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Abstract. A set-based program analysis establishes constraints between sets of abstract values for all expressions
in a program. Solving the system of constraints produces a conservative approximation to the program’s runtime
flow of values.

Some practical set-based analyses use explicit selectors to extract the relevant values from an approximation set.
For example, if the analysis needs to determine the possible return values of a procedure, it uses the appropriate
selector to extract the relevant component from the abstract representation of the procedure.

In this paper, we show that this selector-based approach complicates the constraint solving phase of the analysis
too much and thus fails to scale up to realistic programming languages. We demonstrate this claim with a full-
fledged value flow analysis for case-lambda, a multi-branched version of lambda. We show how both the
theoretical underpinnings and the practical implementation become too complex. In response, we present a variant
of set-based closure analysis that computes equivalent results in a much more efficient manner.
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1. Introduction

In 1990, Dybvig and Hieb introduced a variable-arity form oflambda calledlambda* [6].
This form generalizes lambda by allowing multiple clauses, each with its own parameter
list and its own body. When such a procedure is applied, one of the clauses is selected based
on the number of actual arguments, and the corresponding body executed. If the number of
actual arguments does not match the number of formal argument of some clause, an arity
error is signaled. A variation of this construct, called case-lambda, was added to Chez
Scheme [5] and later to PLT Scheme [12]. In both implementations, a case-lambda
clause parameter list may also have a rest parameter, just as for lambda in Scheme [17].1

DrScheme [8], the graphical development environment based on PLT Scheme, uses case-
lambda extensively. It is used in particular to define many class methods of the object-
oriented graphical framework on which DrScheme itself is based, where case-lambda
allows a form of dynamic dispatch based on the number of arguments.

In this paper, we describe an extension of the formalism developed by Flanagan [10, 11]
for the MrSpidey static debugger [9], to analyze case-lambda and rest parameters. The
set-based analysis (SBA) used by Flanagan is derived from Heintze’s [13, 14]. For each
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expression in a program it computes a set of abstract values that conservatively approximate
the values that the expression might evaluate to at runtime. These sets are then used to
statically detect possible bugs in the program (e.g. using a number where a string is expected)
which are then reported by MrSpidey back to the user.

The analysis computes those sets of abstract values by creating constraints between them
that simulate the runtime flow of values between the corresponding expressions in the
program. The constraints use explicit selectors like dom, rng, car, and cdr to choose
data flowing through expressions. For example, the rng selector chooses the ranges of
procedures that flow through an expression; the car selector obtains the first elements of
lists that flow through the expression. Selectors also control the flow of data into and out of
procedures at application sites.

MrSpidey analyzes nearly all of PLT Scheme, including case-lambda, though Flana-
gan does not provide a formal treatment of that aspect of its analysis. Unfortunately, the
existing implementation is too conservative and propagates values through all clauses of
case-lambda, including unused ones, and even propagates them in the presence of arity
errors. As a consequence, MrSpidey often flags errors where none exist, which limits its
usefulness as a static debugger.

As part of our goal to develop a practical soft-typing system for the full PLT Scheme pro-
gramming language, based on a better debugger, we investigated extensions to Flanagan’s
analysis to support case-lambdamore precisely. In our modification of Flanagan’s anal-
ysis, we annotate selectors with new arity and argument-position information, which ensures
that data flows into and out of appropriate case-lambda clauses. As we shall show, this
approach greatly improves upon the precision of the existing MrSpidey implementation.
Selector annotations also allow us to analyze rest arguments.

Unfortunately, while our new extension of Flanagan’s approach yields sound results, its
time cost is too great. Solving the constraints to determine the sets of abstract values requires
computing the transitive closure of the constraints. Explicit selectors impose two burdens on
that computation. First, the presence of the many selectors associated with procedures means
there are many more nodes in the constraint graph. Second, computing the transitive closure
of some of the constraints means matching selector pairs according to argument position
and arity annotations. Obtaining these pairs requires searching through a set of candidate
selectors and checking the annotations for each candidate, another computationally intensive
process. With those insights, we conclude that, while Flanagan’s selector approach to SBA
is suitable for analysis of most of Scheme, it is not suitable for analysis of Scheme with
case-lambda.

Fortunately, an ordinary closure analysis style SBA (CA-SBA) like Palsberg’s [19], which
does not use selectors, can be extended to provide similar analysis results with a lower
asymptotic time upper bound. Therefore, the next static debugger for PLT Scheme will use
a CA-SBA instead of the annotated-selector approach.

The paper is organized as follows. We motivate our work in Section 2 by presenting
some limitations of Flanagan’s selector-based approach when analyzing case-lambda.
In Section 3, we review Flanagan’s account of set-based analysis with explicit selec-
tors. Next, we describe in Section 4 a new extension to Flanagan’s system to analyze
case-lambda programs without rest arguments, then add rest arguments to the analysis
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in Section 5. In Section 6, we discuss the high asymptotic complexity of the resulting anno-
tated selector analysis. In Section 7, we show how to extend Palsberg’s closure analysis style
SBA to handle case-lambda and rest parameters. In Section 8, we give empirical results,
comparing MrSpidey, our modified selector analysis, and the closure analysis style SBA.
These experiments show that the annotated-selector approach is too complex in practice as
well, while the CA-SBA one performs satisfactorily. Section 9 presents related and future
work. Finally, in Section 10 we offer conclusions.

2. Limitations of MrSpidey

In this section, we catalog the ways in which the existing MrSpidey analysis of case-
lambda is unsatisfactory. In Figure 1, we show the results of MrSpidey’s analysis of four
simple programs that capture the essence of the limitations of MrSpidey. The boxes contain
type information about their adjacent expressions. For example Figure 1(A) shows that the
variable x has a string type. A type may also be a definite constant, such as a particular
number.

Propagation despite arity errors. When a procedure is applied to an incorrect number of
arguments, MrSpidey propagates data through as many formal arguments as possible.
Figure 1(A) shows MrSpidey’s analysis of a procedure of two arguments applied to one
argument.2 At run-time, the value of the actual argument never reaches the bound x,
though MrSpidey suggests otherwise by computing a string type for the variable.

