
Relating Models of Backtracking

Mitchell Wand
College of Computer and Information Science

Northeastern University
360 Huntington Ave, Room 202 WVH

Boston, MA 02115

wand@ccs.neu.edu

Dale Vaillancourt
College of Computer and Information Science

Northeastern University
360 Huntington Ave, Room 202 WVH

Boston, MA 02115

dalev@ccs.neu.edu

ABSTRACT
Past attempts to relate two well-known models of backtrack-
ing computation have met with only limited success. We
relate these two models using logical relations. We accom-
modate higher-order values and infinite computations. We
also provide an operational semantics, and we prove it ade-
quate for both models.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages—Denotational seman-
tics, Operational semantics; D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.1.6 [Pro-
gramming Techniques]: Logic Programming; D.3.3 [Pro-
gramming Languages]: Language Constructs and Fea-
tures; F.3.3 [Logics and Meanings of Programs]: Stud-
ies of Program Constructs

General Terms
Languages, Theory

Keywords
two-continuation semantics, streams, adequacy, logical rela-
tions, monads

1. INTRODUCTION
There are two well-known models of backtracking compu-

tation: the stream model and the two-continuation model.
The stream model represents backtracking computations by
a stream of answers, and the two-continuation model uses
a success continuation and a failure continuation. Hughes
[8] defines a backtracking monad to be a monad with ad-
ditional operations disj and fail satisfying five additional
axioms. Both the stream model and the two-continuation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’04, September 19–21, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00.

model are backtracking monads, but this fact does not give
us any deeper relation between the two.

Past attempts to relate these models have met with lim-
ited success: either the types do not work out, or the relation
works in one direction but not the other, or the relation does
not work for higher-order values.

We show how to relate the monads in a simple way. We
relate streams of scalars using a representation inspired by
Danvy et al. [4]. We then extend this to higher-order values
using logical relations. At observable types this yields the
identity relation, and so we get a denotational equivalence
between the values in each model. We then provide an op-
erational semantics and prove it adequate for both models.

2. BACKTRACKING COMPUTATION
We are interested in modeling a simply-typed call-by-

value PCF that permits backtracking computation, such as
a higher-order variant of Icon or Snobol. Such a language
has types

γ ::= nat | γ1 → γ2

and terms

t ::= x | λx.t | t1 t2 | succ | cn
| rec f.(λx.t) | t1 ∨ t2 | fail

where c0, c1, c2, · · · are constants of type nat and succ is a
constant of type nat → nat . We allow recursive functions
with rec f.(λx.t), and fail represents a computation which
fails to produce a value. The computation t1∨t2 evaluates to
t1, and, if computation backtracks, t1 is discarded in favor of
t2. It is a simple exercise to extend our results by considering
an object-language with pairs, booleans, conditionals, and
other features. We omit them to save space.

The canonical toy example in our calculus is nats, a pro-
gram that evaluates to some natural number. The value of
nats starts at 0, and each time computation backtracks to
nats its value increases by 1.

nats-from = rec f.(λn.n ∨ f(succ n))
nats = nats-from(c0)

Note that this language is considerably more general than
Prolog. We consider this relationship in section 7.

3. MONADIC METALANGUAGES
Following the lead of Moggi, we give a semantics to an

object-language with computational effects by first trans-
lating it into a monadic metalanguage (for convenience, we

abbreviate this to MML). An MML is just a typed λ-calculus
that is equipped with the constants unit and bind . These
two constants are computation constructors: they permit
us to treat effectful computations as values of some abstract
datatype. Intuitively, unit constructs a computation that
immediately returns a value, and bind sequences two com-
putations (where the second computation is parameterized
on the results and effects of the first). We enrich MML with
natural numbers, a successor function, and a family of fixed-
point operators in order to explore the meaning of infinite
computations such as nats. We then augment MML with
two more computation constructors to handle backtracking.

3.1 Core MML
The core MML has types

α, β ::= σ | α→ β | Tα

where σ ranges over some scalar or base types (including
nat and 1, the type whose only value is ()). α → β is a
function type, and Tα is an abstract type of “computations
that produce values of type α.” The terms are given by:

e ::= x | λx.e | e1 e2 | succ | cn
| unitα | bindβα

This language is minimal, but it is a straightforward task to
extend it with conditionals, pairs, booleans, a predecessor
function, etc. The terms have types

succ : nat → nat
cn : nat (∀n ∈ N)
unitα : α→ Tα
bindβα : Tβ → (β → Tα)→ Tα

for each pair of types α and β. unitα takes a value v of
type α to a computation which simply produces v when run.
bindβα c f denotes a computation that runs c and then runs
the computation obtained by feeding c’s result to f .

The equations that must hold in this metalanguage are
the usual β and η laws of typed λ-calculus, the standard
monad laws, and the successor law:

bind (unit e) f = (f e)
bind e unit = e
bind (bind c f) g = bind c (λv. bind (f v) g)
succ cn = cn+1

The operations given so far capture finite sequences of com-
putation, but in order to capture backtracking we must be
able to construct computations that represent more than a
single answer. We turn to Hughes [8] for two such construc-
tors, and we add a family of fixed-point operators to express
infinite computations.

3.2 Backtracking MML
Hughes defines a backtracking monad to be a monad with

two additional constants disj and fail subject to additional
axioms. The operation fail represents a computation that
cannot produce further answers, and disj constructs a com-
putation that produces answers generated by either of its
constituent computations. The constants’ types and axioms

are:

failα : Tα
disjα : Tα→ Tα→ Tα

disj fail c = c
disj c fail = c
disj (disj c1 c2) c3 = disj c1 (disj c2 c3)
bind (disj c1 c2) f = disj (bind c1 f) (bind c2 f)

The laws state that fail is a left and right unit of disj , disj
is associative, and bind distributes through disj .

We also want to explore infinite computations such as
nats, and therefore we add a family of fixed-point operators
subject to the following type and axiom:

fixαβ : ((α→ Tβ)→ (α→ Tβ))→ (α→ Tβ)
fix e = e(fix e)

We will consider a MML with these additional constants
and axioms.

The interpretations of scalar types, function types, vari-
ables, abstractions, application, numbers, successor, and fixed-
points of MML are fixed, but the interpretations of the com-
putation types and monad operations depend on the repre-
sentation of computations. We give the fixed interpretations
here and address the representation of computations in the
following section.

We interpret MML types as complete partial orders (not
necessarily with bottom), and we write αM for the interpre-
tation of type α in a monad M . Scalar types are interpreted
as discrete orders (i.e., sets whose order is given by an equiv-
alence relation). For example, natM = N, and the ordering
is the identity relation. Function types are interpreted as
cpo’s of continuous functions:

σM = Dσ

(α→ β)M = [αM → βM]

Computation types Tα will always be interpreted as cpos
with bottom. Our cpos need not have a bottom element,
but the function space [αM → βM] has a bottom element
whenever βM has one. We write vαM for the ordering rela-
tion on the domain αM .

