
Understanding Aspects

Mitchell Wand
Northeastern University

August, 2003

PLI 2003 2

Goals for the talk

• Report on my efforts to figure out
what AOP is about

• Suggest some ways in which PL
research can be applied to AOP

PLI 2003 3

Outline

1. Background: what problems was
AOP intended to address?

2. Examples
3. Shortcomings of current efforts
4. Reconceptualizing AOP
5. Implications for future research

PLI 2003 4

The problem

• Limitations of traditional layered
architectures

• Different research groups tell
different motivating stories:
– Tyranny of the primary decomposition
– Crosscutting concerns lead to scattered

and tangled code

PLI 2003 5

Tyranny of the primary
decomposition

• Want to assemble programs from
different subsystems

• Each subsystem has its own idea of
how program should be organized and
who’s in control

• Multiple views of program lead to
combinatorial explosion of methods

• Want effect of multiple inheritance

PLI 2003 6

Example systems

• HyperJ [Ossher-Tarr et al]
• Jiazzi [Flatt et al]
• Mixin Layers, GenVoca [Batory et al]
• Composition Filters [Aksit et al]

PLI 2003 7

Crosscutting concerns lead
to complexity

• Applications typically need multiple
services:
– logging, locking, display, transport,

authentication, security, etc
• These services don't naturally fit in

usual module boundaries
("crosscutting")

PLI 2003 8

Scattering and tangling

• These services must be called from
many places (“scattering”)

• An individual operation may need to
refer to many services (“tangling”)

PLI 2003 9

Example of scattering
[Kiczales 2001]

• logging in org.apache.tomcat
– each bar shows one module
– red shows lines of code that handle logging
– not in just one place, not even in a small number of places

© Copyright 1999, 2000, 2001 Xerox

Corporation. All rights reserved.

PLI 2003 10

So what’s the problem?

• Functional programmers know
the answer: use proxies or
wrappers

(define doit
(let ((old-doit doit))

(logged-version old-doit)))

PLI 2003 11

Why isn’t that enough?

• How to make sure an application calls
the right proxy?

• Potential for conflict with calls to
multiple services
– combinatorial explosion of wrappers
– tangling

PLI 2003 12

The real problem

• Each application has a policy about
when each service is required

• But the policy is built into the
structure of the program

• Hard to understand, modify, etc, etc

PLI 2003 13

A solution

• Add a policy language that describes
where each service needs to be
called
– policy language is declarative
– localizes knowledge about policy

PLI 2003 14

Examples

• D [Lopes-Kiczales 97]
– had policy languages for several kinds

of services
• locking/mutual exclusion (COOL)
• transport (RIDL)
• proposals for others

– Each such service became an “aspect”
• QuO [BBN 00]

– policy language for network transport

PLI 2003 15

COOL example
[Lopes 97]

coordinator BoundedBuffer {

selfex put, take;

mutex {put, take};

condition empty = true, full = false;

put: requires !full;

on_exit {

if (empty) empty = false;

if (usedSlots == capacity) full = true;

}

take: requires !empty; ...

PLI 2003 16

QuO Example
contract UAVdistrib {

sysconds ValueType actualFrameRate, ... ;

callbacks sourceControl, timeInRegion ;

region HighLoad (actualFrameRate >= 8) {

state Test until (timeInRegion >= 3) {}

...

transition any->Test{

sourceControl.setFrameRate(30);

timeInRegion.longValue(0);

}

...

} ... }

PLI 2003 17

Limitations of this
approach

• What are aspects, anyway?
• Is there some fixed finite set of aspects?

– Might even want to express some functional
behavior as aspects

• Need to analyze each aspect, then develop
and maintain a language for it

• Proliferation of languages for individual
aspects

• Bad for technology transfer

PLI 2003 18

AspectJ
[Kiczales et al 01]

• Kiczales’ strategy: develop a single
language in which all aspects could be
expressed

• Use Java as base language
• Allow the community to concentrate

its efforts on a single tool

PLI 2003 19

Ideas of AspectJ

• Policy specified in terms of join points at
which actions could be attached

• Join points: events in the program
execution:
– method calls
– method executions
– constructor calls
– etc

PLI 2003 20

AspectJ, cont’d

• Policies expressed as sets of join
points, called point cuts

• Language of point cut descriptors
allows declarative specification of
point cuts

• Action at a point cut expressed as
advice before/after/around each
join point in the point cut

PLI 2003 21

Example
[AspectJ manual]

aspect LogPublicErrors {

pointcut publicInterface():

instanceof(mypackage.*) &&

executions(public * *(..));

static after() throwing(Error e): publicInterface()

{logIt(e); throw e;}

static void logIt (Error e) { ... }

each aspect packages a policy

pointcut declaration

advice on this pointcut

PLI 2003 22

What’s the difficulty?

