
Bisimulations for Untyped Imperative Objects

Vasileios Koutavas and Mitchell Wand

Northeastern University
vkoutav@ccs.neu.edu wand@ccs.neu.edu

Abstract. We present a sound and complete method for reasoning
about contextual equivalence in the untyped, imperative object calcu-
lus of Abadi and Cardelli [1]. Our method is based on bisimulations,
following the work of Sumii and Pierce [25, 26] and our own [14]. Using
our method we were able to prove equivalence in more complex examples
than the ones of Gordon, Hankin and Lassen [7] and Gordon and Rees
[8]. We can also write bisimulations in closed form in cases where similar
bisimulation methods [26] require an inductive specification. To derive
our bisimulations we follow the same technique as we did in [14], thus
indicating the extensibility of this method.

1 Introduction

Contextual equivalence, attributed to Morris in 1968 [19], is the standard relation
used to prove that two terms are operationally identical. Terms a and a′ are
contextually equivalent if and only if for any program context C, C[a] and C[a′]
co-terminate. CIU theorems [16] try to ease the quantification over all contexts
by examining only a subset of them (usually the reduction contexts).

In the presence of a store, though, an inductive proof of equivalence must rea-
son not only about the possible contexts under empty, or even equal stores, but
also under related stores. This is something that neither the standard definition
of contextual equivalence, nor CIU theorems take into account. Thus using them
to prove the equivalence of expressions that manipulate the store in a sufficiently
different way can become cumbersome.

Denotational approaches addressed this problem by translating terms to more
structured mathematical models (e.g. [18]). If two terms have the same denota-
tions in some model then they are equivalent. Unfortunately even some evident
equivalences do not hold in naive models [17], and finding fully-abstract mod-
els, in which all contextual equivalences hold, is generally difficult. For example
consider the two different implementations of a cell class shown in Figure 1.
The first is the usual implementation; the second stores the object in two fields
and its get method returns one of them, depending on the value of a counter.
These two programs have different denotations in most models, and thus can’t
be proven equivalent by a straightforward denotational method.

A more appropriate method to deal with such equivalences is by using bisim-
ulations. Bisimulations were introduced in process calculi by Hennessy and Mil-
ner [9, 10], and adapted later to sequential calculi by Abramsky [2]. They are
relations between entire program configurations, and thus the main difficulty of

class Cell {

private Object y;

Cell (Object x)

{y = x;}

public void set (Object z)

{y = z;}

public int get ()

{return y;}

}

class Cell {

private Object y1, y2;

private int p;

Cell (Object x)

{p = 0; y1 = x; y2 = x;}

public void set (Object z)

{p = p+1; y1 = z; y2 = z;}

public int get ()

{if ((p % 2) == 0) then return y1;

else return y2;}

}

Fig. 1. Cell Example

using them as equivalence relations is to apply them to terms and show that they
are a congruence. Moreover bisimulations are often hard to write down explicitly
because they are usually infinite sets with little structure.

Sumii and Pierce in [25, 26] greatly simplified the use of bisimulations in se-
quential calculi. Their main innovation was to group the related pairs of config-
urations according to their conditions of knowledge (e.g. the type environment).
In this way they gave more structure to their bisimulations, thus making their
concrete definition easier. Similar ideas have also been used in process calculi
(eg. [5]).

In [14] we improved their method and provided a proof technique for equiv-
alence in an imperative, untyped λ-calculus. Our improvements aimed mainly
to reduce the size of bisimulations, and make possible a constructive proof even
in the presence of higher-order procedures and a general store, where previous
methods had shown limitations [3, 20, 26]. We achieved this by applying “up-to”
techniques usually used in process calculi [22, 21, 23], and by analyzing a direct
proof of equivalence to unveil weaker conditions for our bisimulations.

In this paper we follow the same methodology to create a bisimulation proof
technique for the imperative, untyped object calculus of Abadi and Cardelli [1].
In contrast to [14], the values of this calculus do not have significant structure,
and thus an “up-to context” technique is not useful here. Instead we use an
“up-to store” technique to deal with the complex structure of the store. Using
our framework we are able to construct bisimulations to prove known examples
[7, 8], as well as more complex ones, which are hard to prove using the method
in [7].

The rest of the paper is structured as follows: In Section 2 we review the
untyped, imperative object calculus impς. In Section 3 we define a notion of
contextual equivalence for values, and we connect it with the standard notion of
contextual equivalence. In Section 4 we attempt a proof of a set being included
in contextual equivalence, from which we derive the necessary conditions for the
elements of that set. In Section 5 we gather these conditions into a definition for
a bisimulation which we simplify in Section 6 by introducing an “up-to store”

Expressions: a, b ::= x variables

| [l = ς(x)b] Objects
| a.l Method Invocation
| a.l⇐ ς(x)b Method update
| clone(a) Cloning
| let x=a in b Let

Locations: ι

Values: v, u ::= [l = ι]

Environments: ρ ::= (x 7→v)

Stores: σ ::= (ι7→〈ς(x)b, ρ〉)

Fig. 2. The impς Language

closure on sets. In Section 7 we use bisimulations to prove the equivalence of
some examples. Sections 8 and 9 summarize the related work and conclusions.

2 The language impς

We develop our theory based on impς [1], an untyped, imperative object calculus.
The syntactic domains and the big-step environment semantics of the language
are shown in Fig. 2 and 3, respectively.