Propagation through multiple clauses. MrSpidey propagates values of actual arguments
through all clauses of a case-lambda. Figure 1(B) shows a case-lambda with two
clauses applied to one argument. Even though the actual argument flows at run-time
through just the first clause, MrSpidey shows the actual argument flowing through the
other clause as well.

Propagation through unreachable clauses. MrSpidey propagates information through un-
reachable clauses of a case-lambda. Because the ordering of clauses in a case-
lambda is significant, only the first of multiple clauses with the same number of ar-
guments will receive data. Figure 1(C) shows the application of a case-lambda with
two clauses, both of which take a single argument. MrSpidey propagates the actual ar-
gument through both clauses, although data flows only through the first clause at run-
time.

Merging of clause return values. Symmetrically, MrSpidey merges values returned by all
clauses of a case-lambda. Figure 1(D) shows that the result of applying a case-
lambda with two clauses is the union of the clause results, though only one clause is
ever evaluated.

Spurious errors. MrSpidey’s usefulness as a static debugger is compromised when data is
shown to flow to locations that it cannot actually reach. Figure 2 shows a program for
which MrSpidey claims a possible arity error, though there is none. MrSpidey reasons
that the lambda may flow to the formal parameter f in the second clause in the case-
lambda, where it could be misapplied. From the program text, it is clear that thelambda
flows only through the first clause.
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Figure 1. MrSpidey mishandles case-lambda.

Our modified analysis remedies each fault identified here.

3. MrSpidey theory

We review Flanagan’s formalism for analyzing an extended version of the λ-calculus. This
formalism is derived from the one by Heintze [13, 14]. Unlike the control-flow analysis
of, say, Palsberg [19] or Shivers [22], Flanagan uses explicit selectors in constraints to
connect the formal arguments and body of a function to the actual arguments and result
of an application, and to connect the actual components of a pair to the results of the pair
projections.
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Figure 2. Spurious arity check.

The language we analyze is the λ-calculus extended with constants and special forms for
cons, car, and cdr. In our language lambda terms are labeled:

E ::= x | c | (λx .E)� | (E E) | (cons E E) | (car E) | (cdr E)

Set expressions representing sets of abstract values are defined by the grammar

τ ::= α | c | � | pair | dom(α) | rng(α) | car(α) | cdr(α)

where α is a set variable, representing a program expression, and pair is a token. We also
write β and γ for set variables. The metavariable c represents term language constants.
The forms dom, rng, car and cdr are selectors. Of these, only dom is contravariant; the
others are covariant.3 We use σ as a metavariable for selectors. A constraint is an inequality
on set expressions of the form τ ≤ τ ′. Constraints indicate the flow of data. For example,
the constraint c ≤ α means that the constant c flows into the expression associated with the
set variable α.

Following Heintze, Flanagan’s set-based analysis proceeds by phases. The first phase is
constraint derivation, performed by a pass over the program’s abstract syntax tree. For each
subexpression, this phase associates a set variable with the subexpression and generates
some constraints according to constraint derivation rules. Next, a propagation phase com-
bines constraints using constraint propagation rules to generate new constraints, effectively
mimicking the flow of data through a program. Then, a set of values is computed for each
program point. From such a set, a type can be constructed.

Figure 3 shows the constraint derivation rules for the λ-calculus with constants, cons,
car, and cdr. The judgements in Figure 3 are of the form

� � E : α, C

where, � is an environment mapping term variables to set variables, E is an expression, α

is a fresh set variable representing the expression E , and C is a set of constraints.
Let us provide intuition for some of the rules. The VAR rule says that when analyzing

a reference to a variable x , a fresh set variable α is used to represent that reference. If
the variable’s binding is represented in the environment by the set variable β then a new
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Figure 3. MrSpidey constraint derivation (judgements of the form � � E : α, C).

constraint β ≤ α is created to simulate the flow of values from the binder to the reference.4

For the bracketed constraints in the LAMBDA rule, we have

• � ≤ α: a procedure label � representing the procedure expression flows into the set
variable α representing the possible values for the procedure, simulating the fact that a
lambda expression evaluates to a lambda value;

• dom(α) ≤ α′: whatever flows into the domain of the procedure flows into its formal
parameter, and

• β ≤ rng(α): the result of the procedure body flows into the range of the procedure.

There are similar explanations for the other constraints in Figure 3.
Figure 4 shows the constraint propagation rules. In the TRANS-CONST rule, we use the

predicates const?, label?, and token? to detect constants, procedure labels, and tokens. The
difference between covariant and contravariant selectors shows up in the propagation rules
COVARIANT-PROP and CONTRAVARIANT-PROP. The selector+ predicate holds when its argu-
ment is rng, car, or cdr; the selector− predicate holds only for dom. These propagation
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Figure 4. MrSpidey constraint propagation.

rules follow Flanagan’s presentation [10], with some simplification and notational changes.
These rules are repeatedly applied until no new constraints are added.

Note that for a given function represented by a set variable α the set expressions dom(α)
and rng(α) do not directly correspond to any term in the analyzed program. In the LAMBDA

rule the formal argument is represented by α′ and the body of the function is represented by
β. Similarly in the APP rule the actual argument and the application’s result are represented
by β2 and α. The role of the set expressions dom(α) and rng(α) is to flow along with
the function itself until they reach the operator position of an application. At that point
the two expressions are used through the TRANS-SEL rule (along with the two dom and
rng set expressions generated in the APP rule) to establish the connection between the
actual and formal arguments and between the body of the function and the result of the
application. Similarly when α represents a pair, the set expressions car(α) and cdr(α) are
used to connect the components of the pair (represented by β1 and β2 in rule CONS) to the
result of extracting one or the other of the components (represented by α in rules CAR and
CDR).

