can be denoted with upward arrows:

(rhs)

Apply

Lambda

‚1 ‚3

‚2

In general, the meaning of the arrows is that a variable declaration is in scope at every part of the
program which has a (directed) path to it. (In the case of variable shadowing, the outer declaration
is in scope at the inner declaration, which in turn is in scope at some region; references in this
region will be bound to the dominating inner declaration.)
Now we can begin to infer what the scope must look like on the lhs (left hand side) of the

desugaring rule. We want the rule to preserve binding, therefore there should be a path from one
hole to another in the lhs iff there is a similar path in the rhs. If there was a path from ‚1 to ‚2 in
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the lhs but not in the rhs, that would mean that a variable (in ‚1) that used to be bound (by ‚2)
could become unbound. Likewise, if there was a path between two holes in the rhs but not in the
lhs, that could result in unwanted variable capture.

Thus, since there is a path from ‚3 to ‚1 in the rule’s rhs, there must also be a path from ‚3 to ‚1
in the lhs. This gives:

(lhs)
Let

‚1 ‚2 ‚3

In English, this arrow says that the variable declared at ‚1 is in scope at the Let’s body ‚3, as
expected.

There are still some missing arrows, however: there should be down arrows to indicate that any
declaration in scope at the Let should also be in scope at its children. These can be inferred in a
similar way: whenever there is a path from the root to a hole on the rhs, there should be a similar
path on the lhs. Since on the rhs there are paths to each hole from the root, the same should hold
true on the lhs:

(lhs)
Let

‚1 ‚2 ‚3

This gives a complete scoping rule for this Let construct.

2.2 Example: Multi-arm Let*
Next, take amore involved example: amulti-armed Let* construct (in the style of Lisp/Scheme/Racket).
It will have the following grammar:

t ::“ pLet* b tq “Let-bind b in t”
| . . .

b ::“ pBind xd t bq “Bind xd to t , and bind b”
| EndBinds “No more bindings”

This grammar separates out the Let’s bindings into nested subterms.2 It is necessary to do this if
more complex binding patterns are allowed, such as arbitrarily deep pattern-matching.

Let* can then be implemented with two desugaring rules:
pLet* pBind ‚1 ‚2 ‚3q ‚4q

ñ pApply pLambda ‚1 pLet* ‚3 ‚4qq ‚2q

pLet* EndBinds ‚1q ñ pBegin ‚1q

These rules would, for example, make the following transformation:
pLet* pBind xd 1 pBind yd 2 EndBindsqq pPlus xr yrqq

ñ pApply pLambda xd

pApply pLambda yd pPlus xr yrqq 2qq 1q

Given that we know the scoping rules of Apply, Lambda, and Begin, we can use them to derive
the scoping rules for Let* and Bind. The scoping for the second rule is trivial, so we will concentrate
just on the first rule.

As before, the first step is to write down what we know about the scope on the rhs:

2 We call the bindings just “Bind”, even though they are specific to Let. If a language has other forms of binding as well,
“Bind” may need a more specific name such as “LetBind”.
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(rhs)

Apply

Lambda

‚1 Let*

‚3 ‚4

‚2

Unlike in the previous example, this diagram is not (necessarily) complete, since we don’t yet know
the scoping rule for Let*.3 We have drawn two upward arrows on Let*, despite the fact that we
don’t yet know its scoping rule: technically, these arrows should (and can) be inferred, but we start
with them to simplify this example.

Now we can begin to infer what the scope must look like on the lhs. As before, we want the
rule to preserve binding. Thus, since the rhs has a path from ‚3 to ‚1 and from ‚4 to ‚1, the same
must be true in the lhs (labeling the arrows for reference):

(lhs)

c

b

a

Let*

Bind

‚1 ‚2 ‚3

‚4

Notice that we drew the path from ‚4 to ‚1 with two arrows. This is because we will assume that
scoping rules are local, relating only terms and their immediate children.

We have now learned something about the scoping rules for Let* and Bind! When read in English,
these three arrows say that:

a. Declarations from a Let*’s binding list are visible in its body.
b. A Bind’s variable declaration is provided by the Bind (so that it can be used by the Let*).
c. A Bind’s variable declaration is visible to later Binds in the binding list.

This information can now be applied to fill in the previously incomplete rhs picture. Arrow (a)
represents a fact about the scoping of every Let*, so it must also apply in the rhs (highlighting it
orange/dashed for exposition):

(rhs)

Apply

Lambda

‚1 Let*

‚3 ‚4

‚2

Adding this arrow introduces a path from ‚4 to ‚3, however, that needs to be reflected back at the
lhs!

3This will happen when desugaring rules use recursion.
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(lhs)

c

b

a

d

Let*

Bind

‚1 ‚2 ‚3

‚4

In general, the algorithm is to monotonically add arrows until reaching the least fixpoint. In this
particular case, arrow d is the last fact to be inferred:

d. A Bind also provides any declarations provided by later Binds in the binding list.
This concludes the interesting facts to be inferred about the scoping rules for Let* and Bind. We
have ignored the upward arrows that reflect lexical scope from parent to child for simplicity, but
these can be inferred by the same process.

2.3 Scope as a Preorder
In the two preceding examples, we have expressed the scope of a program diagrammatically with
arrows. When reasoning about scope, it will be helpful to be able to transcribe these diagrams into
a textual form.
To do so, recall the (approximate) meaning of the arrows:4 a declaration is in scope at every

part of the program which has a (directed) path to it, and is shadowed by declarations of the same
name that have a path to it. Thus the arrows are only meaningful insofar as they produce paths.
Furthermore, paths have two important properties:
(1) They are closed under reflexivity: there is always an (empty) path from a to a.
(2) They are closed under transitivity: if there is a path from a to b and a path from b to c , then

there is a path from a to c .
These are also precisely the properties that define a preorder. Thus, wewill transcribe scope diagrams
as preorders, writing a ď b when there is a path from a to b. For example, in the (incomplete)
diagram we inferred for the lhs of the multi-arm Let* sugar:

Let*

Bind

‚1 ‚2 ‚3

‚4

The corresponding preorder is: ‚4 ď Bind ď ‚3 ď ‚1

3 DESCRIBING SCOPE AS A PREORDER
We have informally described the notion of scope as a preorder, primarily using diagrams. In this
section, we will describe it formally. First, however, we need to lay down some starting assumptions
and basic definitions.

3.1 Basic Assumptions
We will make a number of assumptions to make reasoning about scope more tractable:

‚ We only deal with scoping that is static and lexical.
4 We make their meaning precise in section 3.2.
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‚ Scoping rules will be as local as possible, only relating a term to its immediate children.
Longer relationships will be achieved by transitivity.5

‚ We work on an ast, instead of directly on the surface syntax. Variable references (use sites)
and declarations (binding sites) are syntactically distinguished in this ast.

‚ Each kind of term has a fixed arity. (Indefinite arity is possible using a list encoding, as in
Let* above.)

The last two of these assumptions guide our definition of (ast) terms. Terms will be parameterized
over a set of term constructors T , each with an arity : T Ñ N, and also over a set of syntactic
constants C. We will write the ast in s-expression form:

t ::“ xdi (declaration at position i)
| xri (reference at position i)
| pP t1 ... tnq (ast node)

where P P T

and arity pPq “ n
| const (syntactic constant)

where const P C

References and declarations have both a name x (as written in the source), and an ast position i
(that uniquely distinguishes them). Occasionally it will be useful to refer to a variable which could
be either a declaration or a reference: in this case we omit the superscript, e.g. x i. Likewise, we will
omit the position subscript i when there is no ambiguity. We will also sometimes write P in place
of pP t1 ... tnq when there is no danger of ambiguity.

