
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Contextual Equivalence for a Probabilistic Language with
Continuous Random Variables and Recursion

MITCHELL WAND, Northeastern University

RYAN CULPEPPER, Northeastern University

THEOPHILOS GIANNAKOPOULOS, BAE Systems, Burlington MA

ANDREW COBB, Northeastern University

We present a complete reasoning principle for contextual equivalence in an untyped probabilistic language.

The language includes continuous (real-valued) random variables, conditionals, and scoring. It also includes

recursion, since the standard call-by-value fixpoint combinator is expressible.

We demonstrate the usability of our characterization by proving several equivalence schemas, including

familiar facts from lambda calculus as well as results specific to probabilistic programming. In particular, we

use it to prove that reordering the random draws in a probabilistic program preserves contextual equivalence.

This allows us to show, for example, that

(letx = e1 in lety = e2 in e0) =ctx (lety = e2 in letx = e1 in e0)

(provided x does not occur free in e2 and y does not occur free in e1) despite the fact that e1 and e2 may have

sampling and scoring effects.

CCS Concepts: • Mathematics of computing → Probability and statistics; • Theory of computation
→ Operational semantics;

Additional Key Words and Phrases: probabilistic programming, logical relations, contextual equivalence

ACM Reference format:
Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2017. Contextual Equivalence

for a Probabilistic Language with Continuous Random Variables and Recursion. Proc. ACM Program. Lang. 1,
1, Article 1 (January 2017), 35 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A probabilistic programming language is a programming language enriched with two features—

sampling and scoring—that enable it to represent probabilistic models. We introduce these two

features with an example program that models linear regression.

The first feature, sampling, introduces probabilistic nondeterminism. It is used to represent

random variables. For example, let normal(m, s) be defined to nondeterministically produce a real

number distributed according to a normal (Gaussian) distribution with meanm and scale s .
Here is a little model of linear regression that uses normal to randomly pick a slope and intercept

for a line and then defines f as the resulting linear function:

A = normal(0, 10)
B = normal(0, 10)
f(x) = A*x + B

This material is based upon work sponsored by the Air Force Research Laboratory (AFRL) and the Defense Advanced

Research Projects Agency (DARPA) under Contract No. FA8750-14-C-0002. The views expressed are those of the authors

and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

2017. 2475-1421/2017/1-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

This program defines a distribution on lines, centered on y = 0x + 0, with high variance. This

distribution is called the prior, since it is specified prior to considering any evidence.

The second feature, scoring, adjusts the likelihood of the current execution’s random choices. It

is used to represent conditioning on observed data.

Suppose we have the following data points: {(2.0, 2.4), (3.0, 2.7), (4.0, 3.0)}. The smaller the error

between the result of f and the observed data, the better the choice of A and B. We express these

observations with the following addition to our program:

factor normalpdf(f(2.0)-2.4; 0, 1)
factor normalpdf(f(3.0)-2.7; 0, 1)
factor normalpdf(f(4.0)-3.0; 0, 1)

Here scoring is performed by the factor form, which takes a positive real number to multiply

into the current execution’s likelihood. We use normalpdf(_; 0,1)—the density function of the

standard normal distribution—to convert the difference between predicted and observed values

into the score. This scoring function assigns high likelihood when the error is near 0, dropping off

smoothly to low likelihood for larger errors.

After incorporating the observations, the program defines a distribution centered near y =
0.3x + 1.8, with low variance. This distribution is often called the posterior distribution, since it
represents the distribution after the incorporation of evidence.

Computing the posterior distribution—or a workable approximation thereof—is the task of proba-
bilistic inference. We say that this program has inferred (or sometimes learned) the parameters A and
B from the data. Probabilistic inference encompasses an arsenal of techniques of varied applicability

and efficiency. Some inference techniques may benefit if the program above is transformed to the

following shape:

A = normal(0, 10)
factor Z(A)
B = normal(M(A), S(A))

The transformation relies on the conjugacy relationship between the normal prior for B and

the normal scoring function of the observations. A useful equational theory for probabilistic

programming must incorporate facts from mathematics in addition to standard concerns such as

function inlining.

In this paper we build a foundation for such an equational theory for a probabilistic programming

language. In particular, our language supports

• sampling continuous random variables,

• scoring (soft constraints), and

• conditionals, higher-order functions, and recursion.

Other such languages include Church [?], its descendants such as Venture [?] and Anglican [?], and
other languages [???] and languagemodels [???]. Our framework is able to justify the transformation

above.

In Section 2 we present our model of a probabilistic language, including its syntax and semantics.

We then define our logical relation (Section 3), our CIU relation (Section 4), and contextual ordering

(Section 5); and we prove that all three relations coincide. In Section 6 we use this new machinery to

define contextual equivalence and demonstrate a catalog of useful equivalence schemas, including βv
and let-associativity, as well as a method for importing first-order equivalences from mathematics.

One unusual equivalence is let-commutativity:

(letx = e1 in lety = e2 in e0) =ctx (lety = e2 in letx = e1 in e0)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:3

(provided x does not occur free in e2 and y does not occur free in e1). This equivalence, while
valid for a pure language, is certainly not valid for all effects (consider, for example, if there were

an assignment statement in e1 or e2). We conclude with two related work sections: Section 7

demonstrates the correspondence between our language model and others, notably that of ?, and
Section 8 informally discusses other related work.

Throughout the paper, we limit proofs mostly to high-level sketches and representative cases.

Additional details and cases for some proofs can be found in Appendix A.

Appendix B sketches the steps of the linear regression transformation above using the equiva-

lences we prove in this paper.

2 PROBABILISTIC LANGUAGE MODEL
In this section we define our probabilistic language and its semantics. The semantics consists of

three parts:

• A notion of entropy for modeling random behavior.

• An evaluation function that maps a program and entropy to a real-valued result and an

importance weight. We define the evaluation function via an abstract machine. We then

define a big-step semantics and prove it equivalent; the big-step formulation simplifies some

proofs in Section 6.3 by making the structure of evaluation explicit.

• A mapping to measures over the real numbers, calculated by integrating the evaluation

function with respect to the entropy space. A program with a finite, non-zero measure can

be interpreted as an unnormalized probability distribution.

The structure of the semantics loosely corresponds to one inference technique for probabilistic

programming languages: importance sampling. In an importance sampler, the entropy is approxi-

mated by a pseudo-random number generator (PRNG); the evaluation function is run many times

with different initial PRNG states to produce a collection of weighted samples; and the weighted

samples approximate the program’s measure—either directly by conversion to a discrete distribution

of results, or indirectly via computed statistical properties such as sample mean, variance, etc.

Our language is similar to that of ?, but with the following differences:

• Our language requires let-binding of nontrivial intermediate expressions; this simplifies the

semantics. This restriction is similar to but looser than A-normal form [?].
• Our model of entropy is a finite measure space made of splittable entropy points, rather than

an infinite measure space containing sequences of real numbers.