The full details of MrSpidey’s constraint solution and type reconstruction algorithms are
beyond the scope of this paper, but we attempt here to convey their essence. See Flanagan’s
dissertation for details [10]. For a subterm with associated set variable α, the set {c | c ≤ α}
describes the constants that may be the result of evaluating the subterm. If we have the
constraint pair ≤ α, then the term may evaluate to a pair, and {β | β ≤ car(α)} is the
set of set variables that may flow into the car of such a pair. The sets of values for these
set variables provide the actual values. We compute the solutions to cdr’s and procedure
ranges in similar fashion. Procedure domains require a slightly more complex calculation
due to the contravariance of the dom selector.

From the sets of values associated with set variables, we can construct types. For example,
let αE be the set variable associated with an expression E . Suppose that constraint propa-
gation produces the constraints pair ≤ αE , β1 ≤ car(αE ), 57 ≤ β1, β2 ≤ cdr(αE ), and
null ≤ β2. Then we can conclude that E has type (cons 57 null).
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What is missing from the existing formalism? In the language to be analyzed, all pro-
cedures have one clause with one parameter, and there are no rest parameters. These re-
strictions on procedures are imposed by the use of the simple dom and rng selectors.
Therefore, in his dissertation [10, Appendix E.3], Flanagan indicates that a procedure of
more than one argument is modeled by considering that procedure to take one argument,
which becomes bound to a list of actual arguments at its application sites. The values in
the list are distributed to the formal arguments by pulling out elements of the list. Because
all clauses of a case-lambda are considered to have a single argument, the arities of the
clauses are not considered, and that list is propagated to all clauses. Similarly, the results
of all case-lambda clauses are merged into application results. The TRANS-SEL rule in
Figure 4 controls the propagation of data into formal parameters (when the selector involved
is dom) and out of procedures (when the selector is rng). Hence, to improve the analysis,
we need to focus on the mechanism in that rule.

4. Handling case-lambda

In this section, we show how to analyze programs containing case-lambda but without
rest parameters. We show how to add rest parameters in Section 5.

Because the run-time clause selection incase-lambdadepends on the number of actual
arguments, our analysis keeps track of clause arities. Whether a clause is selected depends
not only on the number of arguments it may accept, but also on the number of arguments
accepted by preceding clauses. Therefore, our notion of arity is somewhat unusual. In order
to define this notion, we need

Definition 1. An interval is a pair [n, m], where n and m are nonnegative integers and
n ≤ m.

An interval indicates the number of arguments a clause accepts. Without rest parameters,
the lower and upper bounds on the interval are the same and could be collapsed into a single
number. This will change when we add rest parameters in the next section though. We use
I as a metavariable for intervals.

Definition 2. An arity is a non-empty list of intervals.

The first element of an arity indicates the number of arguments accepted by a clause.
The remaining elements put the clause in context, by listing the intervals associated with
preceding clauses. Arities are computed as follows: for each clause i of a function, assign
it an interval [ni , ni ], where ni is the number of formal arguments for that clause. Then,
for each clause i , assign it the arity ai = ([ni , ni ], (Ii−1, . . . , I1)), where I j is the interval
assigned to the j th clause. For example, the following function:

(define f
(case-lambda

[(x y) 1]
[(x y z) 2]))
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has two clauses, the first one with arity ([2, 2]) and the second one with arity ([3, 3], [2, 2]).
We use a as a metavariable for arities.

We augment Flanagan’s dom and rng selectors by annotating them with new infor-
mation. The same selector has different kinds of annotations, depending on where it is
generated. For constraints generated at case-lambda instances, selectors get arity an-
notations; for constraints generated at applications, selectors carry interval and number-
of-argument information. Hence there are two forms each of annotated dom and rng
selectors.

In particular, for dom selectors, the two forms are

• doma
i , where a is an arity and i is an argument index in a clause parameter list, and

• domI
i,n , where I is an interval, i is an argument index in an application argument list, and

n is the total number of arguments.

For rng selectors, the forms are

• rnga , where a is an arity, and
• rngI

n , where I is an interval, and n is the total number of arguments at an application
site.

Consider doma
2(α); this set expression represents the flow into the second argument

of a case-lambda clause with arity a. Similarly, dom[3,3]
1,3 (α) represents the flow into

the first argument of a procedure of three arguments (as indicated by the [3, 3] interval)
when that procedure flows into an application site with three actual arguments. The selector
rnga(α) represents the flow out of acase-lambda clause with arity a. The set expression
rng[3,3]

3 (α) represents the value returned by a procedure of three arguments (as indicated
by the [3, 3] interval) when that procedure is applied to three actual arguments. All these
annotations are going to be necessary to ensure that, for a given application, values will
flow in and out of only the right case-lambda clause.

Figure 5 gives revised constraint generation rules. The rules for constants, variables, car
and cdr are unchanged.

In the APP rule, the selectors are annotated with intervals as well as a separate annotation
for the number of arguments. The three numbers in the annotation are all the same, but that
will change when we consider rest arguments in the next section.

These revised rules have essentially the same form as those in Figure 3, except that

• each case-lambda clause generates constraints,
• each application argument generates constraints, and
• the selectors are annotated.

The selector annotations are used in the revised propagation rules in Figure 6, in particular,
in the rules TRANS-DOM and TRANS-RNG. The unchanged rule TRANS-CONST is omitted. The
unchanged rules TRANS-SEL and COVARIANT-PROP are omitted as well but have now a more
restricted scope: the COVARIANT-PROP rule is now only used to propagate the car and
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Figure 5. Revised constraint derivation rules (judgements of the form � � E : α, C).

Figure 6. Revised propagation rules.

cdr selectors and the rule TRANS-SEL no longer handles dom and rng selectors. We no
longer need the CONTRAVARIANT-PROP rule. The core idea is to propagate values through
a case-lambda clause only when the number of actual arguments matches the number
expected by that clause, and does not match the number expected by any preceding clause.
This idea is captured by the following satisfaction relations used in the TRANS-DOM and
TRANS-RNG rules.

For intervals we only have to check whether the number of actual arguments matches the
number expected by a given clause, so the |= relation is simply:
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Definition 3. [n, m] |= [p, q] iff n = m = p = q.