As in [14] we use an overbar notation to denote a syntactic sequence:

s = s1, . . . , sn

where s is a syntax fragment and si is the same fragment with i-subscripts

on all meta-identifiers it contains. Thus we write [l = ς(x)b], instead of [l1 =

ς(x1)b1, . . . , ln = ς(xn)bn], and (v, v′) ∈ R instead of (v1, v
′

1), . . . , (vn, v′n) ∈ R.
The size of the sequence in the overbar notation is arbitrary, or implicitly defined
by the context.

In impς, objects are defined by the syntactic construct [l = ς(x)b], where li
and bi are the label and the body of the i-th method, respectively. The variable
xi is bound to the entire object when bi is evaluated. During the evaluation
bindings are kept in environments (called “stacks” in [1]).

Values in impς are objects that map method names to locations in the store;

they are denoted by [l = ι]. Locations range over an infinite, countable set. The
store maps locations to method closures, which consist of a method and the
appropriate environment, e.g. 〈ς(xi)bi, ρi〉.

We use the operational semantics of impς given in [1], with the addition of
an extra condition in the Env x rule which guarantees that there are no dan-
gling pointers in an environment. Furthermore, there is an implicit α-conversion
in the Red Select and Red Let rule, so that the identifiers added to the
environments are unique.

σ ⊢wf ⋄

∅ ⊢wf ⋄
Store ∅

σ; ρ ⊢wf ⋄ ι 6∈ Dom(σ) FV (b) ⊆ Dom(ρ) ∪ {x}

(σ, ι7→〈ς(x)b, ρ〉) ⊢wf ⋄
Store ι

σ; ρ⊢wf ⋄

σ ⊢wf ⋄

σ; ∅ ⊢wf ⋄
Env ∅

σ; ρ ⊢wf ⋄ x 6∈ Dom(ρ) {ι} ⊆ Dom(σ)

σ; (ρ, x 7→[l = ι])⊢wf ⋄
Env x

σ; ρ⊢ a⇓v; σ′

σ; (ρ′

, x 7→v, ρ
′′) ⊢wf ⋄

σ; (ρ′

, x 7→v, ρ
′′) ⊢ x⇓v; σ

Red x

σ; ρ ⊢wf ⋄ {ι} ∩Dom(σ) = ∅

σ; ρ ⊢ [l = ς(x)b]⇓ [l = ι]; (σ, ι7→〈ς(x)b, ρ〉)
Red Object

σ; ρ ⊢ a⇓ [l = ι]; σ
′

lj ∈ {l} σ
′(ιj) = 〈ς(xj)bj , ρ

′〉

xj 6∈ Dom(ρ′) σ
′; (ρ′

, xj 7→[l = ι]) ⊢ bj ⇓v; σ
′′

σ; ρ⊢ a.lj ⇓v; σ
′′

Red Select

σ; ρ⊢ a⇓ [l = ι]; σ
′

lj ∈ {l}

σ; ρ⊢ a.lj ⇐ ς(x)b⇓ [l = ι]; (σ′

.ιj←〈ς(x)b, ρ〉)
Red Update

σ; ρ⊢ a⇓ [l = ι]; σ
′ {ι′} 6∈ Dom(σ′)

σ; ρ⊢ clone(a)⇓ [l = ι′]; (σ′

, ι′ 7→σ′(ι))
Red Clone

σ; ρ⊢ a⇓v
′; σ

′

x 6∈ Dom(ρ) σ
′; (ρ, x 7→v

′)⊢ b⇓v
′′; σ

′′

σ; ρ⊢ let x=a in b⇓v
′′; σ

′′
Red Let

Fig. 3. Operational Semantics

Judgments of the form σ; ρ⊢ a⇓v; σ1 represent a big-step evaluation, where
expression a, under store σ and environment ρ, evaluates to value v and a new
store σ1. We also use the form σ; ρ⊢ a⇓<k v; σ1 to denote that the evaluation
tree has height less than k.

Store and environment extensions are written as (σ, ι7→〈ς(x)b, ρ〉) and

(ρ, x7→ι), respectively. Store update is written as (σ.ι←〈ς(x)b, ρ〉); the contents

of the location ι of store σ is given by σ(ι). The domain of a store or environ-
ment is given by Dom(σ) or Dom(ρ), and the locations of a value v are given
by Locs(v).

Judgments of the form σ ⊢wf ⋄ define the well-formed stores, while judgments
σ; ρ⊢wf ⋄ define the well-formed environments under some store. We also call the
form σ; ρ⊢ a a configuration, and define the notion of a well-formed configuration
as follows:

Definition 1. We say that σ; ρ⊢ a is a well-formed configuration, and we write
σ; ρ⊢wf a, iff:

σ; ρ⊢wf ⋄ ∧ FV (a) ⊆ Dom(ρ)

Lemma 1. If σ; ρ⊢wf a and σ; ρ⊢ a⇓v; σ1, then for any environment ρ1, and
identifier x 6∈ Dom(ρ1), such that σ1; ρ1 ⊢wf ⋄, we have σ1; (ρ1, x7→v)⊢wf ⋄.

Proof. By straightforward induction on the height of σ; ρ⊢ a⇓v; σ1.

3 Contextual Equivalence

The first relation we define is the standard contextual equivalence for this cal-
culus.