• AspectJ point cuts are a powerful
reflection mechanism

• Can use them to detect and modify
otherwise unobservable program
behavior

• Ordinary local reasoning about
programs becomes invalid

PLI 2003 23

Meddling aspects

class C
{static int foo;
static final void m1() {foo = 55;}
static final void m2()

{m1(); println(foo);}
}

Does m2 always print
55?

aspect Meddle {
void after() :

void call(C.m1())
{target.foo = 66}

}

Ouch! My aching
invariant!

PLI 2003 24

Aspects can detect
refactoring

class C {void foo (){..} ..}
class D extends C {}

class C {void foo (){..} ..}
class D extends C {

void foo (){super.foo();}
}

aspect Distinguish {
void around():

execution (void D.foo())
{println(“gotcha!”);}}

returns w/o
calling super

PLI 2003 25

Aspects can distinguish
non-terminating programs
class C {static final void foo(){foo();}

static final void bar(){bar();}} #1

class C {static final void foo(){bar();}
static final void bar(){bar();}}

#2

aspect Distinguish {
void around():
executions(void C.bar())
{println(“gotcha!”);}}

makes c.foo() halt in #2, not in #1

PLI 2003 26

Why is this so bad?

• Can no longer do local reasoning
about programs; can only do whole-
program reasoning

• Defeats encapsulation, which is basic
SWE principle

• Tools such as aspect browsers can
help, but scalability is a question
mark

PLI 2003 27

Where did we go astray?

• Previous AO Languages were
conjunctive specifications

• Can think of each aspect as a partial
specification of behavior of the
machine

• conjunctive = orthogonal

PLI 2003 28

What AspectJ changed

• But AspectJ is an exceptive specification!
• “Base program” is intended to be a

complete specification of a JVM behavior
• Advice changes the behavior
• Now reasoning is much more difficult
• Level much too low-- no room for partial

specification

PLI 2003 29

Reconceptualizing AOP

• Scattering is inevitable
• Aspects are modular units of

specification
• A join point model is a shared

ontology

PLI 2003 30

The conspiracy theory of
programming

• A specification represents a
conspiracy between two or more
pieces of program.

• (pop (push x s)) = s specifies a
conspiracy between push and pop.

• push and pop must agree on the
representation of stacks.

PLI 2003 31

Good conspiracies are local

• If we change the representation of
stacks, we need only change push and
pop to match; client need not change

• This is good if push and pop are in
the same module

PLI 2003 32

Distributed conspiracies
are harder

• A policy is a cross-module
specification

• Changes to representation or to
specification require changes in many
modules

PLI 2003 33

Example

• Policy: "logging should occur
whenever events in set X happen"

• If you change X, you may have to
change all the modules in which X
may happen

• This is root cause of scattering
• Conclusion: scattering is inevitable!

PLI 2003 34

How to escape

• Don’t think about programming, think
about specification

• An aspect is a modular unit of
specification

PLI 2003 35

Examples
• Standard examples:

– Base functionality, logging, security,
persistence, etc

• Each of these is best specified in its own
language

• Policy language must intersect all of these
languages
– intersections are join points

• So it must know something about each of
them. Therefore:

PLI 2003 36

A join point model is a
shared ontology

• A join point model is a shared
ontology, representing the aspects’
shared understanding of their joint
specificand

• The join points are a class of entities
in that shared ontology

PLI 2003 37

What is an ontology?
• Specifies a domain of discourse
• Specifies the structure of entities in that

domain
• May specify additional constraints
• Can have different ontologies for the

same entities
– different data represented
– different constraints

• Languages for writing ontologies
– UML/OCL, RDF, DAML/OIL

PLI 2003 38

Ontologies as Agreements

• Agents agree on names for things
and their behaviors

• Each agent may bring additional
knowledge about the domain, not in
the shared portion of the ontology

PLI 2003 39

Example: lexer/parser
communication

• Agents:
– Lexers and parsers

• Domain of discourse:
– lexical items

• Ontology:
– each item has a lexical class, data, and

debugging info
• Join points:

– names of lexical classes
– Lexer and parser must agree on these names

PLI 2003 40

Example: ADT’s
• Agents:

– server (ADT implementation) and its clients
• Domain of discourse: procedure calls
• Ontology:

– includes agreement on the semantics of a
procedure call

• Join points:
– names of procedures in interface
– Client and server agree on the names of

procedures to be called, and on their behavior

PLI 2003 41

Procedures vs. methods

• In Java, can do the same thing, but
domain of discourse is method calls
instead of procedure calls

• A procedure-oriented client can’t use
an object-oriented server!