This definition will change in the next section when we introduce rest arguments.
The satisfaction relation in the TRANS-DOM and TRANS-RNG propagation rules involves a

number representing a number of actual arguments in an application, an interval representing
what kind of clause can handle that number of arguments, and an arity representing an actual
clause of the function that might be applied. That relation is defined by (where ∈ is the usual
mathematical interval membership test):

Definition 4. (s, [n, m]) |= ([p, q], (I1, . . . , It )) iff

• s ∈ [p, q],
• [n, m] |= [p, q], and
• ∀i ∈ [1, t], s �∈ Ii

The first two requirements ensure that a particular clause can handle the number of arguments
given; the last one makes sure that no preceding clause can do so.

Note that, as before, all the new annotated dom and rng selectors do not correspond
to any term in the program. Their role is to flow along with their corresponding function
until an application is reached, at which point the TRANS-DOM and TRANS-RNG rules will
use them to establish connections between actual and formal arguments, including possible
rest arguments, and between clause bodies and application results.

5. Analysis of rest parameters

The introduction of rest parameters requires additional constraints, which need to account
for the uncertainties associated with such arguments. With a rest parameter, a clause accepts
some number of required arguments, but may take more. For example the function

(define f
(case-lambda

[(x y . z) z]))

can be applied to two or more arguments. When applied, all the actual arguments given to
the function after the first two are gathered in a list that is bound to the rest argument z.
We cannot, therefore, be certain how many arguments a particular function clause will be
applied to. Moreover, when deriving constraints at an application site, we do not know the
arity of selected clauses in the procedures that flow to that site. Therefore, our constraints
need to account for all possibilities.

With the introduction of rest parameters, we continue to generate all the constraints as
described in the last section. We revise the definition of intervals (Definition 1) to also allow
intervals of the form [n, ω], where n is a nonnegative integer and ω is a special symbol
representing an arbitrarily large number of arguments. The calculation of arities changes
slightly: a clause with n required arguments and a rest parameter is assigned the interval
[n, ω]. As before, the arity of a clause is a non-empty list consisting of its assigned interval
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Figure 7. Additional constraints for rest parameters (judgement of the form � � E : α, C).

and the list of intervals from preceding clauses. Because intervals have changed, we modify
slightly the satisfaction relation on interval pairs from Definition 3:

Definition 5. [n, m] |= [p, q] iff

• n = m = p = q �= ω, or
• n = p and m = q = ω

The other satisfaction relation, from Definition 4, does not change, except to use this new
definition.

In Figure 7, we show just the new constraints required. For the language we are now
considering, which includes case-lambda, cons, car, and cdr, the derivation rules are
the VAR, CONST, CONS, CAR, and CDR rules from Figure 3; the CASE-LAMBDA rule from
Figure 5, and the APP rules in Figures 5 and 7.

The CASE-LAMBDA rule is unchanged: the new calculation of arities handles the uncer-
tainty associated with individual clauses. All the complications appear in the new constraints
for the APP rule.

Consider an application site with n actual arguments and a procedure that flows to this
site. If a selected clause of that procedure has a rest parameter then that clause may take
between zero and n required arguments. A procedure in which all clauses have more than n
required arguments results in an arity error. We cannot know exactly how many arguments
an incoming procedure requires, so we account for each possibility. Therefore, we generate
a constraint of the form rng[i,ω]

n (β0) ≤ α for each i between zero and n. These constraints
represent flow out of selected case-lambda clauses.

Next, consider flow into the required arguments of a selected clause with rest parameters.
For each i from one to n, and for each j from one to i , we generate a constraint of the form:

β j ≤ dom[i,ω]
j,n (β0)

Here, i is a particular number of required arguments, j is a position within those arguments,
and n is the number of actual arguments. These constraints represent flow into the required
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parameters of clauses with rest parameters. Note that when the number i of required pa-
rameters is zero, no flow into required parameters exists (i.e. there is no j between one and
i) so we do not have to consider that case.

Finally, we need to account for flow into rest arguments, which are bound to lists. Since
we do not know the arity of selected clauses in procedures that flow to the application site,
we do not know how many arguments are required by the clauses, and thus we do not
know the lengths of the lists of actual arguments that should flow into the rest arguments.
Therefore we need to consider all possibilities.

First suppose a selected clause has exactly n required arguments. Then at run-time, the
rest argument becomes bound to the empty list. Hence we have the pair of constraints

null ≤ αn+1

αn+1 ≤ dom[n,ω]
n+1,n(β0)

where null is one of the constants in our language, evaluating to the empty list.
Second suppose a selected clause takes fewer than n required arguments. Since we do

not know the exact number of arguments required by the clause, we always generate the
constraints

β1 ≤ car(α1)
α2 ≤ cdr(α1)

...
βn ≤ car(αn)

αn+1 ≤ cdr(αn)

The effect of these constraints is to model the flow of lists of varying lengths into the αi ’s.
For instance, α1 receives a list of length n, while αn receives a list of length one. We then
generate constraints of the form

αi+1 ≤ dom[i,ω]
i+1,n(β0)

for each i from zero to n − 1, to model the possible flows of the lists into the rest parameter.
Again, i is a particular number of required arguments. Therefore, the rest parameter receives
a list of length n − i .

The pair token is used by our type reconstruction algorithm to flag pairs. In Section 3,
it appeared in the CONS rule. Here, we generate the constraints

pair ≤ αi

for each i from one to n. The effect is to propagate the token to the rest argument, but only
in case it may become bound to a non-empty list.

We have built a prototype implementation using the new derivation and propagation rules.
For each program shown in Figures 1 and 2, the prototype remedies the problem identified
with MrSpidey. For the program in Figure 1(A), there is no flow through the bound x . For
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the program in Figure 1(B), there is flow only through the bound x , and not through the
bound y. For the program in Figure 1(C), there is flow only through the bound variable
in the first clause, x , but not through the bound variable in the second clause, y. For the
program in Figure 1(D), only the return value from the first clause shows up in the flow
for the application. In the prototype, the program in Figure 2 does not signal an arity error.
Despite these improvements, we argue in the next section that the modified analysis is
unsatisfactory.