If Γ : Var → Types, then EnvΓ, the set of Γ-consistent
environments, is the set of all ρ ∈ [Var →

⋃
α α

M] such that
forall x ∈ dom(ρ), (ρ(x) ∈ Γ(x)).

We write eM for the interpretation of an expression e in
the monad M . If Γ ` e : α, then eM ∈ [EnvΓ → αM]. When
e is closed, we take the liberty of writing eM in place of eMρ
(where ρ ∈ Env∅). eM is defined as follows:

xM ρ = ρ(x)
λx.eM ρ = λv.(eMρ[v/x])

(e0 e1)M ρ = (eM0 ρ) (eM1 ρ)
succM = λn.(n+ 1)

cMn = n

fixM = λf.
⊔
n∈ω f

(n)(⊥)

As usual, fix is only defined on functions whose domain has
a bottom element, and our interpretations for computation
types will always have bottom. This is why we assign the
type given above for fix .

3.3 From the Object Language to the MML
Equipped with a metalanguage for backtracking, we now

turn to the translation from the object language. Since

our object-language is call-by-value, we use the standard
call-by-value translation [12]. This translation maps object-
language functions to metalanguage functions that consume
values and produce computations. Dually, the translation of
an application intuitively reads: “evaluate t1, bind the value
to f , evaluate t2, bind the value to x, and finally evaluate
fx”. The translation on types is:

pγq = Tγ∗

σ∗ = σ
(γ1 → γ2)∗ = γ∗1 → Tγ∗2

and the translation on terms is as follows:

pxq = unit x
pλx.tq = unit (λx.ptq)
pt1 t2q = bind pt1q (λf. bind pt2q (λx.f x))
psuccq = unit succ
pcnq = unit cn

pt1 ∨ t2q = disj pt1q pt2q
pfailq = fail

prec f.(λx.t)q = unit (fix λf.λx.ptq)

We demonstrate this translation on nats and simplify the
result with β, η, the monad laws, and the fixed portion of
MML’s interpretation:

pnatsq = pnats-from(c0)q
= p(rec f.(λn.n ∨ f(succ n))) c0q
= bind prec f.(λn.n ∨ f(succ n))q

λf. bind pc0q (λx.f x)
= bind (unit (fix λf.λn.pn ∨ f(succ n)q))

λf. bind (unit c0) (λx.f x)
= bind (unit c0)

(fix λf.λn.pn ∨ f(succ n)q)
= (fix λf.λn.pn ∨ f(succ n)q) c0
= (fix λf.λn. disj (unit n) pf(succ n)q) c0
= disj (unit c0)

bind (unit (fix λf.λn.pn ∨ f(succ n)q))
λg. bind psucc c0q (λx.gx)

= disj (unit c0)
bind prec f.(λn.n ∨ f(succ n))q

λg. bind pc1q (λx.gx)
= disj (unit c0) pnats-from(c1)q

We see that the result is a computation that produces either
c0 or the result of evaluating pnats-from(c1)q, as expected.

4. TWO BACKTRACKING MONADS
There are two well-known models of backtracking com-

putation, and they are, in fact, both backtracking monads.
The first one models backtracking computations as a stream
of answers, and the monad operations correspond to stan-
dard operations on streams. The second model represents
backtracking computations as procedures that consume two
continuations. The first continuation is a success contin-
uation; it consumes an answer and a second continuation
that can be invoked to get another answer. A computation
will invoke the second continuation when it has no further
answers of its own to produce.

4.1 Stream Monad
The stream monad S is given by the following domain and

interpretations for types and the monad operations. The
domain S(A) of streams over elements of A is defined as

follows:

S(A) = ⊥ ∪ {〈a1, . . . , an〉 | n ≥ 0, ai ∈ A}
∪ {〈a1, . . . , an〉 ˆ⊥ | n ≥ 1, ai ∈ A}
∪ {〈a1, . . . 〉 | ai ∈ A}

where ˆ is stream append (with w1 ˆw2 = w1 when w1 is in-
finite or ⊥). The element ⊥ represents a computation that
runs infinitely without deciding if there are any answers.
The element 〈a1, . . . , an〉 represents a finite stream with ex-
actly n elements. The element 〈a1, . . . , an〉 ˆ ⊥ represents
a computation that has determined the first n elements in
the stream but runs infinitely when trying to decide if there
are any more answers. Last, 〈a1, . . . 〉 represents an infinite
stream.

The ordering on streams is a prefix ordering, vS(A), de-
fined as follows.
For all s ∈ S(A):

⊥ vS(A) s

〈a1, a2, . . . , an〉 vS(A) 〈b1, b2, . . . , bn〉
⇐⇒

ai vA bi (1 ≤ i ≤ n)

〈a1, a2, . . . , an〉 ˆ⊥ vS(A) 〈b1, b2, . . . , bn〉 ˆ s
⇐⇒

ai vA bi (1 ≤ i ≤ n)

〈a1, a2, . . .〉 vS(A) 〈b1, b2, . . .〉
⇐⇒

ai vA bi (∀i ∈ ω)

The first clause says that ⊥ is related to all streams. The
second clause says that two finite streams are related if and
only if they are the same length, and the elements are point-
wise related. The third clause relates streams whose tail is
undefined to streams which are “at least as defined,” point-
wise. Infinite streams are related if and only if their elements
are pointwise related.1

We write αS or eS for the interpretation of type α or meta-
language term e in the monad S. Scalar and function types
are interpreted as stated in section 3.2, and computation
types are interpreted as stream domains:

(Tα)S = S(αS)

The constant unit constructs a singleton stream, bind is
map-append, fail is the empty stream, and disj is stream-
append:

unitS = λa.〈a〉
bindS ⊥ f = ⊥

bindS 〈a1, . . . , an〉 f = f(a1) ˆ . . . ˆ f(an)
bindS 〈a1, . . . , an〉 ˆ⊥ f = f(a1) ˆ . . . ˆ f(an) ˆ⊥

bindS 〈a1, . . . 〉 f = f(a1) ˆ . . .
failS = 〈〉
disjS = λc1c2.(c1 ˆ c2)

The stream monad yields an interpretation of nats that
is equivalent to the infinite stream of natural numbers in

1Note that 〈1, 2〉 vS(N) 〈1, 2, 3〉 does not hold under this
ordering. The following does hold: 〈1, 2〉 ˆ⊥ vS(N) 〈1, 2, 3〉.