3.2 Basic Definitions
We define scope in terms of a perorder. A preorder (ď) is a reflexive and transitive relation. It need
not be anti-symmetric, however, so it is possible that a ď b and b ď a for distinct a and b. We
capture scope as a preorder on a term t as follows:

Definition 3.1 (Scope). A scope preorder on a term t is a preorder (ď) on the references and
declarations in t such that references are least in this preorder (i.e., nothing is ever smaller than a
reference).

Definition 3.2. A reference xri is in scope of a declaration xdj when xri ď xdj .

Definition 3.3. A declaration xdi is more specific than another xdj when xdi ď xdj .

Note that these definitions rely on the existence of a preorder (ď), but don’t say how to determine
it for a given term. We will present scoping rules to do so in section 4. These definitions therefore
provide very little on their own, but they can be built upon to define some common concepts:

Definition 3.4 (Bound). A reference is bound to the most specific declaration(s) that it has the
same name as and is in scope of. More formally, we write:

xr ÞÑ xd fi xd P mintxdi |xr ď xdi u

where min S finds the (zero or more) least elements of S :
min S fi ta P S | Eb P S . b ď a and a ď bu

Definition 3.5 (Unbound). A reference is unbound (or free) when it is not bound by any declaration.
5 If we allowed non-local arrows, then in the previous example, inference would produce a single arrow from ‚4 to ‚1
instead of arrows “a” and “b”. Then the orange/dashed arrow could not be inferred, since it relied on the existence of arrow
“a”, and the inference process would fail at its task.
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Definition 3.6 (Ambiguously Bound). A variable reference is ambiguously bound when it is bound
by more than one declaration.

Ambiguous binding may occur, for instance, if two declarations have the same name and are
both parameters to the same function. In this case, a reference in the body of the function would be
ambiguously bound to both of them. We also capture the idea of shadowing, where a more specific
declaration hides a less specific declaration:

Definition 3.7 (Shadowing). A declaration shadows the most specific declarations that it has the
same name as and is more specific than. Formally, xdi shadows xdj when:

xdi ÞÑ xdj fi xdj P mintxdk | i ‰ k and xdi ď xdk u

(We use the same notation ˝ ÞÑ ˝ for both binding and shadowing because the definitions are
analogous.)

3.3 Validating the Definitions
Since this description of scope is new, readers might wonder whether our definitions of concepts
match their vernacular meaning. We provide evidence that they do in two forms.
First, we prove a simple lemma below showing that shadowing behaves as one would expect.

Second, we show (section 3.4) that the notion of scope used in “Binding as Sets of Scopes” [Flatt 2016]
obeys our scope-as-a-preorder definitions, for an appropriate choice of preorder pďq. Additionally,
in the supplement, we introduce a second, very intuitive definition of scope called scope-as-sets,
and show that it is equivalent to scope-as-a-preorder up to a normalization.

Lemma 3.8 (Shadowing). If one declaration shadows another, then a reference in scope of the
shadowing declaration cannot be bound by the shadowed declaration.

Proof. Suppose that xdj shadows xdi (xdj is the shadowing declaration and xdi is the shadowed
declaration), and xrk is in scope of xdj . What might xrk be bound by? By definition, it will be bound
by mintxdl |xrk ď xdl u. But since xrk ď xdj ď xdi , x

d

i cannot be in this set, and xrk cannot be bound
by xdi . □

3.4 Relationship to “Binding as Sets of Scopes”
Scope-as-a-preorder aligns with the notion of scope expressed by Flatt [2016]. In his formulation,
each subterm in the program is labeled with a set of scopes, called its scope set. A reference’s binding
(i.e., declaration) is then found “as one whose set of scopes is a subset of the reference’s own scopes
(in addition to having the same symbolic name)”. If there is more than one such declaration, a
reference is bound by the one with the largest (superset-wise) scope set. If there is no unique such
element, then the reference is “ambiguous” [Flatt 2016, pp. 3].
This can be expressed in terms of scope-as-a-preorder. Take the preorder pďq to be (the least

relation such that):
xri ď xri
xr ď yd iff scope-set pxrq Ě scope-set pydq

xdi ď ydj iff scope-set
`

xdi
˘

Ě scope-set
´

ydj

¯

Then our definition of a reference’s binding agrees with Flatt’s, and our definition of an “ambiguously
bound” reference agrees with his definition of an “ambiguous” reference.
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4 A BINDING SPECIFICATION LANGUAGE
The previous section presented definitions for representing the scoping of a term. It did not, however,
say how to determine the scoping of a term, i.e., what the specific preorder should be. In this section,
we give a language for specifying scoping rules that, given a term, determine a preorder over its
variables.

4.1 Scoping Rules: Simplified
The basic idea behind our binding language is that the binding structure of a term should be
determined piecewise by its subterms. Thus every term constructor (e.g., λ or `) should specify a
scoping rule that gives a preorder amongst itself and its children. A term’s scope-as-a-preorder can
then be found by taking the transitive closure of these local preorders across the whole term.
As an example, take the term pLambda xd1 pPlus xr2 3qq. To find the bindings of this term,

we must know the scoping rules for Lambda and Plus. A sensible rule for Plus is that a term
pPlus ‚1 ‚2q has preorder ‚1 ď pPlus ‚1 ‚2q and ‚2 ď pPlus ‚1 ‚2q, meaning that whatever
a Plus term is in scope of, its children are too. For brevity, we will typically write ‚1 ď Plus and
‚2 ď Plus instead. Likewise, a sensible rule for Lambda is that a term pLambda ‚1 ‚2q has preorder
p‚2 ď ‚1 ď Lambdaq, meaning that whatever a Lambda term is in scope of, its children are too, and
that ‚2 (its body) is in scope of ‚1 (its declaration). Put together, and applied to the example term,
these rules give that:

pLambda xd1 pPlus xr2 3qq

has preorder:
xr2 ,3 ď Plus ď xd1 ď Lambda

Thus xr2 ÞÑ xd1 by definition 3.4, as it should be.

4.2 A Problem
This isn’t quite the whole picture, though. Consider the term

pLambda xd1 pLet* pBind xd2 xr3 EndBindsq xr4 qq

What will these scoping rules look like? Whatever they are, they should cause xd2 to shadow xd1 ,
xr3 to be bound by xd1 , and x

r

4 to be bound by xd2 . Formally, we should have:

xd2 ÞÑ xd1 and xr3 ÞÑ xd1 and xr4 ÞÑ xd2

which implies that, at a minimum:

xd2 ď xd1 and xr3 ď xd1 and xr4 ď xd2

This places a set of requirements on the scoping rules for Lambda, Let*, and Bind. For instance,
xr3 ď xd1 can only be achieved if xr3 ď Bind ď Let* ď xd1 . Continuing this way gives the
requirements (shown both pictorially and textually):

Lambda

xd1
Let*

Bind

xd2 xr3 EndBinds

xr4

Let* ď xd1
Bind ď Let*
xr4 ď Bind
xd2 ď Bind
xr3 ď Bind
Bind ď xd2
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However, this puts xr3 in scope of xd2 , and as a result, x
r

3 will be bound by xd2 ! The problem is that
Bind is trying to provide xd2 , to make it available in the body of Let*, but in doing so it incidentally
makes it available in the Bind’s definition (to xr3 ). This is not how scoping dependencies should
flow, and in the next two subsections we present the full, un-simplified version of our scoping rules
that avoid this problem.

4.3 The Solution
The solution is to separate the bindings a term imports (i.e., requires) from the bindings it exports
(i.e., provides). In the running example, for instance, the Bind imports xd1 , and exports xd1 and xd2
(with xd2 shadowing xd1 ). We will call imports and exports ports.

The scoping rules can now be re-interpreted with this in mind. Given a term t , they will determine
a preorder not over the subterms of t (like we have presented it so far), but instead over the ports of
the subterms of t . With this in mind, we offer four kinds of bindings:6

A. bind i in j: A term may make its i’th child’s bindings available in its j’th child. If so, any
declarations exported by child i will be imported by child j.