6. Complexity

It is not enough for our analysis to be sound and accurate, it must be easily computable.
A simple set-based flow analysis based on the transitive closure of set constraints (a form
of monovariant SBA for shallow patterns [18]) can be done in time cubic in the size of
programs [1]. Because there do not appear to be better bounds without imposing restrictions
on programs, this complexity is known as the “cubic bottleneck” [16]. Unfortunately, our
modified version of Flanagan’s SBA far exceeds this bound.

6.1. MrSpidey’s analysis

It is easy to see that the time upper bound on Flanagan’s original analysis can be no better
than that for graph transitive closure, which can be computed in time cubic in the number
of graph nodes [3, Section 26.2]. Deriving the constraints in Figure 3 takes time linearly
bounded by the size of a program. For the propagation phase, the rules TRANS-CONST and
TRANS-SEL in Figure 4 are ordinary transitive rules. Hence, closing under these two rules
does have a cubic-time upper bound. The other two rules in Figure 4 are of a different
character, so the actual complexity might be higher. As we shall show, the complexity of
these rules is cubic as well.

We now describe an algorithm that can be used to close the constraints under the prop-
agation rules in Figure 4. The algorithm has a cubic-time upper bound and is as follows.
As each constraint is generated, check whether it matches a premise in a propagation rule.
Both the constraint generation and the check are constant-time operations. Because there
are O(n) set expressions, there are O(n2) possible constraints. Note that each propagation
rule has two premises. If the constraint matches the premise of a propagation rule, find
all constraints that match the other premise. There are O(n) such constraints. To see this,
suppose the rule involved is TRANS-CONST, and we have the constraint c ≤ α. So the other
premise in the rule is matched by constraints of the form α ≤ β. The left-hand side for
eligible constraints is fixed to be α, so there are O(n) many candidate set variables for the
right-hand side. Similar considerations apply to the other rules. Each eligible constraint can
be found in constant time by maintaining lookup tables that map set expressions to their
lower and upper bounds. If the constraint in the consequent does not exist in the pool of
constraints, a constant-time check, add it. The only non-constant factors in this algorithm
are the quadratic bound on the number of constraints and the linear bound on the number of
eligible constraints. Therefore, the MrSpidey analysis does have a cubic-time upper bound.
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6.2. Annotated selectors

When we add annotations to selectors, the number of possible set expressions becomes much
larger, raising the complexity of both the derivation and propagation phases. First consider
what happens when adding just arities for multiple arguments, without rest parameters. The
derivation phase still creates a linear number of constraints. Although the CASE-LAMBDA rule
in Figure 5 contains a “doubly-nested loop” for constraints with the dom selector, there is
only one such constraint for each formal parameter. Again, the derivation time is dominated
by the propagation time. In order to obtain the time complexity for the propagation phase
in the presence of annotated selectors, we again look at the number of possible constraints
and the time for the work to be done when a constraint matches a premise in a propagation
rule.

Because case-lambda parameter lists and application argument lists may be propor-
tional to the size of the whole program, the number of different annotated dom selectors is
linear in the size of the program (see Figure 5). For each set variable α, then, we now have
a linear number of possible set expressions containing α. Hence the number of possible
set expressions is quadratic in the size of the program. Considering just the syntax of con-
straints, the number of possible constraints is cubic, because every set constraint derived or
deduced from the propagation rules has a set variable as its lower or upper bound.

The number of constraints actually produced by the derivation and the propagation rules
is only quadratic, as follows. The number of constraints containing only set variables,
constants, labels, and the pair token is quadratic, because we have only a linear number
of each of these items. The only other constraints are those with a selector applied to a set
variable on one side, and a set variable on the other. By the derivation rules in Figures 3
and 5, we start with a linear number of such constraints. The only rules that can create
new such constraints are COVARIANT-PROP in Figure 4 for the car and cdr selectors and
RNG-PROP and DOM-PROP in Figure 6. In the rules COVARIANT-PROP and RNG-PROP, there
is a premise of the form α ≤ σ (β) and the added constraint is of the form α ≤ σ (γ ). So α

and σ appear in the premise and in the added constraint, playing the same syntactic roles
in both. We start with O(n) many such α and σ pairs, and the propagation rules do not
increase their number. There are O(n) many set variables to play β, the other syntactic role
in those rules. So after propagation, there are O(n2) many constraints of the form α ≤ σ (β).
A similar argument holds for the DOM-PROP rule.

Next, we wish to obtain the time needed when a constraint matches a propagation rule
premise. As mentioned above, that time is related to the length of the list of constraints
eligible to match the other premise in the rule. In the presence of annotated selectors, the
number of such constraints eligible to match the other premise has an O(n) bound. This
bound arises directly from the syntax of constraints for the rules TRANS-CONST, TRANS-SEL

and COVARIANT-PROP. For the other rules, those in Figure 6, we must consider the number of
constraints actually produced. We will show that for each such rule, the number of eligible
constraints has an O(n) bound.

Consider the rule TRANS-DOM. Suppose we have a constraint matching the first premise,
α ≤ dom[n,m]

i,s (β). As we showed above, there can be at most a linear number of σ and γ

pairs appearing in constraints of the form σ (β) ≤ γ . So for a given β, there are at most a
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linear number of constraints of the form doma
i (β) ≤ γ . On the other hand, suppose we have

a constraint matching the second premise. From the CASE-LAMBDA rule in Figure 5, there are
O(n) many constraints of the form of the first premise produced during the derivation phase,
and no new constraints of this form are created during propagation. A similar argument holds
when considering the TRANS-RNG rule.

Now consider the rule RNG-PROP. If we have a constraint matching the first premise, then
clearly there is a linear bound on the number of constraints matching the second premise.
Suppose we have a constraint of the form β ≤ γ , matching the second premise. As we
have shown, there can be at most a linear number of α and σ pairs in constraints of the
form α ≤ σ (β). For a given β, then, there is a linear bound on the number of constraints
matching the first premise. A similar argument holds for the DOM-PROP rule.