• Our sample operation models a standard uniform random variable, rather than being param-

eterized over a distribution.

We revisit these differences in Section 7.

2.1 Syntax
The syntax of our language is given in Figure 1. For simplicity, we require sequencing to be made

explicit using let. There is a constant cr for each real number r , and there are various useful

primitive operations.

The sample form draws from a uniform distribution on [0, 1]. Any other real-valued distribution

of interest can be obtained by applying the appropriate inverse cumulative distribution function. For
example, sampling from a normal distribution can be expressed as follows:

normal(vm ,vs) ≜ (letu = sample in normalinvcdf(u;vm ,vs))

Finally, the factor v weights (or “scores”) the current execution by the value v .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

v ::= x | λx .e | cr Syntactic Values

e ::= v | (v v) | letx = e in e Expressions

| opn (v1, . . . ,vn) | if v then e else e
| sample | factor v

op1 ::= log | exp | real? | | . . . Unary operations

op2 ::= + | − | × | ÷ | < | ≤ | . . . Binary operations

op3 ::= normalinvcdf | normalpdf | . . . Ternary operations

K ::= halt | (x → e)K Continuations

Fig. 1. Syntax of values, expressions, and continuations

x ∈ Γ

Γ ⊢x val

Γ,x ⊢ e exp

Γ ⊢ λx .e val
Γ ⊢ cr val

Γ ⊢v val

Γ ⊢v exp

Γ ⊢v1 val Γ ⊢v2 val

Γ ⊢ (v1 v2) exp

Γ ⊢ e1 exp Γ,x ⊢ e2 exp

Γ ⊢ letx = e1 in e2 exp

Γ ⊢vi val (∀i ∈ {1, . . . ,n})

Γ ⊢ opn (v1, . . . ,vn) exp

Γ ⊢v val Γ ⊢ e1 exp Γ ⊢ e2 exp

Γ ⊢ if v then e1 else e2 exp

Γ ⊢ sample exp
Γ ⊢v val

Γ ⊢ factor v exp

⊢ halt cont
{x } ⊢ e exp ⊢K cont

⊢ (x → e)K cont

Fig. 2. Scoping rules for values, expressions, and continuations

The language is untyped, but we express the scoping relations by rules like typing rules. We write

Γ ⊢ e exp for the assertion that e is a well-formed expression whose free variables are contained in

the set Γ, and similarly for values and continuations. The scoping rules are given in Figure 2.

2.2 Modeling Entropy
The semantics uses an entropy component as the source of randomness. We assume an entropy

space S along with its stock measure µS. We use σ and τ to range over values in S. When we

integrate over σ or τ , we implicitly use the stock measure; that is, we write

∫
f (σ) dσ to mean∫

f (σ) µS (dσ). Following ?, we assume that S has the following properties:

Property 2.1 (Properties of Entropy).

(1) µS (S) = 1

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:5

⟨σ | letx = e1 in e2 | K | τ | w⟩ → ⟨πL (σ) | e1 | (x → e2)K | πR (σ)::τ | w⟩
⟨σ | v | (x → e2)K | σ

′::τ | w⟩ → ⟨σ ′ | e2[v/x] | K | τ | w⟩
⟨σ | ((λx .e) v) | K | τ | w⟩ → ⟨σ | e[v/x] | K | τ | w⟩
⟨σ | sample | K | τ | w⟩ → ⟨πR (σ) | cπU (πL (σ)) | K | τ | w⟩
⟨σ | opn (v1, . . . ,vn) | K | τ | w⟩ → ⟨σ | δ (opn ,v1, . . . ,vn) | K | τ | w⟩ (if defined)
⟨σ | if cr then e1 else e2 | K | τ | w⟩ → ⟨σ | e1 | K | τ | w⟩ (if r > 0)

⟨σ | if cr then e1 else e2 | K | τ | w⟩ → ⟨σ | e2 | K | τ | w⟩ (if r ≤ 0)

⟨σ | factor cr | K | τ | w⟩ → ⟨σ | cr | K | τ | r ×w⟩ (provided r > 0)

Fig. 3. Small-step operational semantics

(2) There is a function πU : S→ [0, 1] such that for all measurable f : [0, 1]→ R+,∫
f (πU (σ)) dσ =

∫
1

0
f (x) λ(dx)

where λ is the Lebesgue measure. That is, πU represents a standard uniform sampler.
(3) There is a surjective pairing function ‘::‘ : S×S→ S, with projections πL and πR , all measurable.
(4) The projections are measure-preserving: for all measurable д : S × S→ R+,∫

д(πL (σ),πR (σ)) dσ =
!

д(σ1,σ2) dσ1 dσ2

Since S � S×S and thus S � Sn (n ≥ 1), we can also use entropy to encode non-empty sequences
of entropy values.

We also use Tonelli’s Theorem:

Lemma 2.2 (Tonelli). Let f : S × S→ R+ be measurable. Then∫ (∫
f (σ1,σ2) dσ1

)
dσ2 =

∫ (∫
f (σ1,σ2) dσ2

)
dσ1

2.3 Operational Semantics
2.3.1 Small-Step Semantics. We define evaluation via an abstract machine with a small-step

operational semantics. The semantics rewrites configurations ⟨σ | e | K | τ | w⟩ consisting of:

• an entropy σ (representing the “current” value of the entropy),

• a closed expression e ,
• a closed continuation K ,
• an entropy τ (encoding a stack of entropies, one for each frame of K), and
• a positive real numberw (representing the weight of the current run)

The rules for the semantics are given in Figure 3.

The semantics uses continuations for sequencing and substitutions for procedure calls. Since

letx = e1 in e2 is the only sequencing construct, there is only one continuation-builder. The

first rule recurs into the right-hand side of a let, using the left half of the entropy as its entropy,

and saving the right half for use with e2. The second rule (“return”) substitutes the value of the

expression into the body of the let and restores the top saved entropy value for use in the body.

More precisely, we view the third component as an encoded pair of an entropy value and an

encoded entropy stack, as mentioned in Section 2.2.
1
The return rule can be written using explicit

projections as follows:

⟨σ | v | (x → e2)K | τ | w⟩ → ⟨πL (τ) | e2[v/x] | K | πR (τ) | w⟩

1
We defer the explanation of the initial entropy stack to Section 2.4.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Note that in the return rule the current entropy σ is dead. Except for the entropy and weight, these

rules are standard for a continuation-passing interpreter for the lambda-calculus with let.
The δ partial function interprets primitive operations. We assume that all the primitive operations

are measurable partial functions returning real values, and with the exception of real?, they are

undefined if any of their arguments is a closure. A conditional expression evaluates to its first

branch if the condition is a positive real constant, its second branch if nonpositive; if the condition

is a closure, evaluation is stuck. Comparison operations and the real? predicate return 1 for truth

and 0 for falsity.