Definition 2 (Standard Contextual Equivalence (≡std)). (a, a′) ∈ ≡std if
and only if for all contexts C such that ∅; ∅ ⊢wf C[a] and ∅; ∅ ⊢wf C[a′], we have:

∅; ∅ ⊢C[a]⇓ ⇐⇒ ∅; ∅ ⊢C[a′]⇓

Proving equivalence of two expressions using this definition is hard because
carrying out the proof will require us to reason about equivalent expressions
not just under empty or even equal stores and environments, but also under
equivalent stores and environments.

To address this complication we first define a different notion of contextual
equivalence (≡) as a set of bisimulation states. A bisimulation state consists of
a pair of stores, and a set of pairs of values that are to be considered equivalent
in these states. Then we extend this equivalence to any expression and we show
that it coincides with standard contextual equivalence.

We reach this new definition of contextual equivalence by building on the
following two definitions of simpler relations.

Definition 3 (Value Relation). A value relation R is a set of pairs of values.

Value relations hold the related values, and implicitly the related store loca-
tions, in some state of the equivalence. These objects and locations are also the
only ones that a context can access.

Definition 4 (Environment Relation (Rǫ)). If R is a value relation, then
Rǫ is a relation on environments, defined by:

Rǫ = {(ρ, ρ′) |Dom(ρ) = Dom(ρ′) & ∀x ∈ Dom(ρ) . (ρ(x), ρ′(x)) ∈ R}

Since environments related by Rǫ contain objects from R, the locations in the
environments are in the domain of the stores of a state iff R contains locations
only in the domain of these stores. Therefore we define the notion of well-formed
bisimulation states:

Definition 5 (Well-Formed State). We call a state (σ, σ′, R) well-formed,
and we write σ, σ′ ⊢wf R, iff the following holds:

∀(v, v′) ∈ R . (Locs(v) ⊆ Dom(σ)) ∧ (σ ⊢wf ⋄)
∧ (Locs(v′) ⊆ Dom(σ′)) ∧ (σ′ ⊢wf ⋄)

We now give the definition of contextual equivalence:

Definition 6 (Contextual Equivalence (≡)). Contextual equivalence is the
set of all states (σ, σ′, R) such that σ, σ′ are stores and R is a value relation,
and:

1. σ, σ′ ⊢wf R,
2. if (ρ, ρ′) ∈ Rǫ, and a is any expression such that FV (a) ⊆ Dom(ρ) then:

σ; ρ⊢ a⇓ iff σ′; ρ′ ⊢ a⇓

To extend ≡ to any pair of expressions, we create a one-method object for
each expression, such that the expression is the body of the method, and we
relate these objects in an appropriate state of ≡.

Definition 7 (Extension of (≡) to any expression). Two expressions a, a′

are related by ≡, and we write a≡a′, iff:

∀σ, ρ. ∃l, ι : if σ1 = (σ, ι7→〈ς()a, ρ〉)
∧ σ′

1 = (σ, ι7→〈ς()a′, ρ〉)
then σ1, σ

′

1 ⊢wf Id(σ)
∧ (σ1, σ

′

1, Id(σ)) ∈ ≡

where:
Id(σ) = {([l = ι], [l = ι]) | ι ∈ Dom(σ)}

The extended ≡ coincides with ≡std:

Theorem 1. a≡a′ if and only if a≡std a′.

4 Deriving Obligations for an Equivalence Proof

As in [14] we attempt to prove that a set of triples (σ, σ′, R), namely X , is
included in ≡. In this proof we encounter sub-cases where X must satisfy specific
conditions in order for the proof to go through. These conditions will become
the necessary conditions of our bisimulations in the next section.

For X to be included in ≡, one must prove that for all (σ, σ′, R) ∈ X :

1. σ, σ′ ⊢wf R,

2. if (ρ, ρ′) ∈ Rǫ and a is an expression such that FV (a) ⊆ Dom(ρ) then:

σ; ρ⊢ a⇓ iff σ′; ρ′ ⊢ a⇓

The proof of the first condition is straightforward. It suffices to inspect that
the environments of all stored methods and the values in R refer to locations in
the domains of σ and σ′. This condition will become the first condition of our
bisimulations.

Proving the second part requires an induction on the height of the derivations
of σ; ρ⊢ a⇓ in the forward direction, and σ′; ρ′ ⊢ a⇓ in the reverse direction. We
show only the forward direction; the other is symmetric.

To carry out the induction we strengthen the induction hypothesis by relating
the final configurations under some state of X .

IH (k) = ∀σ, σ′, R, ρ, ρ′, a, v, σ1 .
((σ, σ′, R) ∈ X) ∧ ((ρ, ρ′) ∈ Rǫ) ∧ (FV (a) ⊆ Dom(ρ))
∧ (σ; ρ⊢ a⇓<k v; σ1)
=⇒ ∃v′, σ′

1, Q : (σ′; ρ′ ⊢ a⇓v′; σ′

1)
∧ ((v, v′) ∈ Q) ∧ (Q ⊇ R)
∧ ((σ1, σ

′

1, Q) ∈ X)

(1)

Using (1) as the induction hypothesis we proceed by induction on k, con-
sidering the cases of a. Most of the cases follow immediately by the induction
hypothesis; the rest will become the proof obligations for X , and furthermore
the conditions in the definition of bisimulations.

To demonstrate this we consider the case of method invocation (a = a1.l).
We assume (1) for k and we prove it for k + 1.