ascending order:

pnatsqS = pnats-from(c0)qS

= (disj (unit c0) pnats-from(c1)q)S

= disjS (unit c0)S pnats-from(c1)qS

= 〈c0〉 ˆ pnats-from(c1)qS

4.2 Two-Continuation Monad
The two-continuation monad K is slightly more involved

than the stream monad; it is constructed as follows. Let
O be a domain of observations; that is, O will contain the
values that we can observe when a computation terminates.
A computation must terminate in order to observe a result.
We therefore assume that O does not contain a bottom ele-
ment signifying non-termination. Sensible choices for O in-
clude any domain of scalars and the domain of streams over
scalars (consider the stream of answers printed in the Pro-
log REPL). For the latter, we set O = S(natS) − {⊥}. We
write O⊥ to denote O with a bottom element (re-)adjoined.
The process of choosing an O is coupled with the process of
choosing initial continuations in which to run computations.
We explore this dimension towards the end of section 6. Now
we define

K(A) = [[A→ [1→ O⊥]→ O⊥]→ [1→ O⊥]→ O⊥]

The domain [1 → O⊥] is the domain of failure continua-
tions, and [A → [1 → O⊥] → O⊥] is the domain of success
continuations. A success continuation takes an answer in A
and a failure continuation. If the computation has an an-
swer to produce, it will send it to the success continuation.
It will also pass along a failure continuation that, if invoked,
will continue computation with the next answer. If a com-
putation cannot produce any more answers, it will invoke
its failure continuation to produce an answer.

We interpret scalar and function types as in the stream
monad, but the computation types are interpreted using K
instead of S:

σK = Dσ

(α→ β)K = [αK → βK]
(Tα)K = K(αK)

The monad operations are interpreted by:

unitK = λa.(λκφ.κaφ)
bindK = λcf.(λκφ.c (λbφ.fbκφ) φ)
failK = λκφ.φ()
disjK = λc1c2.(λκφ.c1κ(λ().c2κφ))

The constant unitK constructs a computation that succeeds
just once with the given value a, and bindK extends the
success continuation of c by applying f to c’s result in the
original continuations. Note that when c fails, the entire
bindK expression fails; this is useful for modeling conjunc-
tion. failK is a computation which simply invokes its failure
continuation, and disjK evaluates to its first computation
c1 in an extended failure continuation. Should c1 fail, c2’s
answers will be sent to the success continuation. The argu-
ment to the failure continuation in the last case must be (),
the single element of type 1, hence we write (λ(). . . .) in the
definition of disjK .

The two-continuation monad yields an interpretation of
nats that, when handed a success and a failure continuation,
will pass c0 and a new failure continuation to the success

continuation. If invoked, the new failure continuation will
produce the rest of the answers.

pnatsqK κ φ = pnats-from(c0)qK κ φ
= (disj (unit c0) pnats-from(c1)q)K κ φ
= disjK (unit c0)K pnats-from(c1)qK κ φ
= (λκφ.κ c0 φ) κ (λ().pnats-from(c1)qK κ φ)
= κ c0 (λ().pnats-from(c1)qK κ φ)

5. RELATING THE TWO MODELS
We relate the two semantics with a logical relation. A

logical relation R consists of a type-indexed family of rela-
tions Rα for each type α in the language. At scalar type
we choose Rσ to be the identity relation on Dσ because
the models share a representation of scalars. We then de-
fine the relation at higher-order types inductively. The first
well-known use of this technique is in Plotkin [13], though
he credits Troelstra [18]. Mitchell [11] provides a thorough
account of logical relations.

Figure 1: A logical relation relates the models of
two semantics.

Our logical relation R is defined as follows. For each type
α in the metalanguage, we define a relation Rα ⊆ (αS×αK)
by induction on α, as follows:

1. Rσ is the identity relation on the shared interpretation
of scalar types σ.

2. Rα→β = {(f, g) | ∀(a, a′) ∈ Rα.(fa, ga′) ∈ Rβ}

3. RTα is the smallest relation on S(αS) × K(αK) such
that:

• (⊥,⊥) ∈ RTα.

• (〈〉, λκφ.φ()) ∈ RTα.

• if (a1, a
′
1), . . . , (an, a

′
n) ∈ Rα, then

– (〈a1, . . . , an〉,
(λk.(k a′1) ? (k a′2) ? · · · ? (k a′n))) ∈ RTα

(n ≥ 1)

– (〈a1, . . . , an〉 ˆ⊥,
(λk.(k a′1) ? (k a′2) ? · · · ? (k a′n) ?⊥)) ∈ RTα

• RTα is closed under limits of ω-chains in
(Tα)S × (Tα)K .

? is a right-associative composition-like operator; it is de-
fined by

f ? g ≡ λx.f(λ().gx)

We use ? to “compose” two functions that each consume a
failure continuation:

λκ.(κ a) ? (κ b) = λκφ.κa(λ().κbφ)

Lemma 1 states that ? amounts to a representation of stream-
append.

Lemma 1. If (c1, c
′
1), (c2, c

′
2) ∈ RTα, then

(c1 ˆ c2, (λk.(c
′
1 k) ? (c′2 k))) ∈ RTα

Proof: By induction on the structure of c1 and closure of
RTα under limits of ω-chains. We illustrate the case where
c1 is infinite. c1 and c′1 are both limits of ω-chains:

c1 =
⊔
n∈ω

sn,where sn v sn+1

c′1 =
⊔
n∈ω

s′n,where s′n v s′n+1

where

sn = 〈a1, . . . , an〉 ˆ⊥
s′n = λk.(k a′1) ? · · · ? (k a′n) ?⊥

Since (c1, c
′
1) ∈ RTα and RTα is closed under limits of ω-

chains of related values, we know

∀n ∈ ω.(sn, s′n) ∈ RTα
It is easy to show, by induction that for all n,

(sn ˆ c2, λκ.(s
′
n κ) ? c′2) ∈ RTα

It is easy to verify that sn ˆ c2 and λκ.(s′nκ) ? c′2 are both
ω-chains. We note that ? is continuous since it is definable
using just abstraction and application. Since RTα is closed
under limits of ω-chains of related values, we deduce

(c1 ˆ c2, λk.(c
′
1 κ) ? (c′2 κ))

=
⊔
n∈ω(sn ˆ c2, λκ.(s

′
n κ) ? (c′2 κ)) ∈ RTα

�

Lemma 2. R is a logical relation.

Proof: We must show that the denotations of each constant
are related. We illustrate the case for disj .