B. import i: A term’s i’th child may import its parent’s declarations. If so, it imports the
declarations imported by its parent. (This is almost universal, as it represents lexical scope:
declarations in scope at a node in an ast should also be in scope at its children. However, we
do allow a term to hide all bindings from its child, if it so desires.)

C. export i: A term’s i’th child may export its declarations to its parent. If so, the term exports
child j’s exports.

D. re-export: A term may take the declarations it imported, and export them. (This is not
terribly useful in practice, but we offer it for completion.)

These four kinds of paths may be represented graphically, showing imports as Ó and exports as Ò:

B
A

CD

ParentÓ Ò

Child1Ó Ò Child2Ó Ò

With these new bindings in mind, the requirements for the example from the previous subsection
become:

LambdaÓ Ò

xd1Ó Ò LetÓ Ò

BindÓ Ò

xd2Ó Ò xr3Ó Ò EndBindsÓ Ò

xr4Ó Ò

ÓLet ď Òxd1
ÓBind ď ÓLet
Óxr4 ď ÒBind
Óxd2 ď ÓBind
Óxr3 ď ÓBind
Òxd2 ď Óxd2
ÒBind ď Òxd2

6 There is a close analogy between ports and attributes in attribute grammars [Knuth 1968]: namely, imports are analogous
to inherited attributes and exports are analogous to synthesized attributes. The paths between imports and exports that are
allowed by our binding language (e.g., child export to parent export, but not child export to parent import) are precisely the
relationships between inherited and synthesized attributes that are allowed in attribute grammars. Most algorithms for
evaluating attribute grammars disallow cycles, however, while our preorders allow them.
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Under this new preorder, xr3 ÞÑ xd1 and xr4 ÞÑ xd2 as desired.

4.4 Scoping Rules: Unsimplified
We have given an intuition behind our scoping rules; now we present them formally.

Each port will have one of two signs (import or export):
d ::“ Ó (import)

| Ò (export)
A port, then, pairs a term t with a sign:

a,b,c ::“ Ót | Òt (port)
A set of scope rules Σ gives a relation for each term constructor P that describes the scoping

relationships between a term constructed with P and its subterms:

Definition 4.1. A set of scope rules Σ is a partial map from term constructors P of arity n to binary
relations over t1, ..., n,rÒ,rÓu, such that:

‚ The relation is transitive.
‚ rÒ is a least element (Ea. pa, rÒq P ΣrPs)
‚ rÓ is a greatest element (Ea. prÓ, aq P ΣrPs)

Here i represents the ith child term, rÒ represents the parent term’s exports, and rÓ represents
the parent term’s imports. We will call pairs in the relation (e.g., p1, rÓq) facts, and will equate them
with their description in our binding language (so that p1, rÓq “ import 1). The sign on the port
on i can be determined knowing that the fact it is part of must be one of the four kinds of bindings
described in section 4.3. We will write s Ď t to mean that s is a subterm of t , and write a Ď t to
mean Ds . pa “ Ós or a “ Òsq and s Ď t .
As an example of scope rules, the rules for Lambda are:

ΣrLambdas “ tp1, rÓq, p2, rÓq, p2, 1qu “ timport 1, import 2, bind 1 in 2u

These scope rules determine the scoping for individual (sub)terms. The scoping of a full term is
found by applying the scoping rules locally at each subterm, then taking the reflexive transitive
closure of this global relation:

Definition 4.2. The scoping of a full term t under scoping rules Σ is the set of judgements of the
form Σ,t $ a ď b defined by the “Declarative Rules” and “Shared Rules” of fig. 1.

The judgments in the figure have the form Σ,t $ a ď b, which means that “a ď b in term t
using scoping rules Σ”. A judgment is well formed when a,b Ď t . (Later, we will also use judgments
of the form Σ,C $ a ď b; these are governed by identical rules, allowing each term t to instead be
a context C .)

Rules SD-Import, SD-Export, SD-Bind, and S-ReExport capture the direct meaning of the scoping
rules. S-Refl, S-Refl2, and SD-Trans give the transitive reflexive closure. SD-Decl allows declarations
to extend the current scope. S-Lift says that facts learned about a subterm remain true in the whole
term.

These rules are not, however, syntax-directed. We give a syntax-directed version of the rules in
the figure, under “Algorithmic Rules” and “Shared Rules”. These two rule sets are equivalent:

Theorem 4.3 (Algorithmic Scope Checking). The declarative and algorithmic scope checking
rules (fig. 1) [with shared rules common to both] are equivalent.

Proof. Given in the supplement. □
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Σ,t $ a ď b

Declarative Rules

SD-Trans
Σ,t $ a ď b Σ,t $ b ď c

Σ,t $ a ď c

SD-Import
import i P ΣrPs

Σ,pP t1 ... tnq $ Óti ď ÓpP t1 ... tnq

SD-Export
export i P ΣrPs

Σ,pP t1 ... tnq $ ÒpP t1 ... tnq ď Òti

SD-Bind
bind j in i P ΣrPs

Σ,pP t1 ... tnq $ Óti ď Òtj

Shared Rules (Declarative & Algorithmic)

S-Refl1
Σ,t $ Ót ď Ót

S-Refl2
Σ,t $ Òt ď Òt

S-Lift
Σ,ti $ a ď b

Σ,pP t1 ... tnq $ a ď b

S-Decl
Σ,xd $ Òxd ď Óxd

S-ReExport
re-export P ΣrPs

Σ,pP t1 ... tnq $ ÒpP t1 ... tnq ď ÓpP t1 ... tnq

Algorithmic Rules

SA-Import
Σ,ti $ a ď Óti import i P ΣrPs

Σ,pP t1 ... tnq $ a ď ÓpP t1 ... tnq

SA-Export
export i P ΣrPs Σ,ti $ Òti ď a

Σ,pP t1 ... tnq $ ÒpP t1 ... tnq ď a

SA-Bind
Σ,ti $ a ď Óti bind j in i P ΣrPs Σ,tj $ Òtj ď b

Σ,pP t1 ... tnq $ a ď b

Fig. 1. Scope Checking

These scope checking rules say how to find a preorder over all of the ports in a term. However,
section 3 is based on preorders over the variables in a term.7 This is obtained as the restriction of
the entire preorder to variables, as captured by the following rule:

Σ,t $ x ď y S-Var
Σ,t $ Óx i ď Óyj

Σ,t $ x i ď yj

7 In fact, scope-as-a-preorder could be used with a different binding language, so long as it can be used to extract a preorder.
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The definitions for binding and shadowing (definitions 3.4 and 3.7) can then be expressed as
inference rules:

Σ,t $ x ÞÑ y S-Bound
xd P mintxdi | Σ,t $ xr ď xdi u

Σ,t $ xr ÞÑ xd

S-Shadow
xdj P mintxdk | i ‰ k and Σ,t $ xdi ď xdk u

Σ,t $ xdi ÞÑ xdj

These definitions form a scope preorder:

Lemma 4.4. For any set of scoping rules Σ and term t , the relation tpx i,x jq | Σ,t $ x i ď x ju is a
scope preorder satisfying the requirements of definition 3.1.

Proof sketch. The relation is a preorder by the derivation rules S-Refl1, S-Refl2, and SD-Trans.
We must also show that references are least. Suppose instead that x i ď xrj for some i ‰ j. Then
Óx i ď Óxrj , which is syntactically impossible to achieve by the declarative judgements. □

4.5 Well-Boundedness
Definition 3.4 (on being bound) can be used to define α-equivalence. Two terms are α-equivalent if
(i) each term is “well-bound”; (ii) they have the same “shape” (i.e., they are identical ignoring their
variable names); and (iii) for every binding xr ÞÑ xd in one term, an analogous binding exists in
the same location in the other term. To formalize what “same location” means, we will use a join
operator (s ’ t ) that checks that s and t have the same shape and finds a bijection between their
variable occurrences as a witness to this fact:

xdi ’ ydj “ txdi Ø ydj u

xri ’ yrj “ txri Ø yrj u

const ’ const “ H

pP s1 ... snq ’ pP t1 ... tnq “
Ť

iP1..n si ’ ti
s ’ t “ undefined otherwise

Likewise, to formalize “well-bound”, we will use the rules to determine when two declarations
conflict; for instance if they have the same name and are both parameters to the same function. We
will consider terms with conflicting declarations to be ill-bound.