Let (σ, σ′, R) ∈ X , (ρ, ρ′) ∈ Rǫ, FV (a) = FV (a1) ⊆ Dom(ρ), and
σ; ρ⊢ a1.lj ⇓<k+1 v; σ2. We have to show that:

∃v′, σ′

1, Q : (σ′; ρ′ ⊢ a1.l⇓v′; σ′

1)
∧ ((v, v′) ∈ Q) ∧ (Q ⊇ R)
∧ ((σ1, σ

′

1, Q) ∈ X)

The Red Select evaluation rule for the left-hand side gives:

σ; ρ⊢ a1⇓
<k [l = ι]; σ1 lj ∈ {l}

σ1(ιj) = 〈ς(x)bj , ρ1〉 x 6∈ Dom(ρ1) σ1; (ρ1, x7→[l = ι])⊢ bj ⇓
<k v; σ2

σ; ρ⊢ a1.lj ⇓
<k+1 v; σ2

To show that σ′; ρ′ ⊢ a1.l⇓v′; σ′

1 we must establish the premises of Red Select

for the right-hand side as well.

By the induction hypothesis at a1 we get that there exist σ′

1, l′, ι′, Q, such
that:

σ′; ρ′ ⊢ a1⇓ [l′ = ι′]; σ′

1, Q ⊇ R, ([l = ι], [l′ = ι′]) ∈ Q, (σ1, σ
′

1, Q) ∈ X (2)

We also need to show that {l′} ⊆ {l}. This does not follow from the induction
hypothesis and therefore we formulate it as a condition on X :

If (σ, σ′, R) ∈ X and ([l = ι], [l′ = ι′]) ∈ R, then {l} ⊆ {l′}.

By Lemma 1 and the first formula of (2) we get that σ′

1; (x7→[l′ = ι′])⊢wf ⋄,
and therefore there exist b′j , ρ′j , such that σ′

1(ι
′

j) = 〈ς(x)b′j , ρ
′

j〉.
Finally, to show that the right-hand side terminates and prove the inductive

step, we require the following condition to hold for X :

If (σ, σ′, R) ∈ X and ([l = ι], [l = ι′]) ∈ R, then for all lj ∈ {l}, with
σ(ιj) = 〈ς(x)b, ρ〉 and σ′(ι′j) = 〈ς(x′)b′, ρ′〉, the following must be true:

a) x 6∈ ρ, and x′ 6∈ ρ′.
b) If IH (k) holds, then:

σ; (ρ, x7→[l = ι])⊢ b⇓<k v; σ1

=⇒∃v′, σ′

1, Q : (σ′; (ρ′, x′ 7→[l = ι′])⊢ b′⇓v′; σ′

1)
∧ ((v, v′) ∈ Q) ∧ (Q ⊇ R)
∧ ((σ1, σ

′

1, Q) ∈ X)

With a similar treatment for the rest of the cases we discover all the proof
obligations of X , which we will formulate as the conditions of bisimulations in
the following section.

5 Small Bisimulations

We first define some new notation to make the transfer of the induction hypoth-
esis from the direct proof into the definition of bisimulations easier.

Definition 8 (k-approximation). We write (σ, σ′, R)⊢X a|ρ ⊑k a′|ρ′ to mean:

∀v, σ1 . σ; ρ⊢ a⇓<k v; σ1

=⇒∃v′, σ′

1, Q : σ′; ρ′ ⊢ a′⇓v′; σ′

1

∧ ((v, v′) ∈ Q) ∧ (Q ⊇ R)
∧ ((σ1, σ

′

1, Q) ∈ X)

Similarly, in the other direction, we write (σ, σ′, R)⊢X a|ρ ⊒k a′|ρ′ to mean:

∀v′, σ′

1 . σ′; ρ′ ⊢ a′⇓<k v′; σ′

1

=⇒∃v, σ1, Q : σ; ρ⊢ a⇓v; σ1

∧ ((v, v′) ∈ Q) ∧ (Q ⊇ R)
∧ ((σ1, σ

′

1, Q) ∈ X)

Note that the two directions are not converse, since they both contain (σ1, σ
′

1,
Q) ∈ X and (v, v′) ∈ Q. Similarly we give two versions of the full induction
hypothesis, one for each direction:

Definition 9 (Induction Hypotheses).

IHL
X

(k)
△

= ∀(σ, σ′, R) ∈ X .
∀(ρ, ρ′) ∈ Rǫ .
∀a :FV (a) ⊆ Dom(ρ) .
(σ, σ′, R)⊢X a|ρ ⊑k a|ρ′

IHR
X

(k)
△

= ∀(σ, σ′, R) ∈ X .
∀(ρ, ρ′) ∈ Rǫ .
∀a :FV (a) ⊆ Dom(ρ) .
(σ, σ′, R)⊢X a|ρ ⊒k a|ρ′

The induction hypotheses involve the k-approximation of the same terms a
under related stores and environments. The definition of bisimulations follows:

Definition 10 (Bisimulation). A set X of states (σ, σ′, R) is called a bisimu-
lation if and only if, for any (σ, σ′, R) ∈ X , the following conditions are satisfied:

1. σ, σ′ ⊢wf R

2. For all ι 6∈ Dom(σ), ι′ 6∈ Dom(σ′), labels l, (ρ, ρ′) ∈ Rǫ, x 6∈ Dom(ρ), and
expressions b such that FV (b) ⊆ ρ ∪ {x} there exists Q ⊇ R with