We must show (disjS , disjK) ∈ RTα→Tα→Tα. Assume
(s, s′), (t, t′) ∈ RTα. Then

disjS s t = s ˆ t

disjK s′ t′ = λκ.(s′κ) ? (t′κ)

and so, by Lemma 1, (disjS s t, disjK s′ t′) ∈ RTα. But
since we chose (s, s′) and (t, t′) arbitrarily, we use the defi-
nition of logical relation at function type twice to conclude
that (disjS , disjK) ∈ RTα→Tα→Tα. �

Two environments ρ and ρ′ are logically related with respect
to some type environment Γ when their domains agree and
they map variables to related values:

(ρ, ρ′) ∈ RΓ ⇐⇒ dom(ρ) = dom(ρ′) = dom(Γ)
∧ ∀x ∈ dom(Γ).(ρ(x), ρ′(x)) ∈ RΓ(x)

Theorem 1. If Γ ` e : α and (ρ, ρ′) ∈ RΓ,
then (eSρ, eKρ′) ∈ Rα.

Proof: Immediate from Lemma 2 and the Basic Lemma of
Logical Relations [11]. �

Theorem 2. Let e be a closed backtracking MML term
of type Tσ. Then eS = (eK cons nil), where

cons = λaφ.〈a〉 ˆ φ()
nil = λ().〈〉

Proof: Let O = S(Dσ)−{⊥}. If e is a closed backtracking
MML term of type Tσ, and eS = 〈a1, . . . , an〉, then eK =
(λk.(k a1) ? (k a2) ? · · · ? (k an)). So

eK cons = λs. cons a1 (cons a2 (cons a3 . . . (cons an s) . . .))

and therefore

eK cons nil

= cons a1 (cons a2 (cons a3 . . . (cons an nil) . . .))

= 〈a1, . . . , an〉
= eS

The other cases follow by continuity. �

Since this is a denotational equivalence, an operational
semantics for metalanguage terms that is adequate for one
denotational semantics will be adequate for the other. We
explore this result in section 6.

From Failure Continuations to Failure Computations.
Another model K′ can be obtained by replacing the fail-
ure continuations [1→ O⊥] by failure computations O⊥, so
K′(A) = (A→ O⊥ → O⊥)→ O⊥ → O⊥, and

unitK
′

= λa.(λκφ.κaφ)

bindK
′

= λcf.(λκφ.c (λbφ.fbκφ) φ)

failK
′

= λκφ.φ

disjK
′

= λc1c2.(λκφ.c1 κ (c2κφ)))

The logical relation is obtained by replacing the composition-
like operator ? with standard functional composition ◦ in the
definition of RTα, to get

(〈a1, . . . , an〉, (λk.(k a′1) ◦ (k a′2) ◦ · · · ◦ (k a′n))) ∈ RTα

etc.
This leads to a version of the story in which one passes

along expressions to be evaluated in case of failure rather
than procedures that must be invoked to retrieve more an-
swers.

6. AN ADEQUATE OPERATIONAL
SEMANTICS

We supply an operational semantics for the backtracking
MML in three stages. First, we define a monadic metalan-
guage mPCF that is simpler than the backtracking MML.
We then translate the latter into mPCF in such a way that
the K semantics is equal to this translation followed by
mPCF’s semantics, L. Finally, we provide an adequate op-
erational semantics for mPCF. This tactic greatly simplifies
both the operational semantics and the proof of adequacy

that follows. The adequacy proof demonstrates that the
given operational semantics is adequate with respect to the
L semantics, and therefore it is adequate for the K seman-
tics. Since the two-continuation semantics and the stream
semantics are logically related, the adequacy result extends
from K to S.

6.1 mPCF
mPCF is a MML that captures nontermination as a com-

putational effect. We include a type Snat for streams of
natural numbers and stream constructors cons and nil with
these types2:

nil : Snat
cons : nat → L(Snat)→ Snat

The types and terms are generated by the following gram-
mar:

τ ::= σ | τ1 → τ2 | Lτ | Snat
M ::= x | λx.M | M1M2 | succ | cn
| unit | bind | fix | cons | nil

We have renamed the type constructor T to L to avoid con-
fusion between backtracking MML and mPCF computation
types. We write Mτ for the set of closed terms of type τ.
We interpret mPCF in the lift monad. The interpretations
for scalar and function types are as before, and L interprets
computation types as lifted domains. Finally, L interprets
Snat as streams of natural numbers.

σL = Dσ

(τ1 → τ2)L = [τL1 → τL2]
(Lτ)L = (τL)⊥

(Snat)L = S(natS)− {⊥}

The interpretations for variables, abstraction, application,
succ, cn, and fix remain as they are in the monads S and
K. In L, unit takes a value to a computation that terminates
with that value, and bind encodes strict application:

unitL = λd. lift(d)
bindL = λcf. case c of ⊥ → ⊥ | lift(d)→ f(d)

Observe that (L(Snat))L = (S(N)− {⊥})⊥ = S(N). There-
fore we can define nilL and consL in the usual way.

nilL = 〈〉 ∈ (L(Snat))L

consL = λxy.〈x〉 ˆ y ∈ (L(Snat))L

6.2 Translating from MML to mPCF
Our translation from MML to mPCF is straightforward;

we simply implement the two-continuation semantics in mPCF.
The translation on types is crafted such that dαeL = αK .
Let Ω be any mPCF type such that ΩL = O (e.g., Ω = Snat
or nat).

dσe = σ
dα→ βe = dαe → dβe
dTαe = (dαe → (1→ LΩ)→ LΩ)→ (1→ LΩ)→ LΩ

2Our results can be extended to streams Sα of arbitrary
type, but we do not need the additional generality here.

dunite = λa.λκφ.κaφ
dbinde = λcf.λκφ.c (λbφ.fbκφ) φ
ddisj e = λc1c2.λκφ.c1 κ (λ().c2 κ φ)
dfaile = λκφ.φ()
dfixe = fix
dsucce = succ
dcne = cn
dxe = x
dλx.ee = λx.dee
de1 e2e = de1e de2e

As in section 4.2, we restrict the argument of failure con-
tinuations to be (). Also, note that this translation never
produces any unit or bind terms in mPCF.

The K interpretation of types is preserved by d·e:

Lemma 3. For any backtracking MML types α, we have:

αK = dαeL

Proof: By a trivial induction on α. �

The K interpretation of terms is also preserved by d·e:

Theorem 3. For MML terms e, if Γ ` e : α and ρ is
Γ-consistent, then eKρ = deeLρ

Proof: By induction on the structure of e. No translation
on ρ is necessary, due to Lemma 3. �

In the next section we give an operational semantics for
mPCF and prove that it is adequate with respect to L. The-
orem 3 is significant in this context because it says that we
can evaluate an MML program by compiling it into mPCF
and applying mPCF’s evaluator.

6.3 Operational Semantics
We provide a deterministic call-by-name operational se-

mantics for mPCF. The grammar for values V and evalua-
tion contexts E is:

V ::= cn | λx.M | unit M | cons V M | nil
| cons V | bind V
| succ | unit | bind | fix

E ::= [] | EM | bind E | succE | cons E

We write V τ to refer to the set of closed values of type τ.
Reduction halts if the term reaches any constant, an ab-
straction, or unit of some term.3 Evaluation is permitted in
an empty context, in the operator position of an application,
in the first argument of bind , and in the operand position
of successor. (We permit the latter because the type of succ
precludes the possibility that its argument diverges.)