The rule for sample uses πU to extract from the entropy a real value in the interval [0, 1]. The
entropy is split first, to make it clear that entropy is never reused, but the leftover entropy is dead

per the return rule. The rule for factor v weights the current execution by v , provided v is a

positive number; otherwise, evaluation is stuck.

When reduction of an initial configuration halts properly, there are two relevant pieces of

information in the final configuration: the result value and the weight. Furthermore, we are only

interested in real-valued final results. We define evaluation as taking an extra parameter A, a
measurable set of reals. Evaluation produces a positive weight only if the result value is in the

expected set.

eval(σ , e,K ,τ ,w,A) =




w ′ if ⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′ | r | halt | τ ′ | w ′⟩,

where r ∈ A

0 otherwise

We will also need approximants to eval:

eval
(n) (σ , e,K ,τ ,w,A) =




w ′ if ⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′ | r | halt | τ ′ | w ′⟩

in n or fewer steps, where r ∈ A

0 otherwise

The following lemmas are clear from inspection of the small-step semantics.

Lemma 2.3. If ⟨σ | e | K | τ | w⟩ → ⟨σ ′ | e ′ | K ′ | τ ′ | w ′⟩ then

(1) eval
(p+1) (σ , e,K ,τ ,w,A) = eval

(p) (σ ′, e ′,K ′,τ ′,w ′,A)
(2) eval(σ , e,K ,τ ,w,A) = eval(σ ′, e ′,K ′,τ ′,w ′,A)

Lemma 2.4 (weights are Linear).

(1) Weights can be factored out of reduction sequences. That is,

⟨σ | e | K | τ | 1⟩ →∗ ⟨σ ′ | e ′ | K ′ | τ ′ | w ′⟩,

if and only if for anyw > 0

⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′ | e ′ | K ′ | τ ′ | w ′ ×w⟩

(2) Weights can be factored out of evaluation. That is, for allw > 0,

eval(σ , e,K ,τ ,w,A) = w × eval(σ , e,K ,τ , 1,A),

and similarly for eval(n) .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:7

σ ⊢ λx .e ⇓ λx .e, 1 σ ⊢ cr ⇓ cr , 1

σ ⊢ e[v/x] ⇓ v ′,w

σ ⊢ ((λx .e) v) ⇓ v ′,w

πL (σ) ⊢ e1 ⇓ v1,w1 πR (σ) ⊢ e2[v1/x] ⇓ v2,w2

σ ⊢ letx = e1 in e2 ⇓ v2,w2 ×w1

δ (opn ,v1, . . . ,vn) = v

σ ⊢ opn (v1, . . . ,vn) ⇓ v, 1

σ ⊢ e1 ⇓ v,w r > 0

σ ⊢ if cr then e1 else e2 ⇓ v,w

σ ⊢ e2 ⇓ v,w r ≤ 0

σ ⊢ if cr then e1 else e2 ⇓ v,w

σ ⊢ sample ⇓ cπU (πL (σ)), 1
r > 0

σ ⊢ factor cr ⇓ cr , r

Fig. 4. Big-step operational semantics

2.3.2 Big-Step Semantics. We regard the small-step semantics as normative, and we use it for

our primary soundness and completeness results. However, for program transformations it is useful

to have a big-step semantics as well. In this section, we define a big-step semantics and characterize

its relation to the small-step semantics.

The big-step semantics is given in Figure 4. It has judgments of the form σ ⊢ e ⇓ v,w , where σ is

a value of the entropy, e is a closed expression, v is a closed value, and w is a weight (a positive

real number). Its intention is that when e is supplied with entropy σ , it returns v with weight

w , consuming some portion (possibly empty) of the given entropy σ . The rules are those of a

straightforward call-by-value λ-calculus, modified to keep track of the entropy and weight.

The translation from big-step to small-step semantics is straightforward:

Theorem 2.5 (Big-Step to Small-Step). If σ ⊢ e ⇓ v,w , then for any K and τ , there exists a σ ′

such that
⟨σ | e | K | τ | 1⟩ →∗ ⟨σ ′ | v | K | τ | w⟩

Proof. By induction on the definition of ⇓. We will show selected cases.

Case σ ⊢ λx .e ⇓ λx .e, 1 : The required small-step reduction is empty. Similarly for cr .
Case σ ⊢ sample ⇓ cπU (πL (σ)), 1 : The required reduction is the single step reduction

⟨σ | sample | K | τ | 1⟩ → ⟨πR (σ) | cπU (πL (σ)) | K | τ | 1⟩

Similarly for factor cr and the opn rules.

Case ((λx .e) v) : The rule is
σ ⊢ e[v/x] ⇓ v ′,w

σ ⊢ ((λx .e) v) ⇓ v ′,w

By inversion, we have σ ⊢ e[v/x] ⇓ v ′,w . So the reduction sequence is:

⟨σ | ((λx .e) v) | K | τ | 1⟩
→ ⟨σ | e[v/x] | K | τ | 1⟩
→∗ ⟨σ ′ | v ′ | K | τ | w⟩ by the induction hypothesis

Similarly for the if rules.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Case letx = e1 in e2 : The rule is

πL (σ) ⊢ e1 ⇓ v1,w1 πR (σ) ⊢ e2[v1/x] ⇓ v2,w2

σ ⊢ letx = e1 in e2 ⇓ v2,w2 ×w1

By inversion, we have πL (σ) ⊢ e1 ⇓ v1,w1 and πR (σ) ⊢ e2[v1/x] ⇓ v2,w2. So the required reduc-

tion sequence is:

⟨σ | letx = e1 in e2 | K | τ | 1⟩
→ ⟨πL (σ) | e1 | (x → e2)K | πR (σ)::τ | w⟩
→∗ ⟨σ ′ | v1 | (x → e2)K | πR (σ)::τ | w1⟩

→ ⟨πR (σ) | e2[v1/x] | K | τ | w1⟩

→∗ ⟨σ ′′ | v2 | K | τ | w2 ×w1⟩

where the third line follows from the induction hypothesis, and the last line follows from the other

induction hypothesis and the linearity of weights (Lemma 2.4). □

Note that the weak quantifier (“there exists a σ ′”) corresponds to the fact that the entropy is

dead in the return rule.

In order to prove a converse, we need some additional results about the small-step semantics.