We have shown that there is an O(n2) bound on the number of constraints, and for
each such constraint, an O(n) bound on the number of eligible constraints when matching
premises in the propagation rules. For the rules TRANS-DOM and TRANS-RNG, which involve
the satisfaction relation, the lists contained in arities add a linear factor. When we check
whether a constraint already exists, we need to compute its hash value. That computation has
a linear bound, because constraints may contain arities in selector annotations. Combining
all these factors, we see that the algorithm has a worst-case time bound of O(n5).

6.3. Rest parameters

If we add in the constraints for rest parameters (Figure 7), the number of constraints produced
by the derivation phase becomes quadratic in the size of the program. Nonetheless, the total
number of constraints after the propagation phase still has a quadratic upper bound. The
constraints involving dom and rng introduced in Figure 7 do not propagate those selectors
to new constraints. For the other constraints in Figure 7, the syntax of constraints imposes a
quadratic bound on the number of constraints produced from them during propagation. The
number of eligible constraints for rule matches retains a linear bound in this case. Again,
we need to consider the linear bounds on checking the satisfaction relation and computing
hash values. Therefore, even when we add the constraints for rest parameters, the algorithm
has a worst-case time bound of O(n5).

That time bound is undesirably high. But by using a different analysis, described in the
following section, we can compute essentially the same information asymptotically faster.

7. Eliminating selectors

In Flanagan’s original set-based analysis (SBA) and our revision, dom and rng selectors
are used to hook up actual arguments with formal parameters, and procedure bodies with
applications. Creating these flows requires propagating numerous selectors from function
definitions to application sites, and checking them against the selectors corresponding to
these applications. Instead we can eliminate selectors by choosing a more straightforward
mechanism for directing flow through formal parameters and from procedure bodies.

Palsberg’s ordinary “closure analysis” SBA (CA-SBA) [19] can be extended in a straight-
forward manner to handle case-lambda and rest parameters. Figure 8 presents the
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Figure 8. Closure analysis style SBA (judgements of the form � � E : C).

constraints for such an analysis. As before, procedures are labeled; we now label all other
subterms. Each such label � has an associated set ϕ(�), which can contain:

• labels, representing the flow of program constants, or
• (cons � �) compound labels, representing the flow of pairs, and containing two labels for

the two parts of the pair represented, or
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• (case-λ ((� . . .) �) . . .) compound labels, representing the flow of case-lambda ab-
stractions, and containing a label for each parameter and body for each clause of the
case-lambda represented.

The constraints in Figure 8 are similar to those usually presented for closure analysis
of the lambda calculus as described by Palsberg [19] and in essence implement Shivers’
0-CFA [22]. Our selector-oriented SBA handles constants and forms for list construction
and list projection, so we add constraints to handle those. Of course, we have case-
lambda instead of lambda. The APP rule accounts for that difference. For every case-λ
compound label in operator position the rule uses the information directly present in the
label to precisely determine the first clause that can accept all the actual arguments of the
application (something MrSpidey’s selector based analysis could not do). Then it creates a
flow from that clause’s body to the application and from the actual arguments to the formal
required parameters of the clause. Finally, all the remaining arguments, if any, flow as a list
into the rest parameter of the clause, if it has one. All the other clauses are ignored.

With these changes, the form of these constraints is the same as for the closure analysis of
the lambda calculus. The analysis generates at most a quadratic number of constraints; this
set of constraints can be solved in cubic time [20]. Soundness of the analysis can likewise
be proved by extending a soundness proof for the analysis of the lambda calculus [23].

The implementation of the analysis represents terms as nodes in a graph. Graph edges
represent the flow of values from one term to another. New edges are created when cons
compound labels flow into nodes representing the argument of car or cdr, or when case-λ
compound labels flow into nodes representing the operator position of an application. This
simulates the implications in the CAR, CDR, and APP rules in Figure 8. These new edges in
turn trigger new propagations of labels and compound labels, which might further trigger
the creation of new edges. The implementation checks that a label never flows twice through
the same edge. This prevents labels from flowing around cycles in the graph forever, thereby
ensuring that the analysis reaches a fixed point where no further propagation or edge creation
are possible.

The main practical difference between this form of SBA and the selector-based one is that
the runtime flow of procedures and pairs is modeled by the flow just of compound labels,
without requiring the flow of multiple explicit selectors accompanying them. In essence all
the information for a given procedure or pair that was spread among selectors in MrSpidey’s
analysis is now directly available in the compound label corresponding to that procedure or
pair, rendering selectors useless. Also the use of implications in constraints simplifies the
search for the right procedure clause when a procedure flows into the operator position of an
application. Once the right clause is found, edges between actual and formal arguments and
between clause body and application result can all be created at once, instead of requiring
the satisfaction relation to be checked for each selector separately as is the case in the
selector-based analyses.

These differences greatly simplify the theoretical exposition of the analysis, compared to
the annotated selector based one, as well as the implementation. The machinery necessary
to generate the numerous selectors from Figures 5 and 7 can be removed from the CA-SBA
implementation. The fairly large amount of hashtable-based code used in the implementation
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of the propagation rules from Figures 4 and 6 can be removed as well. Together these
differences result in an implementation of the CA-SBA analysis that is considerably simpler
than the implementations of the selector-based analyses.

Despite these simplifications the information computed by the CA-SBA is effectively the
same as for the selector-oriented SBA. Types can then be reconstructed from this information
using a simple recursive algorithm.

8. Empirical results

While the worst-case bounds mentioned in Section 6 do not necessarily mean bad perfor-
mance in practice, it is clear that selector annotations make the problem harder than expected
for SBA. To verify our expectations, we ran our annotated selector prototype, MrSpidey,
and our CA-SBA prototype on some test programs. MrSpidey runs as an add-on tool in
DrScheme [9] while the two prototypes run directly in MzScheme.5 The analyzers were
tested on one processor (900 MHz UltraSPARC-III+, 8 MB of cache) of a Sun Fire 280R
with two processors and two gigabytes of main memory. In all cases, the CA-SBA imple-
mentation ran significantly faster than the other two, and with a much lower asymptotic
complexity, as we describe below.