The reduction for application is standard β reduction, and
we augment this rule with reductions for successor and the
standard reduction for a call-by-name fixed-point operator.
The reduction and context for bind encodes strict applica-
tion.

(λx.M1) M2 → M1[M2/x]
succ cn → cn+1

fix M → M(fix M)
bind (unit M1) M2 → M2 M1

bind (bind M1 M2) M3 → bind M1 λv. bind (M2v) M3

It is straightforward to verify that this semantics satisfies
safety and progress.
3Remember that unit , in the context of mPCF, means the
computation has terminated with some result.

6.4 Adequacy
Now we prove the adequacy of our operational semantics

with respect to the lift semantics, L. The main result is
theorem 4. It states that a closed term M reduces to a
value in the operational semantics if and only if M does not
denote ⊥. This property is of particular interest when M is
of an observable type; we can use it to show that these two
semantics agree on the meaning of terms whose values are
observable. Our presentation follows that of Winskel [22].

Assume M is a closed mPCF term. Define operational
convergence (1) for M and denotational convergence (2) for
M as follows:

M ↓ ⇐⇒ ∃v.(M →∗ v) (1)

M ⇓ ⇐⇒ `M : σ (2)

∨ `M : τ1 → τ2

∨ `M : Snat

∨ `M : Lτ ∧ ∃d ∈ τL.ML = lift(d)

Theorem 4 (Adequacy). If M is a closed mPCF term,
then M ↓ ⇐⇒ M ⇓

Proof:

• =⇒: The forward implication follows directly from
Lemma 4 below. �

• ⇐=: The reverse implication follows from Lemma 6
below and considering only closed terms. �

�

Note that if M is not of computation type, then M ⇓, and
hence M reduces to a value v.

Lemma 4. For closed mPCF terms M, we have

M →∗ v =⇒ ML = vL

Proof: By induction on the length of the reduction se-
quence. �

In order to prove the converse, we define an approximation
relation ≤oτ between denotations and closed values for each
type τ. In order to express that a denotation approximates
a closed term, we use ≤τ . Define (≤oτ) ⊆ (τL × V τ) and

(≤τ) ⊆ (τL ×Mτ) by induction on τ:

d ≤oσ v ⇐⇒ d ∈ Dσ ∧ d = vL

d ≤oτ1→τ2 v ⇐⇒ ∀(d′,M ′) ∈ (≤τ1).d(d′) ≤τ2 (v M ′)
d ≤oLτ unit(M) ⇐⇒ d = ⊥ ∨ d = lift(d′) ∧ d′ ≤τ M
d ≤oS(nat) v ⇐⇒ d = 〈〉 and v = nil

∨ d = 〈a〉 ˆ b and v = cons v′ M s.t.
a ≤onat v

′ and b ≤L(S nat) M
d ≤τ M ⇐⇒ ∃v.(M →∗ v ∧ d ≤oτ v)

The recursion in the definition of ≤oSnat and ≤Snat is to
be interpreted coinductively. That is, ≤oSnat and ≤Snat
are defined to be the largest relations satisfying the given
conditions. This allows d ≤oSnat v to hold even in cases
when d is an infinite stream.

We note in Lemma 5 that the approximation relation is
closed under limits of ω-chains on the left.

Lemma 5. Let `M : τ. If d0 v d1 v . . . v dn v . . . is an
ω-chain in τL and ∀n ∈ ω.dn ≤τ M, then

⊔
n∈ω dn ≤τ M .

Proof: By structural induction on τ and coinduction at
Snat . �

Lemma 6 is the main lemma for the adequacy proof; it is
used to show the reverse implication in the adequacy the-
orem. Let θ range over substitutions of closed terms for
variables, and define ρ ≤Γ θ ⇐⇒ ∀x ∈ dom(Γ).ρ(x) ≤Γ(x)

θ(x). Let M · θ denote the simultaneous, capture-free sub-
stitution of the free variables in M for their values in θ.

Lemma 6. If Γ `M : τ and ρ ≤Γ θ, then MLρ ≤τ M · θ.

Proof: By induction on the structure of M.

• M ≡ x: xLρ = ρ(x) ≤τ θ(x) = x ·θ holds since ρ ≤Γ θ.
�

• M ≡ λx.M0:
We must show

(λx.M0)Lρ ≤oτ1→τ2 (λx.M0) · θ

Fix an arbitrary (d′, e′) ∈ (≤τ1). By definition of
≤oτ1→τ2 , we must demonstrate

((λx.M0)Lρ)(d′) ≤τ2 (((λx.M0) · θ)e′)
⇐⇒ ML

0 ρ[d′/x] ≤τ2 (((λx.M0) · θ)e′)
⇐⇒ ∃w.(((λx.M0 · θ) e′)→∗ w ∧ML

0 ρ[d′/x] ≤oτ2 w)

Following the definition of →, the application on the
left-hand side takes a step and the goal becomes:

∃w.(M0 · θ[e′/x]→∗ w ∧ML
0 ρ[d′/x] ≤oτ2 w)

We have that Γ, x : τ1 ` M0 : τ2 and ρ[d′/x] ≤Γ,x:τ1

θ[e′/x], and so, inductively, we can assume

ML
0 ρ[d′/x] ≤τ2 M0 · θ[e′/x]

Unfolding the definition of ≤τ2 completes the proof:

∃w.(M0 · θ[e′/x]→∗ w ∧ML
0 ρ[d′/x] ≤oτ2 w)

�

• M ≡M1 M2:
Let Γ ` M1 : τ1 → τ2, Γ ` M2 : τ1, and ρ ≤Γ θ.
Inductively, assume:

ML
1 ρ ≤τ1→τ2 M1 · θ (3)

ML
2 ρ ≤τ1 M2 · θ (4)

(3) implies there is a closed value v such that

M1 · θ →∗ v ∧ (ML
1 ρ) ≤oτ1→τ2 v

and unwinding the definition of ≤oτ1→τ2 gives

∀(d′,M ′) ∈ (≤τ1).(ML
1 ρ)(d′) ≤τ2 (v M ′)

Applying (4) we infer

(ML
1 ρ)(ML

2 ρ) ≤τ2 (v M2 · θ)
≡ (M1M2)Lρ ≤τ2 (v M2 · θ) (5)

By (5):

∃w.(v M2 · θ)→∗ w ∧ (M1M2)Lρ ≤oτ2 w

But M1 →∗ v and (v M2 · θ)→∗ w implies

M1M2 · θ →∗ w

and therefore

(M1M2)Lρ ≤τ2 M1M2 · θ

�

• M ≡ cn:
Follows trivially from the definitions of (≤nat) and
(≤onat). �

• M ≡ succ:
Assume ML

0 = n ≤nat M0. Then

∃v.M0 →∗ v ∧ n ≤onat v

By definition of ≤onat , v = cn.