Definition 4.5 (Conflicting Declarations). Two variable declarations xdi and xdj conflict in a term t

when:

S-Conflict

Σ,t $ a ď xdi Σ,t $ a ď xdj
minΣ,t txdi ,x

d

j u “ txdi ,x
d

j u

Σ,t $ xdi conflicts xdj

(If a variable reference is ambiguously bound (definition 3.6), then its bindings declarations must be
in conflict.)

A term t is well-bound with respect to scoping rules Σ when every reference is bound by exactly
one declaration, and there are no conflicting declarations:

S-WB

@xr Pt . D!xd Pt . Σ,t $ xr ÞÑ xd

Exdi ,x
d

j Pt . Σ,t $ xdi conflicts xdj
Σ $ wb t

The definition of α-equivalence with respect to the scoping rules Σ is then:
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Definition 4.6 (α-equivalence).

S-α -Eqv

Σ $ wb s Σ $ wb t s ’ t “ ψ
@xr,xd. Σ,s $ xr ÞÑ xd iff Σ,t $ ψ pxrq ÞÑ ψ pxdq

Σ $ s “α t

(We will also talk about α-equivalence and well-boundedness of patterns. The definitions are
identical.)

In section 6.5 of the supplement, we show a catalog of scoping rules that can be expressed in our
binding language.

5 INFERRING SCOPE
In this section we show how to infer scope by lifting scoping rules from a core language to the
surface language. The input to this inference process is twofold: first, the core language must have
associated scoping rules, and second, the syntactic sugar must be given as a set of pattern-based
rewrite rules. The output of scope inference is a set of scoping rules for the surface language.
The process is loosely analogous to type inference: type inference finds the most general type

annotations such that a program type-checks; scope inference will find the smallest set of surface
scoping rules under which desugaring preserves α-equivalence. More precisely, given a core
language with scoping rules Σcore , and a desugaring f , our algorithm finds scoping rules Σsurf that
preserves α-equivalence (theorem 7.1), so that:

Σsurf $ s “α t implies Σcore $ f psq “α f ptq

Furthermore, Σsurf will be least, so that if Σ1
surf also has this property, then @P . Σsurf rPs Ď Σ1

surf rPs.
The general algorithm for scope inference is given in fig. 2. The next three subsections explain

our assumptions about desugaring, and then the algorithm.

5.1 Assumptions about Desugaring
We will assume that desugaring is given (externally to the language) by a set of rewrite rules of the
formC ñ C 1, whereC andC 1 are contexts (terms with holes ‚i in them, not evaluation contexts).8 9

C ::“ ... (as in term t )
| ‚i (hole)

Furthermore, we assume that for every rule C ñ C 1:
(1) Every hole in C 1 also appears in C .
(2) No hole in C or C 1 appears more than once.
(3) C contains no references or declarations. (Rather, these should be contained in its holes

during expansion.)
(4) References and declarations in C 1 are given fresh names during expansion to ensure hygiene.

(Our implementation also supports global references—e.g., calling print—but we leave this
out of the paper for simplicity.)

When desugaring, there may be more than one rewrite rule that applies to a given term. We
make no assumption about which will be chosen; even a non-deterministic desugaring is allowed. A
more typical choice is to apply rules in outside-in order, as is done by Scheme-style syntax-rules
macros [Kelsey et al. 1998].
8 Formally, this is a term rewriting system (TRS) [Klop 1992]. We are calling the TRS’s variables holes to avoid confusing
them with references and declarations, which are constants from the perspective of the TRS.
9 For now, we will admit unhygienic sugars; hygiene will be addressed in section 7.
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inferScope pΣ, tCi ñ C 1
iuiP1..nq fi Let Σsurf “ solve

˜

Σ,
ď

iP1..n
genConstrs pCi ñ C 1

i q

¸

checkScope
`

Σsurf , tCi ñ C 1
iuiP1..n

˘

Return Σsurf

genConstrs pC ñ C 1q fi tgenConstr pa ď b, C ñ C 1qua,bPH
where H “ holes pCq Y holes pC 1q Y tru

genConstr pa ď b, C ñ C 1q fi pgenConj pa ď b, Cq ,genConj pa ď b, C 1qq

where pp,qq means a constraint “p iff q”

genConj pa ď b, Cq fi Smallest Σsurf such that Σ,C $ a ď b.
(To compute this, take the premises of the (unique)
derivation of Σ,C $ a ď b using the
Algorithmic Scope Checking rules (fig. 1).)

solve pΣcore, constraintsq fi Initialize Σsurf = Σcore
Until fixpoint:

‚ If a fact f in a constraint is in Σsurf :
Delete f from the constraint

‚ If one side of a constraint is empty:
Delete the constraint
Add the other side to Σsurf

(maintaining transitive closure)
‚ If any fact in Σsurf is in the complement of Σcore:

ERROR: Reject this sugar
Return Σsurf

checkScope pΣ, tCi ñ C 1
iuiP1..nq fi For each rule C ñ C 1:

Assert that if Σ,C $ a ď b and a P C 1 then b P C 1

(otherwise ERROR)
Assert that each reference xr P C 1 is bound by a
unique declaration xd P C 1

Fig. 2. Scope Inference Algorithm

In general, a rewrite will look like:

ErCrt1, ...,tnss ñ ErC 1rt1, ...,tnss

where E and C are contexts, and Crt1, ...,tns denotes replacing the n holes of context C with terms
t1, ...,tn . (In section 2,C was called the lhs, andC 1 the rhs.) The outer context E is important because
when a piece of sugar expands, while its expansion doesn’t typically depend on its surrounding
context, its binding structure might. For example, E might be pLambda xd ‚q, and xr inside the hole
may be unbound without it.
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5.2 Constraint Generation
The first step to scope inference is generating a set of constraints for each desugaring rule that, if
satisfied, ensure that it will preserve binding structure. Specifically, fix a rewrite rule C ñ C 1. It is
important that this rewrite does not change the binding of any variable outside of C . To achieve
this, it will suffice that the preorder on the boundary of C is the same as the preorder among the
boundary of C 1. The boundary, here, is the set of holes in C , together with the root (i.e., the whole
term). For example, in ErCrt1, ...,tnss, ‚i bounds ti , and C (the root) bounds E. In general, we will
call this property scope-equivalence:

Definition 5.1 (Scope-equivalence of contexts). Σ $ C – C 1 means that @a,b P t‚1, ...,‚n ,ru.

Σ,C $ a ď b iff Σ,C 1 $ a ď b

where r (“root”) stands in for C or C 1, as appropriate, and omitted port signs are determined by
what our binding language allows:

Σ,C $ ‚i ď ‚j fi Σ,C $ Ó‚i ď Ò‚j
Σ,C $ ‚i ď r fi Σ,C $ Ó‚i ď ÓC
Σ,C $ r ď ‚j fi Σ,C $ ÒC ď Ò‚j
Σ,C $ r ď r fi Σ,C $ ÒC ď ÓC

When two contexts are scope-equivalent, rewriting one to the other within a term does not
change the scope of the rest of the term:

Definition 5.2 (Scope-preservation). A rewrite

ErCrt1, ...,tnss ñ ErC 1rt1, ...,tnss

preserves scope relative to a set of scoping rules Σ if @a,b Ď E,t1, ...,tn (i.e., each of a and b lies in
one of E,t1, ...,tn ):

Σ,ErCrt1, ...,tnss $ a ď b iff Σ,ErC 1rt1, ...,tnss $ a ď b

Lemma 5.3 (Scope-eqivalent contexts preserve scope). If Σ $ C – C 1, then any rewrite
ErCrt1, ...,tnss ñ ErC 1rt1, ...,tnss preserves scope.