Definition 2.6. Define ⪰ to be the smallest relation defined by the following rules:

Rule 1:

(K ,τ) ⪰ (K ,τ)

Rule 2:

(K ′,τ ′) ⪰ (K ,τ)

((x → e)K ′,σ ::τ ′) ⪰ (K ,τ)

Lemma 2.7. Let
⟨σ1 | e1 | K1 | τ1 | w1⟩ → ⟨σ2 | e2 | K2 | τ2 | w2⟩ → . . .

be a reduction sequence in the operational semantics. Then for each i in the sequence either

a. there exists a smallest j ≤ i such that ej is a value and Kj = K1 and τj = τ1, or
b. (Ki ,τi) ⪰ (K1,τ1)

Proof. See appendix. □

The next result is an interpolation theorem, which imposes structure on reduction sequences:

any terminating computation starting with an expression e begins by evaluating e to a value v and

then sending that value to the continuation K .

Theorem 2.8 (Interpolation Theorem). If

⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′′ | v ′′ | halt | τ ′′ | w ′′⟩

then there exists a smallest n such that for some quantities σ ′, v , andw ′,

⟨σ | e | K | τ | w⟩ →n ⟨σ ′ | v | K | τ | w ′ ×w⟩ →∗ ⟨σ ′′ | v ′′ | halt | τ ′′ | w ′′⟩

Proof. If K = halt, then the result is trivial. Otherwise, apply the invariant of the preceding

lemma, observing that (halt,τ ′) ⪰̸ (K ,τ) and that weights are multiplicative. □

Note that both Lemma 2.7 and Theorem 2.8 would be false if our language contained jumping

control structures like call/cc.
Finally, we show that in the interpolation theorem, σ ′, v , andw ′ are independent of K .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:9

Theorem 2.9 (Genericity Theorem). Letw1 > 0 and let n be the smallest integer such that for
some quantities σ ′, v , andw ′,

⟨σ | e | K1 | τ1 | w1⟩ →
n ⟨σ ′ | v | K1 | τ1 | w

′ ×w1⟩

then for any K2, τ2, andw2,

⟨σ | e | K2 | τ2 | w2⟩ →
n ⟨σ ′ | v | K2 | τ2 | w

′ ×w2⟩

Proof. Let R be the smallest relation defined by the rules

((K1,τ1), (K2,τ2)) ∈ R
((K ,τ), (K ′,τ ′)) ∈ R

(((x → e)K ,σ ::τ), ((x → e)K ′,σ ::τ ′)) ∈ R

Extend R to be a relation on configurations by requiring the weights to be related by a factor

of w2/w1 and the remaining components of the configurations to be equal. It is easy to see, by

inspection of the small-step rules, that R is a bisimulation over the first n steps of the given reduction

sequence. □

We are now ready to state the converse of Theorem 2.5.

Definition 2.10. We say that a configuration ⟨σ | e | K | τ | w⟩ halts iff

⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′ | v | halt | τ ′ | w ′⟩

for some σ ′, v , τ ′ andw ′.

Theorem 2.11 (Small-Step to Big-Step). If

⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′′ | v ′′ | halt | τ ′′ | w ′′⟩,

then there exist σ ′, v ′ andw ′ such that

σ ⊢ e ⇓ v ′,w ′

and
⟨σ ′′ | v ′ | K | τ | w ′ ×w⟩ →∗ ⟨σ ′ | v ′ | halt | τ ′′ | w ′′⟩

Proof. Given

⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′′ | v ′′ | halt | τ ′′ | w ′′⟩

apply the Interpolation Theorem (Theorem 2.8) to get n, σ ′, v , andw ′ such that

⟨σ | e | K | τ | w⟩ →n ⟨σ ′ | v | K | τ | w ′ ×w⟩ →∗ ⟨σ ′′ | v ′′ | halt | τ ′′ | w ′′⟩

This gives us the second part of the conclusion. To get the first part, we proceed by (course-of-

values) induction on n, and then by cases on e .
Case λx .e : For configurations of the form ⟨σ | λx .e | K | τ | w⟩, the expression is already a value,

so n is 0. So set v = λx .e and w ′ = 1, and observe that σ ⊢ λx .e ⇓ λx .e, 1, as desired. The case of
constants cr is similar.

Case sample :We know

⟨σ | sample | K | τ | w⟩ → ⟨πR (σ) | cπU (πL (σ)) | K | τ | w⟩

so the value length is 1, and we also have σ ⊢ sample ⇓ cπU (πL (σ)), 1, as desired. The cases of factor
and of opn are similar.

Case ((λx .e) v) : Assume that the value length of ⟨σ | ((λx .e) v) | K | τ | w⟩ is n + 1. So we

have

⟨σ | ((λx .e) v) | K | τ | w⟩ → ⟨σ | e[v/x] | K | τ | w⟩ →n ⟨σ ′ | v ′ | K | τ | w ′ ×w⟩

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

By induction, we have σ ⊢ e[v/x] ⇓ v ′,w ′. Hence, by the big-step rule for λ-expressions, we
have σ ⊢ ((λx .e) v) ⇓ v ′,w ′, as desired. The cases for conditionals are similar.

Case letx = e1 in e2 : Assume the value length of ⟨σ | letx = e1 in e2 | K | τ | w⟩ is n. Then
the first n steps of its reduction sequence must be

⟨σ | letx = e1 in e2 | K | τ | w⟩
→ ⟨πL (σ) | e1 | (x → e2)K | πR (σ)::τ | w⟩
→m ⟨σ ′ | v1 | (x → e2)K | πR (σ)::τ | w1 ×w⟩
→ ⟨πR (σ)::τ | e2[v1/x] | K | τ | w1 ×w⟩
→p ⟨σ ′′ | v | K | τ | w2 ×w1 ×w⟩

wherem andp are the value lengths of the configurations on the second and fourth lines, respectively.
So n =m + p + 2, and we can apply the induction hypothesis to the two relevant configurations.

Applying the induction hypothesis twice, we get

πL (σ) ⊢ e1 ⇓ v1,w1 and πR (σ) ⊢ e2[v1/x] ⇓ v2,w2 .

Hence, by the big-step rule for let, we conclude that

σ ⊢ letx = e1 in e2 ⇓ v,w2 ×w1

as desired. □

2.4 From Evaluations to Measures
Up to now, we have considered only single runs of the machine, using particular entropy values.

To obtain the overall meaning of the program we need to integrate over all possible values of the

entropies σ and τ :

Definition 2.12. The measure of e and K is the measure on the reals defined by

µ (e,K ,A) =
!

eval(σ , e,K ,τ , 1,A) dσ dτ

for each measurable set A of the reals.

This measure is similar to both Culpepper and Cobb’s µe (A) and Borgström et al.’s [[e]]S (A), but
whereas they define measures on arbitrary syntactic values, our µ (e,K ,−) is a measure on the reals.

Furthermore, whereas their measures represent the meanings of intermediate expressions, our

measure—due to the inclusion of the continuation argument K—represents the meanings of whole

programs.