We must show

(succM0)L = (n+ 1) ≤nat succM0

⇐⇒ ∃w.(succM0 →∗ w ∧ (n+ 1) ≤onat w)

Since M0 →∗ cn, we know succM0 →∗ cn+1. More-
over, (n + 1) ≤onat cn+1, and so choosing w = cn+1

completes the proof. �

• M ≡ unit :
Assume ML

0 ≤τ M0. We must show

(unit M0)L = lift(ML
0) ≤oLτ unit M0

⇐⇒ ∃w. unit M0 →∗ w ∧ lift(ML
0) ≤oLτ w

But since lift(ML
0) 6= ⊥, it suffices to choose

w = unit M0. �

• M ≡ bind :
We show

bindL ≤Lτ2→(τ2→Lτ1)→Lτ1 bind

by proving

(bind M1 M2)L ≤Lτ1 bind M1 M2

whenever

ML
1 ≤Lτ2 M1 and

ML
2 ≤τ2→Lτ1 M2

We proceed by cases on ML
1 .

– ML
1 ≡ ⊥:

bindL ⊥ ML
2 = ⊥, and so this case holds by the

definitions of ≤Lτ1 and ≤oLτ1 .

– ML
1 ≡ lift(d):

Unwinding the definition of bindL, we must show

ML
2 (d) ≤Lτ1 bind (unit M) M2

By definition of ≤Lτ1 and the operational seman-
tics, the goal becomes

ML
2 (d) ≤oLτ1 (M2 M)

The inductive hypotheses are

lift(d) ≤Lτ2 unit M (6)

ML
2 ≤τ2→Lτ1 M2 (7)

(6) gives us d ≤τ2 M, and applying (7) yields the
goal.

�

• M ≡ fix :
We must show

fixL ≤((τ1→Lτ2)→(τ1→Lτ2))→(τ1→Lτ2) fix

It suffices to assume

(λf.M)L ≤(τ1→Lτ2)→(τ1→Lτ2) λf.M

and show

(fix λf.M)L ≤τ1→Lτ2 (fix λf.M)

⇐⇒
⊔
n∈ω

g(n) ≤τ1→Lτ2 (fix λf.M) (8)

where g = (λf.M)L = λψ.ML[ψ/f]. (8) follows from

∀n ∈ ω.g(n) ≤τ1→Lτ2 (fix λf.M) (9)

and Lemma 5.

We prove (9) by induction on n.

When n = 0,

⊥ ≤τ1→Lτ2 (fix λf.M)

follows from the definitions of≤τ1→Lτ2 , ≤oτ1→Lτ2 , ≤Lτ2 ,
and ≤oLτ2 .

Now, inductively, we assume

g(n) ≤τ1→Lτ2 (fix λf.M)

and must show

g(n+1) ≤τ1→Lτ2 (fix λf.M) (10)

Expanding the definition of≤τ1→Lτ2 , the goal becomes:

∃v.(fix λf.M)→∗ v ∧ g(n+1) ≤oτ1→Lτ2 v

By the operational semantics

(fix λf.M)→ (λf.M)(fix λf.M)
→M · [(fix λf.M)/f]

We choose v to be
M · [(fix λf.M)/f], and we know

g(n+1) = ML[g(n)/f]

Therefore our goal becomes

ML[g(n)/f] ≤oτ1→Lτ2 M · [(fix λf.M)/f]

We note that [g(n)/f] ≤Γ [(fix λf.M)/f], and therefore
by structural induction we have

ML[g(n)/f] ≤τ1→Lτ2 M · [(fix λf.M)/f]

Unwinding the definition of ≤τ1→Lτ2 satisfies our goal.
�

• M ≡ nil :
We must show nilL = 〈〉 ≤S(nat) nil , but this is imme-
diate since nil is a value and 〈〉 ≤oS(nat) nil . �

• M ≡ cons:
Assume n ≤nat N and d ≤S(nat) M0. We must show

consL n d ≤S(nat) cons N M0

We know (1) cons N M0 →∗ cons cn M0, and (2)
n ≤onat cn by the first inductive hypothesis. Com-
bining (2) with the second inductive hypothesis gives
us

consL n d ≤oS(nat) cons cn M0

Thus, in conjunction with (1), we deduce

∃v. cons N M0 →∗ v ∧ consL n d ≤oS(nat) v

and the goal immediately follows. �

�

There are a number of notable corollaries of the adequacy
theorem. The first says that the operational semantics and
the L semantics agree on programs of scalar, function, and
stream-of-scalar type:

Theorem 5. Let M be a closed mPCF term of scalar,
function, or stream-of-scalar type. Then

M →∗ v ⇐⇒ ML = vL

The second says that the operational semantics and the L
semantics agree on programs of computation type:

Theorem 6. Let ` M : Lτ for some mPCF term M.
Then:

M →∗ (unit M0) ⇐⇒ ∃d ∈ τL.(ML = lift(d) ∧ML
0 = d)

Proof: Both theorems 5 and 6 are immediate via adequacy.

The stream semantics is also related to the operational se-
mantics. By varying the type of observables, we can deduce
different relations between them. First, let e be a back-
tracking term of type T nat . We show that the first answer
produced is related to the first element of the stream eS .
Let our observable domain O be N. Encode a stream whose
head is n as the natural number n+1, and encode the empty
stream as 0.

Theorem 7. Let e be a closed backtracking MML term
of type T nat, and define

κ0 = (λn.λφ.(unit(succ n)))

φ0 = λ(). unit c0

Then dee κ0 φ0 →∗ (unit M) iff either

(1) eS = 〈〉 and ML = 0

(2) eS = 〈n〉 ˆ w and ML = n+ 1

Proof: From Theorem 1 we know that

(eS , eK) ∈ RTα (11)

and by Theorem 3 we know

eK = deeL

We consider each case of the shape of the stream eS :

• case eS = ⊥:
By (11), eK = ⊥. Hence deeL κL0 φL0 = eK κL0 φL0 =
⊥. So, by Theorem 6, dee κ0 φ0 does not reduce to a
value.

• case eS = 〈〉:
By (11), eK = λκ.λφ.φ(). Hence, deeL κL0 φL0 = φL0 () =
lift(0). So, by Theorem 6, dee κ0 φ0 →∗ unit(M),
where ML = 0.

• case eS = 〈n〉 ˆ w:

By (11), eK = λκ.(κn) ? w′, where (w,w′) ∈ RTα.
Hence

deeL κL0 φL0 = eK κL0 φL0

= (κL0 n)(λ().(w′φL0))

= lift(n+ 1)

By Theorem 6, dee κ0 φ0 →∗ unit(cn+1).