Proof. We will prove the forward implication of the iff in scope-preservation; the reverse is
symmetric. View the (ď) preorder as a directed graph. Our given is that there is a path from a
to b in ErCrt1, ...,tnss, where neither a nor b lie in C . Some subpaths of this path may traverse C;
these subpaths are bounded by Ót1,Òt1, ...,Ótn ,Òtn ,ÓC,ÒC . The fact that Σ $ C – C 1 means that
these subpaths can be converted to subpaths in C 1, bounded instead by Ót1,Òt1, ...,Ótn ,Òtn ,ÓC

1,ÒC 1.
Replace these subpaths. Now the whole path goes from a to b in ErC 1rt1, ...,tnss. □

We can use scope-equivalence to turn a rewrite rule C ñ C 1 into a set of constraints that hold
iff the rewrite rule preserves scope. There will be one constraint for every pair pa,bq from the
boundary. Each constraint will have the form:

F1 ^ F2 ^ ...Fn iff F 1
1 ^ F 1

2... ^ F 1
m

where each Fi is a fact (e.g. bind 2 in 1 P ΣrLets). This constraint is found by stating that the
premises of the derivation of Σ,C $ a ď b hold “iff” the premises of the derivation Σ,C 1 $ a ď

b hold. These derivations are guaranteed to be unique, and can found efficiently, because the
algorithmic scope-checking rules (fig. 1) are syntax-directed.

As an example of this constraint generation, take the desugaring rule for Let:
pLet ‚1 ‚2 ‚3q ñ pApply pLambda ‚1 ‚3q ‚2q
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One of the necessary constraints says that:
Σ,pLet ‚1 ‚2 ‚3q $ ‚1 ď ‚2

iff Σ,pApply pLambda ‚1 ‚3q ‚2q $ ‚1 ď ‚2

Each side of this “iff” has a unique derivation using the algorithmic scope-checking rules (fig. 1).
Replacing each side with the premises of its derivation yields the constraint:

bind 2 in 1 P ΣrLets iff bind 2 in 1 P ΣrApps ^ import 1 P ΣrLams

Since the boundary has size four (‚1, ‚2, ‚3, and r), continuing this way leads to a total of 42 “ 16
constraints:

bind 1 in 1 P ΣrLets iff bind 1 in 1 P ΣrLams

bind 2 in 1 P ΣrLets iff bind 2 in 1 P ΣrApps ^ import 1 P ΣrLams

bind 3 in 1 P ΣrLets iff bind 2 in 1 P ΣrLams

import 1 P ΣrLets iff import 1 P ΣrApps ^ import 1 P ΣrLams

bind 1 in 2 P ΣrLets iff bind 1 in 2 P ΣrApps ^ export 1 P ΣrLams

bind 2 in 2 P ΣrLets iff bind 2 in 2 P ΣrApps

bind 3 in 2 P ΣrLets iff bind 1 in 2 P ΣrApps ^ export 2 P ΣrLams

import 2 P ΣrLets iff import 2 P ΣrApps

bind 1 in 3 P ΣrLets iff bind 1 in 2 P ΣrLams

bind 2 in 3 P ΣrLets iff bind 2 in 1 P ΣrApps ^ import 2 P ΣrLams

bind 3 in 3 P ΣrLets iff bind 2 in 2 P ΣrLams

import 3 P ΣrLets iff import 1 P ΣrApps ^ import 2 P ΣrLams

export 1 P ΣrLets iff export 1 P ΣrApps ^ export 1 P ΣrLams

export 2 P ΣrLets iff export 2 P ΣrApps

export 3 P ΣrLets iff export 1 P ΣrApps ^ export 2 P ΣrLams

re-export P ΣrLets iff re-export P ΣrApps

We have just described how to generate constraints—covering the gen functions in fig. 2—and the
previous lemma shows that the constraints generated this way capture our aim in scope inference.
We now turn to solving these constraints.

5.3 Constraint Solving
These constraints can be solved by searching for their least fixpoint, starting with the initial
knowledge of the scoping rules for the core language. Finding the least fixpoint is sensible, because
by default, declarations should not be in scope. Since all of the constraints have the form of an “iff”
between conjunctions, the least fixpoint exists and can be found by monotonically growing the set
of known facts.

Solving for the least fixpoint gives a set of scoping rules for the surface and core languages such
that the desugaring rules preserve this scope. Since the least fixpoint was seeded with the known
scoping rules for the core language, its output will contain at least those facts. However, they may
have inferred additional, incorrect facts about the scope of the core language. For instance, consider
the following “Lambda flip flop” rule (where Flip and Flop are constants, i.e., nodes of arity 0):

pLambdaFF Flip ‚1 ‚2q ñ pLambda ‚1 ‚2q

pLambdaFF Flop ‚1 ‚2q ñ pLambda ‚2 ‚1q

In traditional hygienic macro expansion systems this desugaring is considered to be OK: the scope
of a term is defined by the scope of its desugaring, which may vary on things such as the choice
between Flip and Flop constants. However, we will take the opposite view: this desugaring should
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be rejected because the scope it produces for LambdaFF cannot be captured by (reasonable) static
scoping rules.
Let us work through scope inference for this example. From the first rule, we can learn (from

the Lambda on the rhs) that bind 2 in 3 P ΣrLambdaFFs, and from the second rule, we can
learn that bind 3 in 2 P ΣrLambdaFFs. Applying either of these facts to the other rule gives that
bind 2 in 1 P ΣrLambdas: the body of the Lambda is in scope at its parameter! This contradicts the
known signature for Lambda (we know that bind 2 in 1 R ΣrLambdas), so these rules would be
rejected. In general, scope inference fails when the least fixpoint contains facts about the scope of a
core language construct that are not part of that construct’s signature.

5.4 Ensuring Hygiene
We have described how to infer scope by generating and then solving constraints. There are two
checks we should perform, however, to ensure that desugaring cannot produce unbound identifiers.
These checks are performed by checkScope in fig. 2:

‚ Any references introduced on the rhs of a sugar must be bound. For instance, a sugar could
not simply expand to xr, because that would be unbound.

‚ A sugar cannot delete a hole that might contain a bound declaration. For instance, it could not
rewrite plambda ‚1 ‚2q to ‚2, because ‚2 might contain a reference bound by a declaration
in ‚1. In general, if a sugar deletes any hole, then it must also delete all smaller holes (those
that are less in the preorder).

These two checks ensure that sugars cannot cause unbound identifier exceptions. Besides obviously
being a problem, we would like to prevent this because it violates our notion of hygiene. However,
these problematic sugars would not be considered unhygienic in the traditional sense.

Traditionally, research on hygiene has focused on preventing sugars from accidentally capturing
user-defined references and vice versa. For instance, if a user binds xdi and then uses xr inside a
sugar, and the sugar locally binds xdj , then x

r should not be bound by xdj . These hygiene violations
are called “introduced-binder” and “introduced-reference” violations, respectively. There are also
more subtle violations in which desugaring makes observations about declaration equality [Adams
2015].
However, there is a simpler goal we can aim for that gets at the heart of the problem, and

subsumes all of these specific properties. The goal is that if two programs are α-equivalent, then
they will still be α-equivalent after a desugaring f :

Σsurf $ s “α t implies Σcore $ f psq “α f ptq

(Recall from definition 4.6 that α-equivalence is parameterized by Σ. Therefore, in the above
antecedent and consequent, α-equivalence is respectively defined by Σsurf and Σcore .)
This prevents accidental variable capture because α-renaming the captured variable would

cause it to not be captured, changing the α-equivalence-class of the program. It also prevents
the introduction of unbound identifiers, because a program with an unbound identifier is not
α-equivalent to any other program (it is outside the domain of α-equivalence).