The two prototypes were developed for exploratory purposes and the language they ana-
lyze is quite small (the lambda calculus plus basic Scheme constants, case-lambda, as
well as top-level definitions and references). This is in contrast with MrSpidey which ana-
lyzes the whole of the PLT Scheme language. Comparing running times between MrSpidey
and the two prototypes is therefore tricky. While expanding the prototypes to analyze other
kinds of terms would certainly slow them down compared to MrSpidey, the good results of
the CA-SBA one are still encouraging.

We have not been able to show that the bounds given above for the annotated-selector
analysis are tight bounds. But we are able to show that for a particular class of examples
the algorithm for the annotated-selector analysis is more approximately cubic, much worse
than the other two implementations.

Consider the results in Table 1. The numbers indicate milliseconds of processing time,
with garbage-collection times subtracted. The programs s200, s400, and so on contain
procedures of a single argument that call one another in a linear chain, where the number
indicates how many procedures there are in the chain. For example the program s4 would
look like:

(define f1 (lambda (x1) 42))
(define f2 (lambda (x2) (f1 x2)))
(define f3 (lambda (x3) (f2 x3)))
(define f4 (lambda (x4) (f3 x4)))
(f4 0)

For this series of tests, both the annotated selector and CA-SBA versions are asymptotically
faster than MrSpidey. The programs m200, m400 and so on are similar, except that the
procedures take multiple arguments (i.e. m4 would look very much like s4 above, except
that every function would take a fixed randomly chosen number of arguments between
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Table 1. Procedure chain tests (milliseconds).

Test MrSpidey Annotated CA-SBA Ann/MrS CA-SBA/MrS

s200 690 760 210 1.10 0.30

s400 1890 1520 440 0.80 0.23

s800 5700 3070 920 0.54 0.16

s1200 11750 4650 1390 0.40 0.12

s1600 19270 6210 1860 0.32 0.10

m200 1090 2070 330 1.90 0.30

m400 2450 3860 600 1.58 0.24

m800 7010 7660 1260 1.09 0.18

m1200 14560 11350 1930 0.78 0.13

m1600 22060 15590 2610 0.71 0.12

Table 2. Stress tests (milliseconds).

Num nodes MrSpidey Annotated CA-SBA Ann/MrS SBA/MrS

113 90 410 10 4.56 0.11

393 440 6770 30 15.39 0.07

848 1140 49050 70 43.03 0.06

1478 4370 224240 130 51.31 0.03

2283 8240 808630 200 98.13 0.02

3263 13840 2473990 300 178.76 0.02
Exponent 1.45 3.13 1.14

zero and nine). Introducing multiple arguments slows down the annotated-selector version
somewhat, although it is still asymptotically better than MrSpidey. Multiple arguments also
yield a slowdown for the CA-SBA, although it is less than for the annotated-selector version.
These results demonstrate that for some programs, at least, our annotated-selector algorithm
can have a better performance than MrSpidey. This in turn shows that the constraint solver
used by the annotated-selector prototype compares reasonably well with the one used by
MrSpidey.6

While the procedure chain tests indicate that the annotated-selector implementation can
be competitive with MrSpidey for some programs, another set of stress tests demonstrates
its weaknesses. Consider the results in Table 2. The stress test programs have the form:

(define f
(case-lambda

[(a) a]
[(a b) a]
[(a b c) a]
[(a b c d) a]
[(a b c d e) a]))

((f (f (f (f (f f))))) f f f f f)
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Figure 9. Analysis times, plotted log-log.

We varied the number of clauses forf and the number of applications. In these test programs,
the number of clauses is relatively large, and the results of the clause bodies travel a relatively
long way. Clearly, the annotated-selector implementation performs much worse than the
other two on these tests. We can estimate the exponent for the asymptotic complexity of
the implementations on this class of programs by taking the logarithms of the times and the
number of nodes. In Table 2, the last line gives the apparent polynomial exponent for the
asymptotic complexity, considering the two largest tests. We calculate the exponent with

(log t2 − log t1)/(log n2 − log n1)

where t1, t2 are the times and n1, n2 are the number of nodes. For this class of programs, the
CA-SBA implementation takes just over linear time, while the annotated-selector version
takes just over cubic time. The asymptotic complexity of MrSpidey falls in between. Another
way to view these relative complexities is given in Figure 9, which shows a log-log graph
of the running times for each implementation against the number of nodes.

What extra work is the annotated-selector algorithm doing that raises its complexity?
There are two sources of redundant computation in this framework. First, when a procedure
flows to a call site, not only is its label propagated, but also its associated selectors. In
Flanagan’s original framework, that additional propagation was a constant overhead, be-
cause the number of selectors was fixed. With the multiplication of selectors, the selector
propagation overhead multiplies as well. Second, in order to establish data paths from actual
arguments to formal parameters and from procedure clause bodies to applications, we need
to search for matching selector pairs. For each candidate selector in that search, we compute
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whether the satisfaction relation holds. This search is redundant because the data paths can
be directly determined from the syntax of procedures.

Note that the examples presented in this section as well as in Section 1 are very sim-
ple. As such they are not meant to simulate real programs but merely to illustrate the
strengths and weaknesses of the different analyses when handling case-lambda. As a
reference point day to day experience with MrSpidey shows that it can handle real pro-
grams of up to a few thousand lines of code in a reasonable amount of time. Given the
good running times exhibited by the CA-SBA, we expect it to be able to handle programs
large enough that precisely analyzing the biggest files in DrScheme’s code base should be
possible.

Note also that given the simplicity of our test programs above, a straightforward syntac-
tic analysis would be enough to determine for each application which function and which
clause in that function would be applied at runtime. In general one could run such a linear-
time syntactic analysis first to handle the simpler cases, then run any of the three analyses
tested above to take care of the remaining more complicated cases where the origin of
the applied function is not as immediately obvious. The overall analysis time would most
likely decrease, with the annotated-selector analysis probably benefiting the most from
the reduction in the number of applications to analyze, since it is the analysis with the
worst running time among the three. It is unlikely that this would be sufficient to make the
annotated-selector analysis be able to compete with the CA-SBA analysis though, espe-
cially since the CA-SBA analysis would also benefit to a certain extent from the presence
of the syntactic analysis. We also believe that in practice such a syntactic analysis would
be of limited use: in DrScheme for example the main use of case-lambda is to imple-
ment class methods that require some form of dynamic dispatch based on the number of
arguments they receive. Instantiation of these classes and invocations of these methods are
usually so removed from each other and from their definitions that a syntactic analyzer like
DrScheme’s Syntax Checker cannot usually connect thecase-lambda definitions to their
uses.