�

We can derive a stronger relationship between the stream
semantics and the operational semantics by choosing a dif-
ferent observable domain.

Theorem 8. Let e be a closed backtracking MML term
of type T nat, let Ω = Snat, and define

κ0 = λaφ. unit(cons a φ())

φ0 = λ(). unit(nil)

Then dee κ0 φ0 →∗ unit(M) iff either

(1) eS = 〈〉 and M = nil

(2) eS = 〈n〉 ˆ w and M = cons cn M0 and ML
0 = w

Proof: If Ω = Snat , then O⊥ = S(N). Note that κL0 and
φL0 are just cons and nil as defined in Theorem 2. From
Theorem 1 we know that

(eS , eK) ∈ RTα (12)

and by Theorem 3 we know

eK = deeL

We consider each case of the shape of the stream eS :

• case eS ≡ ⊥:
By (12), eK = ⊥. Hence eK κL0 φL0 = deeL κL0 φL0 =
⊥. So, by Theorem 6, dee κ0 φ0 does not reduce to a
value.

• case eS ≡ 〈〉:
By (12), eK = λκφ.φ(). Hence

deeL κL0 φL0 = eK κL0 φL0

= φL0 ()

= lift(〈〉)

So, by Theorem 6, dee κ0 φ0 →∗ unit(nil).

• case eS ≡ 〈n〉 ˆ w:
By (12), eK = λκ.(κn) ? w′, where (w,w′) ∈ RT (nat).
Hence

deeL κL0 φL0 = eK κL0 φL0

= (κL0 n)(λ().(w′φL0)))

= lift(〈n〉 ˆ (w′φL0))

So, by Theorem 6, dee κ0 φ0 →∗ unit(cons cn M),
where ML = (w′φL0).

�

7. RELATED WORK
Both the stream and two-continuation models have a long

history in Prolog implementations. The stream model was
invented independently by Abelson and Sussman [1], Kahn
[9], and Wadler [19]. The two-continuation model appears
in Federhen [5] though it is undoubtedly older. Kahn [9]
discusses “upward failure continuations” versus “downward
success continuations” as strategies for embedding the two-
continuation model in a stack architecture.

It is worth noting that the computational model of Pro-
log is a stripped-down version of the backtracking monad.
Prolog programs do not pass any values; all communica-
tion happens by modifying the current substitution. In this
sense, Prolog programs are actually imperative programs
in the backtracking monad. This means that the param-
eter of the computation type is fixed. Rather than dealing
with Tα for arbitrary α, Prolog models need only consider
T (Subst), where Subst is the type of substitutions. This sim-
plified form of computation makes the relationship between
T (Subst)S and T (Subst)K far less complicated than in the
general case that we explore.

The definition of a backtracking monad comes, inter alia,
from Hughes [8]. Hughes also presented a derivation of
the two-continuation model from the axioms via fold-unfold
transformations [2]. This derivation is flawed in two ways:
first, it depends on an induction hypothesis that is at best
problematical. We will discuss this issue below. Further-
more, the derivation shows only that if e = v is deducible in
the derived system, then it is also deducible in the original
system. It does not show that if e = v is deducible in the
original system, it is also deducible in the derived system.
That is, the derived system is sound but not adequate with
respect to the original. This is a standard problem with
fold-unfold transformations [14] that must be addressed if
we are to deal correctly with possibly non-terminating com-
putations.

Hinze [7] extended Hughes’ result from monads to monad
transformers. His derivation followed that of Hughes, with
the same difficulties.

The problem in establishing even the soundness of these
derivations lies in writing down an induction hypothesis that
is strong enough to support the proof. Both of the proofs
represent computations by higher-order abstract syntax, so
that they are envisioned as trees, which might be expressed
in Haskell as:

data Comp a = Unit a

| forall b.Bind (Comp b) (b -> Comp a)

To illustrate the difficulty, consider the calculation near
the end of Section 5.2 of [8]:

(m ‘ bind ‘ f) (ValueBind(value . k))

= (m ‘ bind ‘ f) ‘ bind ‘ k) (13)

= m ‘ bind ‘ λx→ (fx ‘ bind ‘ k)) (14)

= m(ValueBind(λx→ value(fx ‘ bind ‘ k))) (15)

= m(ValueBind(λx→ fx(ValueBind(value . k))))

(16)

Here, (13), (15) and (16) are instances of the induction
hypothesis

m(ValueBind(value . k)) = value(m ‘ bind ‘ k)

and the conclusion is an instance of the same equation, with
m replaced by m ‘ bind ‘ f . But what is the induction mea-
sure here? (1) and (3) use the induction hypothesis at m,
which is certainly smaller than m ‘ bind ‘ f . But (16) uses
it at (fx), which might be larger than m ‘ bind ‘ f .

Hinze [personal communication] has suggested the follow-
ing induction principle: to prove a property P for all ele-
ments of Comp a, prove the following (where here a, b range
over values, not types):

1. P (Unit a)

2. If P (m) and for all b, P (f(b)), then P (Bind m f)

This would work fine if the elements of Comp a were B-
way trees of finite depth for any fixed B (e.g., B = Subst as
suggested above for Prolog); the induction principle would
be justified by induction on the height of the tree. Trees
of infinite depth, as generated by fix , would be handled by
appropriate continuity arguments.

Unfortunately, the elements of Comp a are not B-way trees
of finite depth. Choose a to be int and b to be (Comp int).
Then Bind at Comp int is an injection from

(Comp (Comp int)) * (Comp int -> Comp int)

to (Comp int). Therefore (Comp int) is required to contain
its own function space as a subset. Thus, (Comp int) does
not meet our expectation that it look like a set of trees, and
the induction principle suggested above is problematical at
best. It is possible that this induction principle is fixable,
but it would clearly involve order-theoretical niceties.

We avoid this dilemma by treating the metalanguage as
an ordinary λ-calculus, without the complications of higher-
order abstract syntax. Haskell implementations essentially
do the same thing: the second component to Bind is repre-
sented not as a function, but as a closure. Since Haskell does
not allow testing for equality between higher-order values,
there is no way to detect the difference inside the language.

Another approach to this problem is to try to describe
the two-continuation model as a representation of the oper-
ational semantics of the stream model. We have explored
final algebras for this purpose [21, 10, 6]. In this approach,
the stream is represented by its actions on success (unit)
and failure (fail). This also gives soundness but not ade-
quacy. Other alternatives are to represent the stream by
its case function (sometimes called the Scott representation
[20]) or by its fold function (corresponding to the Church
representation); neither of these representations yields the
two-continuation model. Our representation is similar to
a Church representation, except that the first argument to
the fold function (the action on “cons”) is required to be
distributive.