The simplicity of the definition above relies on the mathematical trick of encoding entropy stacks

as entropy values; if we represented stacks directly the number of integrals would depend on the

stack depth. Note that even for the base continuation (K = halt) we still integrate with respect to

both σ and τ . Since S � S0, there is no encoding for an empty stack as an entropy value; we cannot

just choose a single arbitrary τinit because µS ({τinit}) = 0. But since evaluation respects the stack

discipline, it produces the correct result for any initial τinit. So we integrate over all choices of τinit,
and since µS (S) = 1 the empty stack “drops out” of the integral.

As before, we will also need the approximants:

µ (n) (e,K ,A) =
!

eval
(n) (σ , e,K ,τ , 1,A) dσ dτ

For these integrals to be well-defined, of course, we need to know that eval and its approximants

are measurable.

Lemma 2.13 (eval is measurable). For any e , K ,w ≥ 0, A ∈ ΣR, and n, eval(σ , e,K ,τ ,w,A) and
eval

(n) (σ , e,K ,τ ,w,A) are measurable in σ and τ .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:11

Proof. See appendix. □

The next lemma establishes some properties of µ and the approximants µ (n) . In particular, it

shows that µ is the limit of the approximants.

Lemma 2.14 (measures are monotonic). In the following, e and K range over closed expressions
and continuations, and let A range over measurable sets of reals.
(1) µ (e,K ,A) ≥ 0

(2) for anym, µ (m) (e,K ,A) ≥ 0

(3) ifm ≤ n, then µ (m) (e,K ,A) ≤ µ (n) (e,K ,A) ≤ µ (e,K ,A)
(4) µ (e,K ,A) = supn {µ

(n) (e,K ,A)}

Finally, the next lemma’s equations characterize how the approximant and limit measures, µ (n)

and µ, behave under the reductions of the small-step machine. Almost all the calculations in

Section 3 depend only on these equations.

Lemma 2.15. The following equations hold for approximant measures:

µ (p+1) (letx = e1 in e2,K ,A) = µ (p) (e1, (x → e2)K ,A)

µ (p+1) (v, (x → e)K ,A) = µ (p) (e[v/x],K ,A)

µ (p+1) ((λx .e v),K ,A) = µ (p) (e[v/x],K ,A)

µ (p+1) (opn (v1, . . . ,vn),K ,A) = µ (p) (δ (opn ,v1, . . . ,vn),K ,A) if defined

µ (p+1) (if cr then e1 else e2,K ,A) = µ (p) (e1,K ,A) if r > 0

µ (p+1) (if cr then e1 else e2,K ,A) = µ (p) (e2,K ,A) if r ≤ 0

µ (p+1) (sample,K ,A) =
∫

1

0
µ (p) (cr ,K ,A) dr

µ (p+1) (factor cr ,K ,A) = r × µ
(p) (cr ,K ,A) if r > 0

In addition, the analogous index-free equations hold for the unapproximated (limit) measure µ (−,−,−).

In general, the proofs of the equations of Lemma 2.15 involve unfolding the definition of the

measure and applying Lemma 2.3 under the integral. The proof for let is representative:

Proof for let.

µ (p+1) (letx = e1 in e2,K ,A)

=
!

eval
(p+1) (σ , letx = e1 in e2,K ,τ , 1,A) dσ dτ

=
!

eval
(p) (πL (σ), e1, (x → e2)K ,πR (σ)::τ , 1,A) dσ dτ (Lemma 2.3)

=
#

eval
(p) (σ ′, e1, (x → e2)K ,σ

′′::τ , 1,A) dσ ′dσ ′′dτ (Property 2.1.4 on σ)

=
!

eval
(p) (σ ′, e1, (x → e2)K ,πL (τ

′)::πR (τ ′), 1,A) dσ ′dτ ′ (Property 2.1.4 on τ ′)

=
!

eval
(p) (σ ′, e1, (x → e2)K ,τ

′, 1,A) dσ ′dτ ′ (πL (τ
′)::πR (τ ′) = τ ′)

= µ (p) (e1, (x → e2)K ,A)

□

The proof for factor additionally uses linearity (Lemma 2.4), and the proof for sample addition-

ally uses Property 2.1.2.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

So far, our semantics speaks directly only about the meanings of whole programs. In the following

sections, we develop a collection of relations for expressions and ultimately show that they respect

the contextual ordering relation on expression induced by the semantics of whole programs.

3 THE LOGICAL RELATION
In this section, we will define a step-indexed logical relation on values, expressions, and continua-

tions, and we prove the Fundamental Property for our relation.

We begin by defining step-indexed logical relations on closed values, closed expressions, and

continuations (which are always closed) as follows:

(v1,v2) ∈ Vn ⇐⇒ v1 = v2 = cr for some r
∨ (v1 = λx .e ∧v2 = λx .e ′

∧ (∀m < n) (∀v,v ′)[(v,v ′) ∈ Vm =⇒ (e[v/x], e ′[v ′/x]) ∈ Em])

(e, e ′) ∈ En ⇐⇒ (∀m ≤ n) (∀K ,K ′) (∀A ∈ ΣR)
[(K ,K ′) ∈ Km =⇒ µ (m) (e,K ,A) ≤ µ (e ′,K ′,A)]

(K ,K ′) ∈ Kn ⇐⇒ (∀m ≤ n) (∀v,v ′) (∀A ∈ ΣR)
[(v,v ′) ∈ Vm =⇒ µ (m) (v,K ,A) ≤ µ (v ′,K ′,A)]

The definitions are well-founded because V− refers to E− at strictly smaller indexes. Note that for

all n, Vn ⊇ Vn+1 ⊇ . . ., and similarly for E and K. That is, at higher indexes the relations make

more distinctions and thus relate fewer things.

We use γ to range over substitutions of closed values for variables, and we define Gn by lifting

Vn to substitutions as follows:

(γ ,γ ′) ∈ GΓ
n ⇐⇒ dom(γ) = dom(γ ′) = Γ

∧ ∀x ∈ Γ, (γ (x),γ ′(x)) ∈ Vn

Last, we define the logical relations on open terms. In each case, the relation is on terms of the

specified sort that are well-formed with free variables in Γ:

(v,v ′) ∈ VΓ ⇐⇒ (∀n) (∀γ ,γ ′)[(γ ,γ ′) ∈ GΓ
n =⇒ (vγ ,v ′γ ′) ∈ Vn]

(e, e ′) ∈ EΓ ⇐⇒ (∀n) (∀γ ,γ ′)[(γ ,γ ′) ∈ GΓ
n =⇒ (eγ , e ′γ ′) ∈ En]

(K ,K ′) ∈ K ⇐⇒ (∀n) (K ,K ′) ∈ Kn

The limit relation K is not indexed by Γ because we work only with closed continuations.

Our first goal is to show the so-called fundamental property of logical relations:

Γ ⊢ e exp =⇒ (e, e) ∈ EΓ

We begin with a series of compatibility lemmas. These show that the logical relations form a

congruence under (“are compatiblewith”) the scoping rules of values, expressions, and continuations.