9. Related and future work

We began with Flanagan’s theoretical foundations and implementation work for MrSpidey
[10, 11]. Flanagan’s framework is directly derived from the one by Heintze [13, 14].
There are numerous other papers on set-based analysis. In particular Palsberg [19], Shiv-
ers [22], and Sestoft [21] have all used set-based flow analyses to statically compute
properties of untyped higher-order functional languages. See Aiken’s introduction to set-
based analysis [1] for an overview of the field and for additional pointers to the literature.
Cousot and Cousot [4] also describe a general framework in which these analyses can be
modeled.

The lambda* construct, essentially the same as case-lambda, was described by
Dybvig and Hieb [6].

Heintze and McAllester describe a quadratic-time algorithm for analyzing ML programs
with bounds on the size of types for subexpressions [15]. Their system LC uses dom and
ran constructs that are syntactically similar to Flanagan’s dom and rng selectors, but the
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two analyses are otherwise quite different. The dom and ran constructs may be applied to
expressions that themselves contain dom and ran, while dom and rng may be applied only
to set variables. More significantly, the LC system does not include transitive rules, which
allows their system to escape the cubic-time bottleneck while still computing precise results,
provided the program has bounded types. The LC algorithm can also be adapted to run in
linear time if only partial results are necessary. Unlike our analyses, the LC system is not
concerned with procedures of multiple arguments, because it assumes that all procedures
are curried. While our CA-SBA may require cubic time, there are no type restrictions on
programs to achieve that result.

To our knowledge, there has been no previous attempt to describe a set-based analysis for
case-lambda, nor for Lisp or Scheme’s rest arguments. Dzeng and Haynes [7] describe a
type reconstruction mechanism for an ML-like language with variable-arity procedures. The
type reconstruction for these procedures is based on the use of infinitary tuples. Those tuples,
in turn, could be implemented in ML using an enhanced tuple and tuple matching syntax.
The worst case complexity would then be the usual exponential one for type inference in
ML.

Aiken et al. [2] describe a type inference system in which conditional types handle prop-
agation through multi-way pattern-based case expressions. For a given case expression
the system checks every clause to see if the type of its pattern can match the type of the
tested expression. The result types of all the clauses with a matching pattern are then unioned
to become the type of the whole case expression. Since each clause pattern in a case
expression is tested in isolation of the other clauses, the system cannot determine precisely
which clause might be selected at runtime. Hence the need for a union. This is probably not
too much of a problem in practice since each case expression is restricted to have only
pairwise disjoint patterns (unlike our case-lambda construct which can have clauses
with overlapping numbers of arguments).

The closure analysis style SBA described here only handles case-lambda’s whose
program text is known. The analysis needs to be extended to handle primitives for which
the code is unknown. We have therefore begun work on extending the analysis to handle
primitives described only by types. These types are used to generate sets of constraints that
simulate the behavior of the corresponding primitive when that primitive appears in the
analyzed program. This approach works well for most primitives in R5RS Scheme [17],
with a few exceptions. For example the map primitive requires that it be given exactly
as many lists as the mapped function takes arguments. Expressing this dependency would
require a dependent type, which is beyond what our type language can currently express.
The map primitive is therefore conservatively approximated by handling only arguments
up to a fixed number and flagging a possible error beyond that limit. Similarly, detecting
arity errors when using the apply primitive requires knowing the length of the list given as
apply’s last argument. When statically determining that length is not possible the analysis
will conservatively flag a possible arity error. This is similar to what MrSpidey does for
such primitives, and the same technique could be used as well for the annotated selector
analysis.

We are also currently working on extending this kind of type specification technique to
handle flows between modules, using the type specifications to simulate imported proce-
dures. This approach would yield a true separate analysis.
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10. Conclusions

We have shown that Flanagan’s selector-based framework for SBA can be extended to
handle case-lambda as well as rest parameters. Unfortunately, the propagation phase
of the analysis becomes too expensive. Managing the annotations makes it difficult to
implement, as well. An extension of an ordinary closure analysis style SBA gives similar
results with better running times and is straightforward to implement.

For these reasons, we have decided to abandon the use of the existing MrSpidey frame-
work. We have begun work on a new static debugger based on the closure analysis frame-
work. The new debugger promises to be significantly faster as well as more precise than
MrSpidey.
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Notes

1. Dybvig and Hieb described a notion of “rest variable”, which is not quite like a Common Lisp or Scheme
rest parameter since these rest variables cannot be directly referenced like other parameters, save for special
positions in applications.

2. A lambda expression is treated as a case-lambda expression with a single clause.
3. A constructor like car is covariant because, as the set represented by α grows, so does the set represented by

car(α). Conversely, dom is contravariant because dom(α) decreases as α increases, corresponding to the fact
that, as the number of possible functions represented by α increases, fewer values can be accepted by all of
these functions.

4. The reason for creating a new set variable α instead of just returning the variable β corresponding to the binder
is to be able to distinguish the binder from all its references and references from each other. This in turns
allows MrSpidey to properly draw arrows showing the flow of values between binders and references. It is not
necessary for the analysis proper.

5. This allows for the comparison of running times, since MzScheme is also the evaluator that underlies DrScheme,
but not for the easy comparison of memory usage, since the memory used by MrSpidey is not easily separable
from the memory used by DrScheme itself.

6. MrSpidey actually performs better than the annotated selector prototype for the smaller programs in Table 1.
This is probably because the annotated selector prototype uses a more complex but asymptotically more efficient
constraint solver than MrSpidey. As a result MrSpidey behaves better for small programs, but cannot compete
with the near-linear running time of the annotated selector prototype for bigger ones.
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