([l = ι], [l = ι′]) ∈ Q and ((σ, ι7→〈ς(x)b, ρ〉), (σ′, ι′ 7→〈ς(x)b, ρ′〉), Q) ∈ X

3. If ([l = ι], [l′ = ι′]) ∈ R, then {l} = {l′}.

4. If ([l = ι], [l = ι′]) ∈ R, then, for all lj ∈ {l}, (ρ, ρ′) ∈ Rǫ, x 6∈ Dom(ρ), and
expressions b such that FV (b) ⊆ Dom(ρ) ∪ {x}, there exists Q ⊇ R, with

((σ.ιj←〈ς(x)b, ρ〉), (σ′.ι′j←〈ς(x)b, ρ′〉), Q) ∈ X

5. If ([l = ι], [l = ι′]) ∈ R, then, for all ι1 6∈ Dom(σ), ι′1 6∈ Dom(σ′), there
exists Q ⊇ R with

([l = ι1], [l = ι′1]) ∈ Q and ((σ, ι1 7→σ(ι)), (σ′, ι′1 7→σ′(ι′)), Q) ∈ X

6. If ([l = ι], [l = ι′]) ∈ R, then, for any lj ∈ {l} with σ(ιj) = 〈ς(x)b, ρ〉 and

σ′(ι′j) = 〈ς(x)b′, ρ′〉, let ρ1 = (ρ, x7→[l = ι]) and ρ′1 = (ρ′, x7→[l = ι′]), we
have:

IHL
X

(k) =⇒ (σ, σ′, R)⊢X b|ρ1
⊑k b′|ρ′

1

IHR
X

(k) =⇒ (σ, σ′, R)⊢X b|ρ1
⊒k b′|ρ′

1

The first condition of the definition allows only well-formed states in the
bisimulations. The second condition addresses the proof obligation for the case
of evaluating an object. Conditions 3 and 6 are the proof obligations for the case
of method invocation, as explained in Section 4. Conditions 4 and 5 address the
proof obligations for the cases of method update and cloning, respectively. The
case of let follows immediately from the induction hypothesis and generates no
condition for the bisimulations.

Next we show that our method is sound and complete, and that a maximal
bisimulation exists.

Theorem 2 (Completeness). Contextual equivalence is a bisimulation.

(σ, σ
′

, R) ⊑ (σ, σ
′

, R)

(σ, σ
′

, R) ⊑ (σ1, σ
′

1, R1) ιe, ι′e fresh (ρ, ρ
′) ∈ R

ǫ

(σ, σ
′

, R) ⊑ ((σ1, ιe 7→〈ς(x)b, ρ〉), (σ′

1, ι
′

e 7→〈ς(x)b, ρ′〉), R1 ∪ {([l = ιe], [l = ι′e])})

(σ, σ
′

, R) ⊑ (σ1, σ
′

1, R1)

([l = ι], [l = ι′]) ∈ R1 (ρ, ρ
′) ∈ R

ǫ
ιu ∈ {ι} ι

′

u ∈ {ι′}

(σ, σ
′

, R) ⊑ ((σ1.ιu←〈ς(x)b, ρ〉), (σ′

1.ι
′

u←〈ς(x)b, ρ′〉), R1)

Fig. 4. Up-to Store Extension of States

Theorem 3 (Soundness). Any bisimulation X is included in Contextual
Equivalence.

Proof. This proof recapitulates the derivation of Section 4.

Theorem 4 (Bisimilarity). A maximal bisimulation, called Bisimilarity (∼),
exists and coincides with Contextual Equivalence.

Proof. By the definition of (≡) and Theorems 2 and 3, we get that (≡) is it-
self the largest sound bisimulation. Thus bisimilarity coincides with contextual
equivalence.

6 Up-to Store Closure

Conditions 2 and 4 of Definition 10 close bisimulations under any possible exten-
sions of the store with new object methods and any possible update of existing
methods. Writing down sets to satisfy these conditions can become cumbersome.

To eliminate the need of satisfying these conditions when one writes a bisim-
ulation in closed form, we introduce an up-to store closure operator on sets.
Then we give a new set of necessary conditions on the (smaller) sets, such that
their up-to store closure is a bisimulation.

Definition 11 (Up-to Store Extension of States). The state (σ1, σ
′

1, R1) is
an up to store extension of state (σ0, σ

′

0, R0), written (σ0, σ
′

0, R0) ⊑ (σ1, σ
′

1, R1),
iff it satisfies the rules of Figure 4.

The second rule of Figure 4 states that extending a bisimulation state with
arbitrary new pairs of related objects, and also extending the stores accordingly
to keep their methods, is a valid up-to store extension. The third rule states that
updating some known locations with related methods is also a valid up-to store
extension.

We now give the definition of an up-to store closure operator on sets, and the
necessary conditions for a set X such that its up-to store closure is a bisimulation:

Definition 12 (Up-to Store Closure of Sets).