Note the correspondence between the scoping rules of Figure 2 and the compatibility rules of

Figure 5.

Lemma 3.1 (Compatibility). The implications summarized as inference rules in Figure 5 hold.

Most of the lemmas follow by general nonsense about the lambda-calculus, the definitions of the

logical relations, and calculations involving µ (n) and µ using Lemma 2.15. The proof for application

is representative:

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:13

x ∈ Γ

(x ,x) ∈ VΓ

(e, e ′) ∈ EΓ,x

(λx .e, λx .e ′) ∈ VΓ
(cr , cr) ∈ V

Γ
(v,v ′) ∈ VΓ

(v,v ′) ∈ EΓ

(v1,v
′
1
) ∈ VΓ (v2,v

′
2
) ∈ VΓ

((v1 v2), (v
′
1
v ′
2
)) ∈ EΓ

(e1, e
′
1
) ∈ EΓ (e2, e2) ∈ E

Γ,x

(letx = e1 in e2, letx = e ′
1
in e ′

2
) ∈ EΓ

(vi ,v
′
i) ∈ V

Γ (i ∈ {1, . . . ,k })

(opk (v1, . . . ,vk), opk (v ′1, . . . ,v
′
k)) ∈ E

Γ

(v,v ′) ∈ VΓ (e1, e
′
1
) ∈ EΓ (e2, e2) ∈ E

Γ

(if v then e1 else e2, if v ′ then e ′
1
else e ′

2
) ∈ EΓ

(sample, sample) ∈ E
(v,v ′) ∈ VΓ

(factor v, factor v ′) ∈ EΓ

(halt, halt) ∈ K
(e1, e2) ∈ E

{x } (K ,K ′) ∈ K

((x → e)K , (x → e ′)K ′) ∈ K

Fig. 5. Compatibility rules for the logical relation

Proof for app. Wemust show that if (v1,v
′
1
) ∈ VΓ

and (v2,v
′
2
) ∈ VΓ

, then ((v1 v2), (v
′
1
v ′
2
)) ∈ EΓ .

Choose n, and assume (γ ,γ ′) ∈ GΓ
n . Then (v1γ ,v

′
1
γ ′) ∈ Vn and (v2γ ,v

′
2
γ ′) ∈ Vn . We must show

((v1γ v2γ), (v
′
1
γ ′ v ′

2
γ ′)) ∈ En .

If v1γ is of the form cr , then µ (m) (v1γ ,K ,A) = 0 for anym, K , and A, so the conclusion holds by

Lemma 2.14.

Otherwise, assume v1γ is of the form λx .e , and so v ′
1
γ ′ is of the form λx .e ′. So choosem ≤ n and

A, and let (K ,K ′) ∈ Km . We must show that

µ (m) ((λx .eγ v2γ),K ,A) ≤ µ ((λx .e ′γ ′ v ′
2
γ ′),K ′,A).

Ifm = 0 the left-hand side is 0 and the inequality holds trivially. So considerm ≥ 1. Since all

the relevant terms are closed and the relations on closed terms are antimonotonic in the index, we

have (λx .eγ , λx .e ′γ ′) ∈ Vm and (v1γ ,v
′
1
γ ′) ∈ Vm−1. Therefore (eγ [v2γ/x], e

′γ ′[v ′
2
γ ′/x]) ∈ Em−1.

Now, ⟨σ | (λx .eγ v2γ) | K | τ | w⟩ → ⟨σ | eγ [v2γ/x] | K | τ | w⟩, and similarly for the primed

side. So we have

µ (m) ((λx .eγ v2γ),K ,A) = µ (m−1) (eγ [v2γ/x],K ,A) (Lemma 2.15)

≤ µ (e ′γ ′[v ′
2
γ ′/x],K ′,A) (by (eγ [v2γ/x], e

′γ ′[v ′
2
γ ′/x]) ∈ Em−1)

= µ ((λx .e ′γ ′ v ′
2
γ ′),K ′,A)

□

More detailed proofs can be found in Appendix A.

Now we can prove the Fundamental Property:

Theorem 3.2 (Fundamental Property).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

(1) Γ ⊢ e exp =⇒ (e, e) ∈ EΓ

(2) Γ ⊢v val =⇒ (v,v) ∈ VΓ

(3) ⊢K cont =⇒ ∀n, (K ,K) ∈ Kn

Proof. By induction on the derivation of Γ ⊢ e exp, etc, applying the corresponding compatibility

rule from Lemma 3.1 at each point. □

The essential properties of the logical relation we wish to hold are soundness and completeness

with respect to the contextual ordering. We address these properties in Section 5 after taking a

detour to define another useful intermediate relation, CIUΓ
, and establish its equivalence to EΓ .

4 CIU ORDERING
The CIU (“closed instantiation of uses”) ordering of two terms asserts that they yield related

observable behavior under a single substitution and a single continuation. We take “observable

behavior” to be a program’s measure over the reals, as we did for the logical relations.

Definition 4.1.
(1) If e and e ′ are closed expressions, then (e, e ′) ∈ CIU iff for all closed K and measurable A,

µ (e,K ,A) ≤ µ (e ′,K ,A).
(2) If Γ ⊢ e exp and Γ ⊢ e ′ exp, then (e, e ′) ∈ CIUΓ

iff for all closing substitutionsγ , (eγ , e ′γ) ∈ CIU.

Since it requires considering only a single substitution and a single continuation rather than

related pairs, it is often easier to prove particular expressions related by CIUΓ
. But in fact, this

relation coincides with the logical relation, as we demonstrate now. One direction is an easy

consequence of the Fundamental Property.

Lemma 4.2 (E ⊆ CIU). If (e, e ′) ∈ EΓ then (e, e ′) ∈ CIUΓ .

Proof. Choose a closing substitutionγ , a closed continuationK , andA ∈ ΣR. By the Fundamental

Property, we have for all n, (γ ,γ) ∈ GΓ
n and (K ,K) ∈ Kn . Therefore, for all n, µ

(n) (eγ ,K ,A) ≤
µ (e ′γ ,K ,A). So

µ (eγ ,K ,A) = sup

n
{µ (n) (eγ ,K ,A)} ≤ µ (e ′γ ,K ,A).

□

In the other direction:

Lemma 4.3 (EΓ ◦ CIUΓ ⊆ EΓ). If (e1, e2) ∈ EΓ and (e2, e3) ∈ CIU
Γ , then (e1, e3) ∈ E

Γ .

Proof. Choose n and (γ ,γ ′) ∈ GnΓ . We must show that (e1γ , e3γ
′) ∈ EΓn . So choose m ≤ n,

(K ,K ′) ∈ Km , and A ∈ ΣR. Now we must show µ (m) (e1γ ,K ,A) ≤ µ (e3γ
′,K ′,A).