Most hygiene papers don’t mention this criterion for a simple reason: “α is not defined on
their surface language, so they cannot even state the requirement. Recent exceptions to this
rule [Herman and Wand 2008; Stansifer and Wand 2014] get around it by requiring sugar-writers
to supply scoping rules for the surface language. These scoping rules then define α-equivalence for
the surface language. In contrast, we infer scoping rules for the surface language, and can then ask
whether these inferred rules preserve α-equivalence. In section 7 we will show that they do, so
long as inference was successful and scopeCheck passed.
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This covers the solve algorithm in fig. 2, and completes our description of scope inference: (i) find
constraints for every desugaring rule; (ii) find their least fixpoint, starting with the known scoping
rules for the core language; and (iii) check that none of the sugars can produce unbound identifiers.

5.5 Correctness and Runtime
The inferScope algorithm correctly solves the constraints:

Theorem 5.4 (Rewrites preserve scope). .
Let Σsurf “ inferScope

`

Σcore, tCi ñ C 1
iuiP1..n

˘

. Then any rewrite of the form ErCi rt1, ...,tnss ñ

ErC 1
i rt1, ...,tnss will preserve scope. Furthermore, Σsurf is least (it is contained in every other set of

scoping rules that would be preserved).

Proof. Given in the supplement. □

Corollary 5.5 (Desugaring preserves scope). .
Let Σsurf “ inferScope

`

Σcore, tCi ñ C 1
iuiP1..n

˘

. Then desugaring with the rules tCi ñ C 1
iuiP1..n will

preserve scope.

Furthermore, scope inference runs in time OpΣPPsurf arity pPq
3
q:

Lemma 5.6. inferScope pΣ, Cq runs in time Opsize pCq ` ΣPPsurf arity pPq
3
q.

Proof. The running time of inferScope is dominated by solve, which in turn is dominated by
two operations: iterating over the facts in C, and adding facts to Σsurf . Iterating over the facts in
C takes time size pCq, where size pCq is the total number of facts in C. Each fact added to Σsurf
requires maintaining the transitive closure of Σsurf , for the node type P of the fact. This can be
done with an amortized cost ofOparity pPqq per P-fact added. (To add a fact a ď b P ΣrPs that does
not appear in Σsurf , insert it and then recursively add a ď c P ΣrPs for every fact b ď c P ΣrPs, and
add c ď b P ΣrPs for every fact c ď a P ΣrPs.) Since there are Oparity pPq

2
q possible P-facts to add,

this adds an additional OpΣPPsurf arity pPq
3
q running time. □

The cubic parameter is concerning, but not a problem in practice for a number of reasons. First,
arity pPq tends to be small. Second, this algorithm is run off-line, and once per language. Finally, as
we discuss in section 6, in practice the running time is extremely small.

6 IMPLEMENTATION AND EVALUATION
We have implemented the scope inference algorithm. Beyond what is shown in the paper, the
implementation also allows (i) marking variables as global references that should refer to globally
available identifiers in the expanded program, such as print, and (ii) a select form of copying a
hole, where the hole contains a declaration and the copy is meant to be a reference of the same
name. We will submit this implementation for artifact evaluation.

Besides the examples shown earlier in the paper, we have tested this implementation on sugars
from three languages:

‚ All of the sugars that bind values in the Pyret language (pyret.org): namely for expressions,
let statement clustering (nested bindings are grouped into a single let), and function
declarations.

‚ Haskell list comprehensions, which include guards, generators, and local bindings.
‚ All of the sugars that bind values in R5RS Scheme [Kelsey et al. 1998]: namely let, let*,
letrec, and do.
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Some of the desugarings use ellipses in their definition, and thus had to be translated to match
our fixed-arity assumption. (To do so, we introduced auxiliary ast node types and used those
to express the equivalent looping.) letrec required one further adjustment to successfully infer
scope.10 After that, our tool successfully inferred scope for all of the sugars except for Scheme’s do.
In the rest of this section, we will describe many of these sugars in more detail, ending with do.

In practice, the running times are very modest. In our implementation in Rust (rust-lang.org) all
of the sugars we have tested run in about 130ms on a generic desktop, of which 60ms is parsing
time. Therefore, the speed is even fast enough for scope inference to be used as part of a language
developer’s rapid prototyping workflow.

6.1 Case Study: Pyret for Expressions
Consider the “for expressions” of the Pyret language:

for fold(p from 1, n from range(1, 6)):
p * n

end # Produces 5! = 120

This example desugars into:

fold(lam(p, n): p * n end, 1, range(1, 6))

In general, the for syntax takes a function expression, any number of from clauses, and a body. It
desugars into a call to the function, passing it as arguments (i) a lambda whose parameters are the
lhss of each from and whose body is the body of the for, and (ii) the rhs of each from.

Our system produces the following scoping rules for for, shown both textually and pictorially:11

ForÓ Ò

funcÓ Ò fromsÓ Ò bodyÓ Ò

import func P ΣrFors

import froms P ΣrFors

import body P ΣrFors

bind froms in body P ΣrFors

FromÓ Ò

paramÓ Ò argÓ Ò fromsÓ Ò

import param P ΣrFroms

import arg P ΣrFroms

import froms P ΣrFroms

export param P ΣrFroms

export froms P ΣrFroms

6.2 Case Study: Haskell List Comprehensions
Haskell list comprehensions consist of sugar for boolean guards that filter the list, generators
that specify the domain of the elements in the list, and local bindings. To quote the language
standard [Simon Peyton Jones 2003, section 3.11]: “List comprehensions satisfy these identities,
which may be used as a translation into the kernel:”

10 The change was to have the desugaring distinguish between the letrec having zero bindings or one-or-more bindings.
This prevented a fact of the form bind i in i from being applied to the binding list of the desugared let, which would
make its bindings recursive. We have not found a principled account for why this was necessary.
11 In the textual representation of the scoping rules, we give names to a node’s children. Formally, these should be indices.
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[ e | True ] = [e] (Base case)
[ e | q ] = [ e | q, True ] (Base case)
[ e | b, Q ] = if b then [ e | Q ] else [] Boolean guards
[ e | p <- l, Q ] = let ok p = [ e | Q ]

ok _ = []
in concatMap ok l Generators

[ e | let decls, Q ] = let decls in [ e | Q ] Local bindings

“where e ranges over expressions, p over patterns, l over list-valued expressions, b over boolean
expressions, decls over declaration lists, q over qualifiers, and Q over sequences of qualifiers.”

For example, the perfect numbers (numbers equal to the sum of their divisors) can be calculated
by:

[n | n <- [1..], let d = divisors n, sum d == n]

Our system successfully infers the scope of these sugars. Wewill describe them one at a time. First,
list comprehensions [e | Q] consist of an expression e and a list of qualifiers Q . Any declarations
exported by Q (such as n above) should be in scope at e:

[e | Q]Ó Ò

eÓ Ò QÓ Ò

import e P ΣrListComprehensions

import Q P ΣrListComprehensions

bind Q in e P ΣrListComprehensions

Boolean guards b,Q have a boolean expression b that is used to filter the list, and a sequence of
more qualifiers Q . The scope of a boolean guard expression is simple: besides lexical scope, any
declarations from Q are exported:

b, QÓ Ò

bÓ Ò QÓ Ò

import b P ΣrLC_Guards

import Q P ΣrLC_Guards

export Q P ΣrLC_Guards

A generator expression p Ð l, Q binds elements of list l to pattern p. p is bound in Q , and the
declarations of both p and Q are exported:

p Ð l, QÓ Ò

pÓ Ò lÓ Ò QÓ Ò

import p P ΣrLC_Generators

import l P ΣrLC_Generators

import Q P ΣrLC_Generators

bind p in Q P ΣrLC_Generators

export p P ΣrLC_Generators

export Q P ΣrLC_Generators

Finally, local bindings decls are bound in the rest of the qualifiers Q , and also exported:

let decls, QÓ Ò

declsÓ Ò QÓ Ò

import decls P ΣrLC_Lets

import Q P ΣrLC_Lets

bind Q in decls P ΣrLC_Lets

export decls P ΣrLC_Lets

export Q P ΣrLC_Lets
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6.3 Case Study: Scheme’s Named-Let
The Scheme language standard defines two variants of the let sugar. The regular variant of let
has the syntax (let ((x val) ...) body), and binds each declaration x to the corresponding
val in body. The scope of this variant can be inferred similarly to how we inferred the scope of
let* in section 2.
The other variant is called “named” let. Its syntax is (let f ((x val) ...) body), and it

behaves like the regular let except that it additionally binds f to (lambda (x ...) body). It can
thus be used for recursive computations, such as reversing a list:

(define (reverse lst)

(let rev ([ unreversed lst]

[reversed empty])

(if (empty? unreversed)

reversed

(rev (cdr unreversed)

(cons (car unreversed) reversed )))))

Named-let desugars by the rule:12

(define -syntax -rule

;;; The named let sugar:

(let proc -id ([arg -id init -expr] ...) body)

;;; Desugars into:

(letrec ([proc -id (lambda (arg -id ...) body )])

(proc -id init -expr ...)))

We will represent the ast for named-let expressions with the grammar:
t ::“ pLet xd b tq “Named-let: bind initial values b and recursive function xd in t”

| . . .
b ::“ pBind xd t bq “Bind xd to t , and bind b”

| EndBinds “No more bindings”
Translating the desugaring to use this grammar, our system correctly infers the binding structure:

LetÓ Ò

proc-idÓ Ò bindingsÓ Ò bodyÓ Ò

import proc-id P ΣrLets

import bindings P ΣrLets

import body P ΣrLets

bind proc-id in bindings P ΣrLets

bind proc-id in body P ΣrLets

bind bindings in body P ΣrLets

BindÓ Ò

arg-idÓ Ò init-exprÓ Ò bindingsÓ Ò

import arg-id P ΣrBinds

import init-expr P ΣrBinds

import bindings P ΣrBinds

export arg-id P ΣrBinds

export bindings P ΣrBinds

12 We describe Racket’s desugaring because it is slightly more clear (using better variable names, and putting the application
inside of the letrec). These differences have no effect on scope inference.
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While this correctly reflects the scoping of named-let, observe that it permits the let-bindings to
shadow the function name. This follows because (arg-id ...) can shadow proc-id in the macro
definition. Of course, if a program actually did this, it would render the named part of the named-let
useless! Nevertheless, we faithfully reflect the language, and indeed our inferred scope may be a
useful diagnostic to the language designer.

6.4 Case Study: Scheme’s do
Scheme’s do expression can be used to perform what do-while and for loops might do in another
language. For instance, this do expression reads three numbers off of stdin, before displaying their
sum.

(do ((sum 0)

(i 0 (+ i 1)))

((= i 3) (display "The sum is: ") (display sum) (newline ))

(set! sum (+ sum (string ->number (read -line )))))

In general, do binds a list of variables [sum and i] to initial values [0 and 0], and then repeatedly
evaluates the body of the loop [(set! sum ...)] and updates the variables according to optional
step expressions [(+ i 1)] until a condition [(= i 3)] is met, at which point it evaluates a final
sequence of expressions [(display "The sum is: ") (display sum) (newline)].
The desugaring of do is given by [Kelsey et al. 1998, derived forms]:

(define -syntax do (syntax -rules ()

((do ((var init step ...) ...)

(test expr ...)

command ...)

(letrec ((loop (lambda (var ...)

(if test

(begin #f expr ...)

(begin command ...

(loop (do "step" var step ...) ...))))))

(loop init ...)))

((do "step" x) x)

((do "step" x y) y)))

We will focus on the scope of the binding list, as scope inference fails on it. Its correct scope is:

DoBindÓ Ò

varÓ Ò initÓ Ò stepÓ Ò bindsÓ Ò

import var P ΣrDoBinds

import impt P ΣrDoBinds

import step P ΣrDoBinds

import binds P ΣrDoBinds

export var P ΣrDoBinds

export binds P ΣrDoBinds

bind var in step P ΣrDoBinds

bind binds in step P ΣrDoBinds

While our binding language can express this scope, our algorithm is unable to handle inferring
scope for it: it incorrectly infers that var is in scope at init. In more detail, whatever a desugaring
does, it must at some point take apart the binding list. However, once one of the declarations
var has been removed from the list, it must have a path to the rest of the list. Unfortunately that
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path will put both init and step in scope of it. Therefore we cannot infer scope for this macro.
In general, we cannot handle binding lists in which the bindings are visible in some expressions
within the list (step) but not others (init).

This can naturally be fixed by putting do in the core language, but can also be addressed by
altering the syntax slightly: separating the init list from the step list (which are semantically
different entities) in the ast would avoid this unwanted conflation. More broadly, however, we
believe that extending scope inference to work on desugaring rules with ellipses can solve this
problem directly, as it is only the intermediate steps where the binding list is deconstructed that
pose a problem. This raises questions that we leave for future work.13

6.5 Catalog of Scoping Rules (Extended in Supplement)
In the supplement, we show diagrams of many scoping rules that can be expressed in our binding
language. These rules include functions, let-statements, letrec-statements, nested pattern-matching,
and all of the sugars that bind values in a featureful language in use, Pyret.

7 PROOF OF HYGIENE
We will show that our scope inference algorithm (when successful) always produces surface
scoping rules such that desugaring is hygienic. Again, we say that a desugaring f is hygienic when
it preserves α-equivalence:

Σsurf $ s “α t implies Σcore $ f psq “α f ptq

Wewill show this by way of a theorem that provides a necessary and sufficient condition for hygiene,
assuming that desugaring obeys our assumptions. Recall that our definition of α-equivalence is
strong, including that both terms are well-bound; thus we will need to show that the result of
desugaring remains well-bound (so long as its input is).
To discuss the properties required for this theorem, we will divide variables into categories:

variables in f ptq are either New (fresh) or Copied from t , and variables in t are either Used (if they
were copied) or Unused otherwise. Formally, let ϕ be the mapping from copied variables in f ptq to
their sources in t , and:

Used fi range pϕq

Unused fi vars ptq ´ range pϕq

Copied fi domain pϕq

New fi vars pf ptqq ´ domain pϕq

(where vars ptq is the set of all variables in t ).
We now turn to the properties required for hygiene. We will first list some clearly necessary

properties, and then show that they are also sufficient.
First, f must avoid variable capture; thus f ptq cannot contain bindings between new variables

(introduced by f ) and copied variables (taken from t ):

Property 1. .
@xr PCopied. @xd PNew. Σ, f ptq & xr ÞÑ xd

@xr PNew. @xd PCopied. Σ, f ptq & xr ÞÑ xd

Second, f must preserve binding structure among the variables it copies:14

13 What do scope specifications over arbitrary-length lists look like? Can the ith element be bound in the pi`1qst element
(e.g., for let*)? How about pi`1q in i , or i in j for all i and j? How does scope inference handle these cases, while still
being correct, fast, and hygienic?
14 This property does not appear in prior work on hygiene because such work typically assumes that the binding structure
of a surface term is defined by the binding structure of its desugaring, causing this property to be true by definition.
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Property 2. .
@xr,xd PCopied.
Σ, f ptq $ xr ÞÑ xd iff Σ,t $ ϕpxrq ÞÑ ϕpxdq

Finally, f must preserve well-boundedness. Thus, it must not cause a reference to become
unbound or introduce a new unbound reference:

Property 3. .
@xr PUsed. @xd PUnused. Σ,t & xr ÞÑ xd

@xr PNew. D!xd PNew. Σ, f ptq $ xr ÞÑ xd

While these three properties are clearly necessary, it is by no means clear that they are sufficient
to guarantee α-equivalence preservation. However, the following theorem shows that they are
both necessary and sufficient to ensure that f preserves α-equivalence:

Theorem 7.1 (Fundamental Hygiene Theorem). Let f be a desugaring function over terms with
respect to scoping rules Σ that obeys the assumptions of section 5.1. Then f respects α-equivalence iff
for every (well-bound) input term t (numbering by property number):

1. @xr PCopied. @xd PNew. Σ, f ptq & xr ÞÑ xd

1. @xr PNew. @xd PCopied. Σ, f ptq & xr ÞÑ xd

2. @xr PCopied. @xd PCopied. Σ, f ptq $ xr ÞÑ xd

iff Σ,t $ ϕpxrq ÞÑ ϕpxdq

3. @xr PUsed. @xd PUnused. Σ,t & xr ÞÑ xd

3. @xr PNew. D!xd PNew. Σ, f ptq $ xr ÞÑ xd

where ϕ is the mapping from copied variables in f ptq to their sources in t .