X ∗ = {(σ, σ′, R)
∣

∣ ∃(σ0, σ
′

0, R0) ∈ X : (σ0, σ
′

0, R0) ⊑ (σ, σ′, R)}

Theorem 5. X ∗ is a bisimulation if for all (σ, σ′, R) ∈ X , we have:

1. σ, σ′ ⊢wf R

2. If ([l = ι], [l′ = ι′]) ∈ R, then {l} = {l′}.

3. If ([l = ι], [l = ι′]) ∈ R, then, for all ι1 6∈ Dom(σ), ι′1 6∈ Dom(σ′), there
exists Q ⊇ R with

([l = ι1], [l = ι′1]) ∈ Q and ((σ, ι1 7→σ(ι)), (σ′, ι′1 7→σ′(ι′)), Q) ∈ X ∗

4. If ([l = ι], [l = ι′]) ∈ R, then, for any lj ∈ {l} with σ(ιj) = 〈ς(x)b, ρ〉 and
σ′(ι′j) = 〈ς(x′)b′, ρ′〉, and for all (σ1, σ

′

1, R1) with (σ, σ′, R) ⊑ (σ1, σ
′

1, R1),

let ρ1 = (ρ, x7→[l = ι]) and ρ′1 = (ρ′, x7→[l = ι′]), we have:

IHL
X ∗(k) =⇒ (σ1, σ

′

1, R1)⊢X ∗ b|ρ1
⊑k b′|ρ′

1

IHR
X ∗(k) =⇒ (σ1, σ

′

1, R1)⊢X ∗ b|ρ1
⊒k b′|ρ′

1

Proof. Straightforward by inspecting that X ∗ satisfies the conditions of Defini-
tion 10.

7 Example

Using our bisimulations and Theorem 5 we were able to prove the equivalences
in [7] and the untyped, imperative equivalent of the example in [8]. Due to space
limitations, we omit these examples here. Instead we prove equivalence in a more
interesting example that demonstrates the ability of our method to deal with
hidden imperative fields, different store manipulation, and higher-order methods.

Consider the two classes shown in Figure 1. Objects of these classes are
indistinguishable in any context (in the absence of reflection). To prove this we
encode the objects in impς. We simplify the encoding by extending impς in the
usual way with integers, arithmetic operators, and a conditional statement, and
we encode methods containing λ-abstractions as follows:

[· · · , f = ς(s)λy.e, · · ·]
△

= [arg = ς(s)s.arg , · · · , f = ς(s)e[s.arg/y], · · ·]

The context passes an argument to the body of method f by updating the
arg label and then selecting f . Because the arg label may be updated with
an arbitrary method, every argument is potentially arbitrary complicated. The
induction hypothesis in the last condition of Definition 10 and Theorem 5 is
crucial for reasoning about these arguments.

The objects of the Cell classes are encoded as:

M = let o=[y = ς()0]
in [arg = ς(s)s.arg, set = setM , get = getM]

N = let o=[y1 = ς()0, y2 = ς()0, c = ς()0]
in [arg = ς(s)s.arg, set = setN , get = getN]

where:

setM
△

= ς(s)let z=s.arg
in o.y ⇐ ς()z

setN
△

= ς(s)letn = o.c + 1
z = s.arg

in (o.c⇐ ς()n;
o.y1 ⇐ ς()z;
o.y2 ⇐ ς()z)

getM
△

= ς()o.y

getN
△

= ς()letx=even? (o.c)
in ifx then o.y1 else o.y2

By Theorem 1, to prove M≡std N it is sufficient to show that M≡N . Thus we
have to construct a bisimulation that contains ((σ, ι0 7→〈ς()M, ρ〉),
(σ, ι0 7→〈ς()N, ρ〉), R), for all σ, ρ, and for some ι0, l0 and R, such that ([l0 =
ι0], [l0 = ι0]) ∈ R.

To do this we define the parameterized value relation:

Q(ιs, ιg, ιa, ι′s, ι
′
g, ι

′
a, ι0)

= {([arg = ιa, set = ιs, get = ιg], [arg = ι′a, set = ι′s, get = ι′g]),

([l0 = ι0], [l0 = ι0])}

the parameterized stores:

σ(ιs, ιg, ιa, ιy, ρM , ρ1, ι0, ρ0)

= (ι0 7→〈ς()M, ρ0〉, ιa 7→〈ς(s)s. arg, ρM 〉, ιs 7→〈setM , ρM 〉, ιg 7→〈getM , ρM 〉,

ιy 7→〈ς()x, ρ1〉)

σ′(ι′s, ι
′
g, ι

′
a, ιy1

, ιy2
, ιc, ρN , ρ′1, n, ι′0, ρ

′

0)

= (ι0 7→〈ς()N, ρ′0〉, ι
′
a 7→〈ς(s)s. arg, ρN 〉, ι′s 7→〈setN , ρN 〉, ι′g 7→〈getN , ρN 〉,

ιy1
7→〈ς()x, ρ′1〉, ιy2

7→〈ς()x, ρ′1〉, ιc 7→〈ς()n, ρ′1〉)

and the set:

X =
{

(σ, σ′, R) |∃ιs, ιg, ιa, ι′s, ι
′
g, ι

′
a, ιy, ιy1

, ιy2
, ιc, ρM , ρN , ρ1, ρ′1, n, ι0, ι′0, ρ0, ρ′0

: R = Q(ιs, ιg, ιa, ι′s, ι
′
g, ι

′
a, ι0)

∧ σ = σ(ιs, ιg, ιa, ιy , ρM , ρ1, ι0, ρ0)

∧ σ′ = σ′(ι′s, ι
′
g, ι

′
a, ιy1

, ιy2
, ιc, ρN , ρ′1, n, ι′0, ρ

′

0)

∧ ((ρ0, ρ′0) ∈ Rǫ) ∧ ((ρ1, ρ′1) ∈ Rǫ)

∧ ρM = (ρ1, y 7→ιy)

∧ ρN = (ρ′1, y1 7→ιy1
, y2 7→ιy2

, c 7→ιc)
}

We have to show that X satisfies the conditions of Theorem 5, and thus X ∗

is a bisimulation. It is easy to check that conditions 1, 2, and 3 are satisfied. It
remains to prove Condition 4 for (ι0k

, ι′0k
), (ιsk

, ι′sk
), and (ιgk

, ι′gk
), for any k.