We have (e1, e2) ∈ E
Γ
and (γ ,γ ′) ∈ GnΓ , so (e1γ , e2γ

′) ∈ En , and bym ≤ n we have (e1γ , e2γ
′) ∈

Em . So

µ (n) (e1γ ,K ,A) ≤ µ (e2γ
′,K ′,A) (by (e1γ , e2γ

′) ∈ Em)

≤ µ (e3γ
′,K ′,A) (by (e2, e3) ∈ CIU)

Therefore (e1, e3) ∈ E
Γ
. □

Lemma 4.4 (CIU ⊆ E). If (e, e ′) ∈ CIUΓ then (e, e ′) ∈ EΓ .

Proof. Assume (e, e ′) ∈ CIUΓ
. By the Fundamental Property, we know (e, e) ∈ EΓ . So we have

(e, e) ∈ EΓ and (e, e ′) ∈ CIUΓ
. Hence, by Lemma 4.3, (e, e ′) ∈ EΓ . □

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:15

Theorem 4.5. (e, e ′) ∈ CIUΓ iff (e, e ′) ∈ EΓ .

Proof. Immediate from Lemmas 4.2 and 4.4. □

5 CONTEXTUAL ORDERING
Finally, we arrive at the contextual order relation. We define the contextual ordering as the largest

preorder that is both adequate—that is, it distinguishes terms that have different observable behavior

by themselves—and compatible—that is, closed under context formation, and we show that the

contextual ordering, the CIU ordering, and the logical relation all coincide. Thus in order to show

two terms contextually ordered, it suffices to use the friendlier machinery of the CIU relation.

Definition 5.1 (CTXΓ). CTX is the largest family of relations RΓ
such that:

(1) R is adequate, that is, if Γ = ∅, then (e, e ′) ∈ RΓ
implies that for all measurable subsets A of

the reals, µ (e, halt,A) ≤ µ (e ′, halt,A).
(2) For each Γ, RΓ

is a preorder.

(3) The family of relations R is compatible, that is, it is closed under the type rules for expressions:

(a) If (e, e ′) ∈ RΓ,x
, then (λx .e, λx .e ′) ∈ RΓ

.

(b) If (v1,v
′
1
) ∈ RΓ

and (v2,v
′
2
) ∈ RΓ

, then ((v1 v2), (v
′
1
v ′
2
)) ∈ RΓ

.

(c) If (v,v ′) ∈ RΓ
, then (factor v, factor v ′) ∈ RΓ

.

(d) If (e1, e
′
1
) ∈ RΓ

and (e2, e
′
2
) ∈ RΓ,x

,

then (letx = e1 in e2, letx = e ′
1
in e ′

2
) ∈ RΓ

.

(e) If (v1,v
′
1
) ∈ RΓ

, . . . , (vn ,v
′
n) ∈ R

Γ
,

then (opn (v1, . . . ,vn), opn (v ′1, . . . ,v
′
n)) ∈ R

Γ
.

(f) If (v,v ′) ∈ RΓ
, (e1, e

′
1
) ∈ RΓ

, and (e2, e
′
2
) ∈ RΓ

,

then (if v then e1 else e2, if v ′ then e ′
1
else e ′

2
) ∈ RΓ

.

Note, as usual, that the union of any family of relations satisfying these conditions also satisfies

these conditions, so the union of all of them is the largest such family of relations.

We prove thatEΓ ,CIUΓ
, andCTXΓ

by first showing thatEΓ ⊆ CTXΓ
and then thatCTXΓ ⊆ CIUΓ

.

Then, having caught CTXΓ
between EΓ and CIUΓ

—two relations that we have already proven

equivalent—we conclude that all of the relations coincide.

First, we must show that EΓ ⊆ CTXΓ
. The heart of that proof is showing that EΓ is compatible

in the sense of Definition 5.1. That is nearly handled by the existing compatibility rules for EΓ

(Lemma 3.1), except for an occasional mismatch between expressions and values—that is, between

EΓ and VΓ
in the rules. So we need a lemma to address the mismatch (Lemma 5.3), which itself

needs the following lemma due to ?.

Lemma 5.2. If (K ,K ′) ∈ Kn and (v,v ′) ∈ Vn , then

((z → (z v))K , (z → (z v ′))K ′) ∈ Kn+2

Proof. See appendix. □

Lemma 5.3. For all closed values v , if (v,v ′) ∈ E, then (v,v ′) ∈ V.

Proof. We will show that for all closed values v , v ′, if (v,v ′) ∈ En+3, then (v,v ′) ∈ Vn , from
which the lemma follows.

If v = cr and v ′ = cr ′ , then r = r ′ and thus (cr , cr ′) ∈ V because otherwise we would

have µ (cr , halt, {r }) = I {r } (r) = 1 and µ (cr ′, halt, {r }) = I {r } (r
′) = 0, violating the assumption

(cr , cr ′) ∈ E.
If only one of v and v ′ is a constant, then (v,v ′) ∈ En+3 is impossible, since constants and

lambda-expressions are distinguishable by real? (which requires 3 steps to do so).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

So assume v = λx .e and v ′ = λx .e ′. To establish (v,v ′) ∈ Vn , choosem < n and (u,u ′) ∈ Vm .
We must show that (e[u/x], e ′[u ′/x]) ∈ Em . To do that, choose p ≤ m, (K ,K ′) ∈ Kp , and A ∈ ΣR.
We must show that

µ (p) (e[u/x],K ,A) ≤ µ (e ′[u ′/x],K ′,A)

LetK1 = (f → (f u))K andK ′
1
= (f → (f u ′))K ′. Bymonotonicity, (u,u ′) ∈ Vp . By Lemma 5.2,

(K ′
1
,K ′

1
) ∈ Kp+2. Furthermore, p ≤ m < n, so p + 2 ≤ n + 1 and therefore (λx .e, λx .e ′) ∈ Ep+2. And

furthermore, we have

⟨σ | λx .e | K1 | τ | w⟩ → ⟨σ | (λx .e u) | K | τ | w⟩ → ⟨σ | e[u/x] | K | τ | w⟩

and similarly on the primed side.

We can put the results together to get

µ (p) (e[u/x],K ,A) = µ (p+2) (λx .e,K1,A)

≤ µ (λx .e ′,K ′
1
,A)

= µ (e ′[u ′/x],K ′,A)

□

Theorem 5.4. EΓ ⊆ CTXΓ .

Proof. We will show that E forms a family of reflexive preorders that is adequate and compatible.

Each EΓ is reflexive by the Fundamental Property, and is a preorder because it is equal to CIUΓ
,

which is a preorder. To show that it is adequate, observe that (halt, halt) ∈ K by Lemma 3.1,

hence for any measurable subset A of reals, (e, e ′) ∈ EΓ implies µ (e, halt,A) = µ (e ′, halt,A).
The E-compatibility rules (Lemma 3.1) are almost exactly what is needed for CTX-compatibility.