PLI 2003 42

Widening our horizons

• With this new perspective, we can
look for hidden aspect-orientation in
other languages

• So: what is the world’s most popular
aspect-oriented language?

43

Microsoft Word!

PLI 2003 44

Microsoft Word

• Different aspects:
– Contents aspect
– Formatting aspect, with subaspects:

• Font
• Indentation/Margin
• Borders/Shading, etc

• Structure of menus mimics the
structure of this ontology

PLI 2003 45

Word example, cont’d

• Not a programming language
• But has some weak abstraction

capabilities: styles
• Also has a weak policy language, e.g.:

“whenever you reach the end of a
paragraph in Style1, start the next
paragraph in Style2.”

PLI 2003 46

Aspect-oriented
programming reconsidered

• Let’s see how some AOP languages
fit into this framework

PLI 2003 47

AspectJ
• Domain of discourse:

– execution sequences of an idealized JVM
• Ontology:

– an execution consists of a sequence of object
constructions, method calls, method
executions, etc. Each such event takes place in
a dynamic context (the cflow)

• Actions:
– execute advice before/after/around each

event in the ontology

PLI 2003 48

Composition Filters
[Aksit et al 92]

• Domain of discourse:
– OOPL execution sequences
– like AspectJ

• Ontology:
– method calls

• Action:
– interpose filters

same domain of
discourse, different
ontology

PLI 2003 49

Composition Filters, cont'd
• filter runs an incoming message through a

decision tree,
– based on pattern-matching and boolean

"condition variables" set from code
– so filter can have state

• filter can then dispatch the message to
different methods, reify, queue messages,
etc

• Does this raise the same difficulties as
advice? Good question!

PLI 2003 50

Hyper/J
[Ossher-Tarr 99]

• Domain of discourse:
– Java program texts

• Ontology:
– a Java program is a set of packages, each of

which consists of a set of classes, each of
which consists of a set of methods

• Actions:
– collect methods into classes
– associate a method body with each method

name

texts, not
events

PLI 2003 51

DemeterJ
[Lieberherr 96 et seq]

• Domain of discourse:
– Graph traversals

• Ontology:
– a graph traversal is a sequence of node

or edge visits
• Action:

– call a visitor method at each event

PLI 2003 52

PL research in AOP

• Descriptive:
– [de Meuter 97], [Andrews 01], [Douence-

Motelet-Sudholt 01], [Lammel 02], [Wand-
Kiczales-Dutchyn 02]

• Compiler Correctness
– [Masuhara-Kiczales-Dutchyn 02],

[Jagadeesan-Jeffrey-Riely 03]
• Core Calculi

– [Walker-Zdancewic-Ligatti 03]

PLI 2003 53

Research Directions

• Some ways in which the PL
community can make AOP safer

PLI 2003 54

Higher-level join-point
models

• AspectJ ontology is that of OO assembly
language
– universal, but too low-level

• Better idea: make the join-point model
part of the system design
– UML represents a system-wide shared

ontology of data
– can we do the same thing for join points?
– example: Emacs-Lisp hook system
– example: [Heeren-Hage-Swiertsa 03]

PLI 2003 55

Domain-specific aspect
languages

• Each aspect is best specified in its own
vocabulary

• First-generation AO languages had it right
– But development, deployment costs too high

• We can do better:
– build tools and environments to support

DSAL’s
• This is the real long-term win for AO

ideas

PLI 2003 56

Example: Scripting Type
Inference

• Join point model
– inference steps in the typechecker
– inferences contain unifications (= jp's)

• Language for describing them
• Language for advising them

– action: on failure print <whatever>
• Soundness is guaranteed

– can't cheat

[Heeren-Hage-Swiertsa 03]

PLI 2003 57

Aspect-oriented reasoning

• Goal: restore possibility of local reasoning
• We reason locally about program

fragments by making assumptions about
the class of contexts in which they will be
executed
– type assumptions: consider only well-typed

contexts
– evaluation assumptions: we don't consider

contexts like println("[]")

PLI 2003 58

Specifying contexts

• Can we formalize our assumptions
about contexts with aspects? e.g.:
– which join points are visible to the

context
– what portion of the state the advice is

allowed to change
• With such contextual assumptions,

we could restore the possibility of
local reasoning

PLI 2003 59

Conclusions
• AOP is getting a lot of attention in the

SWE world
• Current popular AOP mechanisms (eg

global advice) seem flawed
– too low-level, can't do local program reasoning

• We ought to be able to do better
– more semantics in the join point model
– more semantics in the aspect languages
– more semantics in the contextual assumptions

PLI 2003 60

The End

Slides available soon at
http://www.ccs.neu.edu/home/wand