We consider (ιsk
, ι′sk

). Let (σ1, σ
′

1, R1) ∈ X ∗, and:

([arg=ιak
, set=ιsk

, get=ιgk
], [arg=ι′ak

, set=ι′sk
, get=ι′gk

]) ∈ R1

By the definition of up-to store extension for states, we observe that some of
the labels of the above objects may have been updated by the context. Thus we
have two cases:

Case 1. The labels ιsk
and ι′sk

have been updated: σ1(ιsk
) = 〈ς(x)b, ρ′〉, σ′

1(ι
′

sk
) =

〈ς(x)b, ρ′〉, (ρ, ρ′) ∈ Rǫ.
We have to show that if ρ1 = (ρ, x7→[arg=ιak

, set=ιsk
, get=ιgk

]) and ρ′1 =
(ρ′, x7→[arg=ι′ak

, set=ι′sk
, get=ι′gk

]), then:

IH L
X ∗(k) =⇒ (σ1, σ

′

1, R1)⊢X ∗ b|ρ1
⊑k b|ρ′

1

IH R
X ∗(k) =⇒ (σ1, σ

′

1, R1)⊢X ∗ b|ρ1
⊒k b|ρ′

1

But these are immediately satisfied by IH L
X ∗(k) and IH R

X ∗(k), since (ρ1, ρ′1) ∈
Rǫ.

Case 2. The labels ιsk
and ι′sk

have not been updated: σ1(ιsk
) = 〈ς()setM , ρMk

〉
σ′

1(ι
′

sk
) = 〈ς()setN , ρNk

〉. We will show only the forward direction:

IH L
X ∗(k) =⇒ (σ1, σ

′

1, R1)⊢X ∗ setM |ρM
k
⊑k setN |ρN

k

Let:
σ1; ρMk

⊢ setM ⇓<k [arg = ιak
, set = ιsk

, get = ιgk
]; σ2

This implies that (σ1; ρMk
⊢ s.arg ⇓<k−1 v; σ3), σ2 = (σ3.ιyk

←〈ς()z, ρ1〉), and

ρ1(z) = v. From IH L
X ∗(k) we get:

∃v′, σ′

3, R3 : σ′

1; ρNk
⊢ s.arg ⇓v′; σ′

3

∧ ((v, v′) ∈ R3) ∧ (R3 ⊇ R1)
∧ ((σ3, σ

′

3, R3) ∈ X ∗)

thus:
σ′

1; ρNk
⊢ setN ⇓ [arg = ι′ak

, set = ι′sk
, get = ι′gk

]; σ′

2

σ′

2 = (σ′

3.ιy1
k
←〈ς()z, ρ′1〉, ιy2

k
←〈ς()z, ρ′1〉, ιck

←〈ς()m, ρ′1〉)

and by the definition of X and X ∗ we get that there exists R2 ⊇ R1 such that
(σ2, σ

′

2, R2) ∈ X ∗.
Similarly we prove Condition 4 for (ιgk

, ι′gk
), and (ι0k

, ι′0k
).

8 Related Work

Gordon, Hankin and Lassen in [7] gave an operational equivalence for the same
calculus that we consider here, and they showed that it coincides with contextual
equivalence. This equivalence is a CIU theorem for this language. Their relation
does not provide a technique to prove difficult equivalences. For example, proving
the Cell example with their CIU theorem would require an induction over all
reduction contexts. Such an induction is not obvious because the stores and the
environments of the two sides may change in a different way in some of the cases.
Such a proof would be at least as difficult as the induction discussed in Section 4.

On the other hand, using our bisimulations we were able to prove equivalence
for all of their examples, as well as more complex ones, by a constructive proof.

Gordon and Rees in [8] proved for one of the stateless, typed, object calculi
of Abadi and Cardelli that bisimilarity coincides with contextual equivalence.
This was the first study of contextual equivalence in an object calculus. Their
method was quite different than ours, being closer to the original operational
bisimulations of Abramsky [2] and Howe’s proof of congruence [11]. Reasoning
about higher-order programs is easier with our method because of the use of the
induction hypotheses in the definition of bisimulation.

A different approach to studying equivalence in object calculi is by translating
them to π-calculus. Kleist and Sangiorgi have done this in [13] for the typed
version of the calculus we study here, and Sangiorgi in [24] for the functional
version of this calculus. Similar work has been done for parallel object oriented
languages (e.g. [12, 15, 27]). This approach is in essence denotational and all of
these translations were not fully abstract, so none of these methods is complete.