The approach closest to ours is that of Danvy et al. [4],
who formulate the problem in terms of monad morphisms.
They deal only with a first-order object-language, and the
behavior of their proposal under fixed-points is not clear.
Although they do not set out their representation explicitly
as we do in case 3 of the definition of our logical relation,
their representation coincides with ours for first-order quan-
tities.

Seres, Spivey, and Hoare [16, 15] also explore the relation-
ship between backtracking monads. They are interested in
monads that capture search strategies for logic programs.
They formulate three monads: the first captures depth-first

search, the second breadth-first, and the third allows both.
They define monad morphisms from the third one to both
the first and second. Both monads in this paper implement
depth-first search.

Claessen and Ljunglöf extend Seres’ and Spivey’s embed-
ding of Prolog into Haskell [16] by using more sophisticated
types. Certain Prolog programs which would normally just
fail at run-time are considered ill-typed in their system. To
accomplish this, they generalize their type of substitutions
by taking advantage of extensions provided by the GHC im-
plementation of Haskell.

Thielecke [17] investigates the relationship between the
answer type for CPS terms and the control effects exhibited
by those terms. He employs a type-and-effect system to
reason about control effects. This work could be useful in
refining our formulation of observable types in backtracking
programs.

Gordon and Crole [3] have developed a technique for fac-
toring adequacy proofs for languages whose semantics is or-
ganized monadically. Essentially, they prove adequacy of an
object-language operational semantics by relating it to an
adequate metalanguage operational semantics.

8. FUTURE WORK
We intend to provide operational semantics for the the

backtracking metalanguage, MML, and also one for the ob-
ject language. We would like to extend our adequacy re-
sult to these semantics. This goal exists in the context of
a larger goal: we would like to explore how program anal-
yses of metalanguage programs relate to analyses of cor-
responding object-language programs. For example, if we
perform a flow analysis on a mPCF program, does this in-
duce a useful flow analysis for the corresponding MML and
object-language programs? Finally, we believe that it is de-
sirable to automate these techniques by formalizing them in
a theorem-prover or a metalogic.

9. SUMMING UP
We attack the long-standing question of the relationship

between two well-known models of backtracking computa-
tion. We are able to relate the two models, and we accommo-
date higher-order quantities and infinite computations using
a logical relation. Since the models share a representation of
observable values, we obtain a denotational equivalence at
observable types. This means that an operational semantics
that is adequate for one model is adequate for the other.

We provide an operational semantics which is adequate for
mPCF, a variant of PCF that can express non-terminating
computations. By giving a translation from MML to mPCF,
we obtain an evaluator for MML programs. Since the trans-
lation preserves semantics, the evaluator for MML programs
is adequate for both the two-continuation and stream seman-
tics.

10. ACKNOWLEDGEMENTS
We thank David Herman for his comments and for iden-

tifying a bug in the adequacy proof. We also express our
gratitude to the anonymous referees for their insightful com-
ments.

11. REFERENCES
[1] Hal Abelson and Gerald Jay Sussman. The Structure

and Interpretation of Computer Programs. MIT Press,
Cambridge, MA, 1985.

[2] Rod M. Burstall and John Darlington. A
transformation system for developing recursive
programs. Journal of the ACM, 24:44–67, 1977.

[3] R. L. Crole and A. D. Gordon. Factoring an Adequacy
Proof. In C. J. van Rijsbergen, editor, FP’93 Glasgow
Workshop on Functional Programming, Workshops in
Computing, pages 9–25. Springer-Verlag, 1994.

[4] Olivier Danvy, Bernd Grobauer, and Morten Rhiger.
A unifying approach to goal-directed evaluation. New
Generation Computing, 20:53–73, 2002.

[5] Scott Federhen. A mathematical semantics for
PLANNER. Master’s thesis, University of Maryland,
1980.

[6] Matthias Felleisen, Mitchell Wand, Daniel P.
Friedman, and Bruce Duba. Abstract continuations: A
mathematical semantics for handling functional
jumps. In Proceedings of the 1988 ACM Symposium
on LISP and Functional Programming, Salt Lake City,
Utah, July 1988.

[7] Ralf Hinze. Deriving backtracking monad
transformers. In Proc. ACM SIGPLAN International
Conference on Functional Programming, pages
186–197, 2000.

[8] John Hughes. The design of a pretty-printing library.
In J. Jeuring and E. Meijer, editors, Advanced
Functional Programming, volume 925. Springer
Verlag, 1995.

[9] K. M. Kahn and M. Carlsson. How to implement
prolog on a LISP machine. In J. A. Campbell, editor,
Implementations of Prolog, pages 119–134. Chichester,
1984.

[10] Samuel Kamin. Final data type specifications: A new
data type specification method. In Conf. Rec. 7th
ACM Symposium on Principles of Programming
Languages, pages 131–138, 1980.

[11] John C. Mitchell. Foundations for Programming
Languages. MIT Press, Cambridge, MA, 1996.

[12] Eugenio Moggi. Notions of computation and monads.
Information and Computation, 93(1):55–92, 1991.

[13] Gordon D. Plotkin. LCF considered as a programming
language. Theoretical Computer Science, 5:223–255,
1977.

[14] David Sands. Total correctness by local improvement
in the transformation of functional programs. ACM
Transactions on Programming Languages and
Systems, 18(2):175–234, March 1996.

[15] Silvija Seres, J. Michael Spivey, and C. A. R. Hoare.
Algebra of logic programming. In International
Conference on Logic Programming, pages 184–199,
1999.

[16] Silvija Seres and Michael J. Spivey. Embedding prolog
into haskell. In Haskell Workshop ’99, 1999.

[17] Hayo Thielecke. From control effects to typed
continuation passing. In Conf. Rec. 30th ACM
Symposium on Principles of Programming Languages,
pages 139–149. ACM Press, 2003.

[18] A. S. Troelstra, editor. Metamathematical
Investigation of Intuitionistic Arithmetic and

Analysis, volume 344 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, Heidelberg, and
New York, 1973.

[19] P. L. Wadler. How to replace failure by a list of
successes. In Jean-Pierre Jouannaud, editor,
Functional Programming Languages and Computer
Architecture, volume 201 of Lecture Notes in
Computer Science, pages 113–128. Springer Verlag,
September 1985.

[20] Christopher P. Wadsworth. Some unusual λ-calculus
numeral systems. In J. R. Seldin and J. P. Hindley,
editors, To H.B. Curry: Essays on Combinatory Logic,
Lambda-Calculus and Formalism, pages 215–230.
Academic Press, New York and London, 1980.

[21] Mitchell Wand. Final algebra semantics and data type
extensions. Journal of Computer and Systems Science,
19:27–44, 1979.

[22] Glynn Winskel. The Formal Semantics of
Programming Languages. MIT Press, Cambridge, MA,
1993.