Proof. Given in the supplement. □

We can now see that inferScope is hygienic. Property 1 is easily ensured by giving variables fresh
names, which is one of our assumptions about desugaring. Property 2 follows from our inference
process: since desugaring preserves scope by theorem 5.4, bindings between variables must not
change. Finally, property 3 is exactly what checkScope checks.

8 RELATEDWORK
Our work bears some similarity to that of Pombrio and Krishnamurthi [2014, 2015] on resugaring:
take part of a core language and lift or resugar it to the surface language. However, they lift
evaluation steps though sugar dynamically, while we lift scoping rules through sugar statically.
Below, we discuss work related to two aspects of our approach to scope inference. However,

none of them infer scope through syntactic sugar; we therefore believe that the central contribution
of this paper is novel.

Hygienic Expansion
The real goal of hygienic expansion is to preserve α-equivalence: α-renaming a program should
not change its meaning. Typically, however, α-equivalence is only defined for the core language.
Thus, traditional approaches to hygiene have had to focus on avoiding specific issues like variable
capture [Kohlbecker et al. 1986]. Recent work by Adams [2015] advances the theory by giving an
algorithm-independent set of issues to avoid. However, even this work lacks the ground truth of
alpha-equivalence preservation to base its claims on.

In contrast, Herman and Wand [2008] advocate that sugar specify the binding structure of the
constructs they introduce, and build a system that does so. Stansifer and Wand [2014] follow
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with a more powerful system called Romeo based on the same approach. (We will discuss the
binding languages used by these two tools in the next subsection.) Since we infer scope rules for
the surface language, we can verify that desugaring preserves α-equivalence without requiring
scope annotations on sugars.

Erdweg et al. [2014] put forward an interesting alternative approach to hygiene with the name-fix
algorithm. Name-fix assumes that the scoping for the surface language is known. Instead of using
this information to avoid unwanted variable capture in the first place, name-fix uses it to detect
variable capture and rename variables as necessary to repair it after the fact. Erdweg et al. prove
that name-fix preserves α-equivalence, but for a weaker definition of α-equivalence than ours that
doesn’t include well-boundedness (thus allowing desugaring to produce unbound variables).

Our work differs from the above work: we assume that scope is defined only for the core language,
and not for the surface language (à la Erdweg) or for individual rewrite rules (à la Herman). This
assumption is also made by traditional capture-avoiding work on hygiene. However, by inferring
scoping rules from the core to the surface language, we gain two benefits: (i) we can prove that
our approach is correct with respect to the ground truth of α-equivalence preservation (theorem
7.1), and (ii) we can produce a set of standalone scoping rules for the surface language. To our
knowledge, this approach has not been taken before.

Scope
We will divide related work on scoping into two main categories. First, “Modeling Scope” discusses
ways in which the scope of a term can be represented. Our description of scope as a preorder (section
3) falls in this category. Second, “Binding Specification Languages” discusses ways in which scope
can be determined for a given term. Our binding language (section 4) falls in this category.

Modeling Scope. Our description of scope-as-a-preorder is similar to the view expressed by Flatt
[2016] in “Binding as Sets of Scopes”.15 In fact, Flatt’s notion of scope can be expressed as a preorder,
as we show in section 3 of the supplement.
Neron et al. [2015] describe scope graphs, which are also based on a similar view, but have a

more complicated set of definitions. Unlike scope-as-a-preorder, however, scope graphs include
mechanisms for handling module scope, which gives it the ability to model both modules and
also other constructs like objects and field lookup. Our scope-as-a-preorder binding language can
actually be extended to handle modules, but doing so breaks our transitivity assumption, which we
need to infer scope, so we have left it out of this paper and consider this a problem for future work.

Binding Specification Languages. Our preorder-based binding specification language is novel, but
similar in expressiveness to many others. It is perhaps most similar to Stansifer and Wand [2014]’s
Romeo. The primary difference between the two is that Romeo has slightly more expressive power:
given two declarations xd1 and xd2 , it is possible in Romeo for xd1 to shadow xd2 in one part of a term,
but xd2 to shadow xd1 in a different part of a term.16 It is not clear if this power has any practical
applications, but we choose to avoid it both for aesthetic reasons (we do not believe two declarations
should be allowed to shadow one another), and to simplify scope inference (which would otherwise
have to manipulate formulas over Romeo’s combinators, instead of merely preorders).
In a similar vein, Sewell et al. [2010] present a semantics engineering workbench called Ott,

which includes a comparable binding specification language. Like Romeo, Ott would allow two
declarations to each shadow one another in different places. Furthermore, it gives additional power,

15 These were discovered independently: scope-as-a-preorder arose from some of the ideas from Romeo [Stansifer and
Wand 2014].
16 In Romeo, this would be expressed using the ▷ combinator, as β1 ▷ β2 and β2 ▷ β1.
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by allowing terms to name what they provide. For instance, a term could export two binding lists,
one named “value-bindings” and one named “type-bindings”.
Weirich et al. [2011] present a binding specification language called Unbound, which can be

expressed using scope-as-a-preorder (and hence is no more expressive than it). They implement
Unbound inHaskell, and give language-agnostic implementations of operations such as constructing
and deconstructing terms, determining α-equivalence, and performing substitution. In Unbound,
binding is specified via a set of binding combinators. These binding combinators can be expressed
as a preorder.17

There are many more binding specification languages [Aczel 1978; Konat et al. 2012; Pottier 2005].
We have chosen what we believe to be a representative sample for comparison. We have shown that
our binding specification language compares favorably in expressiveness, while simultaneously
being simple enough to enable scope inference.

Conclusion and Future Work
We have presented what we believe is the first algorithm for inferring scoping rules through
syntactic sugar. It makes use of our description of scope as a preorder in section 3, and our binding
language for specifying the scope of a programming language in section 4. The case studies in
section 6 show that all of the aspects of this paper are able to deal with many interesting scoping
constructs from real languages.

We see three clear directions in which to try to extend scope inference. First, support for ellipses in
sugar definitions would make writing sugars easier. Second, allowing named imports and exports—
à la Ott [Sewell et al. 2010]—would make sugars like do inferable. Third, modules—à la Scope
Graphs [Neron et al. 2015]—are necessary for inferring scope for modules and for classes. These
last two changes are relatively straightforward extensions to our binding language, but research
questions when applied to scope inference.
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17 The translation of Unbound to scope-as-a-preorder is as follows. Name constructs a declaration or reference, depending
on whether it is a Term or Pattern. Patterns P have scoping rules that state export i P ΣrP s and import i P ΣrP s for every
i . Terms T have scoping rules that state import i P ΣrT s for every i . Finally, each of the four binding combinators obey the
scoping rule for patterns or for terms, as appropriate, in addition to the following facts:

Bind P T tbind 1 in 2 P ΣrBindsu Embed T H

Rebind P P tbind 1 in 2 P ΣrRebindsu Rec P tbind 1 in 1 P ΣrRecsu
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