9 Conclusions and Future Work

We have presented a method of deriving bisimulations for the untyped, imper-
ative object calculus of Abadi and Cardelli. To our knowledge this is the first
sound and complete method that uses bisimulations to prove equivalence for this
calculus, and successfully handles complex examples.

We hope to use our method to investigate contextual equivalence in more
realistic imperative object languages [4, 6]. We also plan to to investigate better
ways to express stylized bisimulations, like those in the example of Section 7.

References

1. Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, Berlin,
Heidelberg, and New York, 1996.

2. Samson Abramsky. The lazy lambda calculus. In David A. Turner, editor, Research

Topics in Functional Programming, pages 65–116. Addison-Wesley, 1990.
3. Nick Benton and Benjamin Leperchey. Relational reasoning in a nominal semantics

for storage. In Typed Lambda Calculi and Applications, 7th International Confer-

ence, TLCA 2005, Nara, Japan, April 21-23, 2005, Proceedings, volume 3461 of
Lecture Notes in Computer Science, pages 86–101. Springer, 2005.

4. Gavin Bierman, Matthew Parkinson, and Andrew Pitts. MJ: An imperative core
calculus for Java and Java with effects. Technical Report 563, Cambridge Univer-
sity Computer Laboratory, April 2003.

5. Yuxin Deng and Davide Sangiorgi. Towards an algebraic theory of typed mobile
processes. In ICALP, volume 3142 of Lecture Notes in Computer Science, pages
445–456. Springer-Verlag, 2004.

6. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A programmer’s
reduction semantics for classes and mixins. In Formal Syntax and Semantics of

Java, pages 241–269, London, UK, 1999. Springer-Verlag.
7. Andrew D. Gordon, Paul D. Hankin, and Søren B. Lassen. Compilation and equiv-

alence of imperative objects. In Proceedings of the 17th Conference on Foundations

of Software Technology and Theoretical Computer Science, pages 74–87, London,
UK, 1997. Springer-Verlag.

8. Andrew D. Gordon and Gareth D. Rees. Bisimilarity for a first-order calculus of
objects with subtyping. In Proceedings 23rd Annual ACM Symposium on Principles

of Programming Languages, pages 386–395, New York, NY, USA, 1996. ACM Press.
9. Matthew Hennessy and Robin Milner. On observing nondeterminism and concur-

rency. In ICALP, pages 299–309, 1980.
10. Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and

concurrency. Journal of the ACM, 32:137–161, 1985.
11. Douglas J. Howe. Equality in lazy computation systems. In Proc. 4th IEEE

Symposium on Logic in Computer Science, pages 198–203, 1989.
12. Cliff B. Jones. A pi-calculus semantics for an object-based design notation. In Eike

Best, editor, CONCUR, volume 715 of Lecture Notes in Computer Science, pages
158–172. Springer, 1993.

13. Josva Kleist and Davide Sangiorgi. Imperative objects as mobile processes. Sci.

Comput. Program., 44(3):293–342, 2002.
14. Vasileios Koutavas and Mitchell Wand. Smaller bisimulations for reasoning about

higher-order imperative programs. In Proceedings 33rd Annual ACM Symposium

on Principles of Programming Languages, New York, NY, USA, 2006. ACM Press.
15. Xinxin Liu and David Walker. Partial confluence of processes and systems of

objects. Theor. Comput. Sci., 206(1-2):127–162, 1998.
16. Ian A. Mason and Carolyn L. Talcott. Equivalence in functional languages with

effects. Journal of Functional Programming, 1:287–327, 1991.
17. Albert R. Meyer and Kurt Sieber. Towards fully abstract semantics for local

variables: Preliminary report. In Proceedings 15th Annual ACM Symposium on

Principles of Programming Languages, pages 191–203, 1988.
18. Robert Milne and Christopher Strachey. A Theory of Programming Language

Semantics. Chapman and Hall, London, 1976. Also Wiley, New York.
19. James H. Morris, Jr. Lambda Calculus Models of Programming Languages. PhD

thesis, MIT, Cambridge, MA, 1968.
20. Andrew Pitts and Ian Stark. Operational reasoning for functions with local state.

In Andrew Gordon and Andrew Pitts, editors, Higher Order Operational Tech-

niques in Semantics, pages 227–273. Publications of the Newton Institute, Cam-
bridge University Press, 1998.

21. D. Sangiorgi. Locality and non-interleaving semantics in calculi for mobile pro-
cesses. Theoretical Computer Science, 155:39–83, 1996.

22. D. Sangiorgi. On the bisimulation proof method. Mathematical. Structures in

Comp. Sci., 8(5):447–479, 1998.
23. D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In W.R.

Cleveland, editor, Proc. CONCUR ’92, volume 630 of Lecture Notes in Computer

Science, pages 32–46. Springer-Verlag, 1992.
24. Davide Sangiorgi. An interpretation of typed objects into typed π-calculus. Inf.

Comput., 143(1):34–73, 1998.
25. Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic sealing. In Pro-

ceedings 31st Annual ACM Symposium on Principles of Programming Languages,
pages 161–172, New York, NY, USA, 2004. ACM Press.

26. Eijiro Sumii and Benjamin C. Pierce. A bisimulation for type abstraction and
recursion. In Proceedings 32nd Annual ACM Symposium on Principles of Pro-

gramming Languages, pages 63–74, New York, NY, USA, 2005. ACM Press.
27. David Walker. Objects in the π-calculus. Inf. Comput., 116(2):253–271, 1995.