The exceptions are in the application, operation, if, and factor rules where their hypotheses refer
to VΓ

rather than EΓ . We fill the gap with Lemma 5.3. We show how this is done for factor v ; the
other cases are similar.

(v,v ′) ∈ EΓ =⇒ (v,v ′) ∈ CIUΓ

=⇒ (∀γ) ((vγ ,v ′γ) ∈ CIU∅)

=⇒ (∀γ) ((vγ ,v ′γ) ∈ E∅)

=⇒ (∀γ) ((vγ ,v ′γ) ∈ V∅) (Lemma 5.3)

=⇒ (∀γ) ((factor vγ , factor v ′γ) ∈ E∅) (Lemma 3.1)

=⇒ (∀γ) ((factor vγ , factor v ′γ) ∈ CIU∅)

=⇒ (factor v, factor v ′) ∈ CIUΓ

=⇒ (factor v, factor v ′) ∈ EΓ

□

Next, we must show that CTXΓ ⊆ CIUΓ
by induction on the closing substitution and then

induction on the continuation. We use the following two lemmas to handle the closing substitution.

Lemma 5.5. If Γ,x ⊢ e exp and Γ ⊢v exp, then

(e[v/x], (λx .e v)) ∈ CIUΓ and ((λx .e v), e[v/x]) ∈ CIUΓ .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:17

Proof. Let γ be a closing substitution for Γ. Then for any σ , closed K , andw , by Lemmas 2.15

and 2.14.4 we have

⟨σ | (λx .eγ vγ) | K | τ | w⟩ → ⟨σ | eγ [vγ/x] | K | τ | w⟩

Therefore for any A ∈ ΣR, µ ((λx .eγ vγ),K ,A) = µ (eγ [vγ/x],K ,A). □

Lemma 5.6. If (e, e ′) ∈ CTXΓ,x , and (v,v ′) ∈ CTXΓ , then (e[v/x], e ′[v ′/x]) ∈ CTXΓ .

Proof. From the assumptions and the compatibility of CTX, we have

((λx .e v), (λx .e ′ v ′)) ∈ CTXΓ
(1)

So now we have:

(e[v/x], (λx .e v)) ∈ CIUΓ
(Lemma 5.5)

=⇒ (e[v/x], (λx .e v)) ∈ CTXΓ
(CIUΓ ⊆ CTXΓ

)

=⇒ (e[v/x], (λx .e ′ v ′)) ∈ CTXΓ
(Equation (1) and transitivity of CTXΓ

)

=⇒ (e[v/x], e ′[v ′/x]) ∈ CTXΓ
(Lemma 5.5 and transitivity of CTXΓ

)

□

Now we are ready to complete the theorem. Here we need to use CIU rather than E, so that we

can deal with only one continuation rather than two.

Theorem 5.7 (CTXΓ ⊆ CIUΓ
). If (e, e ′) ∈ CTXΓ , then (e, e ′) ∈ CIUΓ

Proof. By the preceding lemma, we have (eγ , e ′γ) ∈ CTX. So it suffices to show that for all

A ∈ ΣR, if (e, e
′) ∈ CTX∅ and ⊢K cont, then µ (e,K ,A) = µ (e ′,K ,A).

The proof proceeds by induction on K such that ⊢K cont. The induction hypothesis on K is: for

all closed e , e ′, if (e, e ′) ∈ CTX∅, then µ (e,K ,A) = µ (e ′,K ,A).
If K = halt and (e, e ′) ∈ CTX∅, then µ (e, halt,A) = µ (e ′, halt,A) by the adequacy of CTX∅.

For the induction step, consider (x → e1)K , where x ⊢ e1 exp. Choose (e, e ′) ∈ CTX∅. We must

show µ (e, (x → e1)K ,A) ≤ µ (e ′, (x → e1)K ,A).
By the compatibility of CTX, we have

(letx = e in e1, letx = e ′ in e1) ∈ CTX
∅

(2)

Then we have

µ (e, (x → e1)K ,A) = µ (letx = e in e1,K ,A) (Lemma 2.15)

≤ µ (letx = e ′ in e1,K ,A) (by IH at K , applied to (2))

= µ (e ′, (x → e1)K ,A) (Lemma 2.15)

Thus completing the induction step. □

Summarizing the results:

Theorem 5.8. For all Γ, CIUΓ = EΓ = CTXΓ .

Proof. CIUΓ = EΓ ⊆ CTXΓ ⊆ CIUΓ
by Theorems 4.5, 5.4, and 5.7, respectively. □

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

((λx .e) v) =ctx e[v/x] (βv)

letx = v in e =ctx e[v/x] (letv)

letx = e in x =ctx e (letid)

op (v1, · · · ,vn) =ctx v where δ (op,v1, · · · ,vn) = v (δ)

letx2 = (letx1 = e1 in e2) in e3 =ctx letx1 = e1 in (letx2 = e2 in e3) (assoc)

letx1 = e1 in letx2 = e2 in e3 =ctx letx2 = e2 in letx1 = e1 in e3 (commut)

In (assoc), x1 < FV (e3). In (commut), x1 < FV (e2) and x2 < FV (e1).

Fig. 6. Catalog of equivalences

6 CONTEXTUAL EQUIVALENCE
Definition 6.1. If Γ ⊢ e exp and Γ ⊢ e ′ exp, we say e and e ′ are contextually equivalent (e =ctx e ′) if

both (e, e ′) ∈ CTXΓ
and (e ′, e) ∈ CTXΓ

.

In this section we use the machinery from the last few sections to prove the equivalence schemes

listed in Figure 6. The equivalences fall into three categories:

(1) provable directly using CIU and Theorem 5.8

(2) dependent on “entropy-shuffling”

(3) mathematical properties of R, probability distributions, etc

6.1 βv , letv , and δ

The proof for βv demonstrates the general pattern of equivalence proofs using CIU: first we prove

the equation holds for closed expressions, then we generalize to open terms by considering all

closing substitutions.

Lemma 6.2. If ⊢ ((λx .e) v) exp, then ((λx .e) v) =ctx e[v/x].

Proof. By Lemma 2.15, the definition of CIU, and Theorem 5.8. □

Corollary 6.3 (βv). If Γ ⊢ ((λx .e) v) exp, then ((λx .e) v) =ctx e[v/x].

Proof. By Lemma 6.2, any closed instances of these expressions are contextually equivalent

and thus CIU-equivalent. Hence the open expressions are CIU-equivalent and thus contextually

equivalent. □

The proofs of letv and δ are similar.

6.2 Rearranging Entropy
The remaining equivalences from Figure 6 involve non-trivial changes to the entropy access patterns

of their subexpressions. In this section we characterize a class of transformations on the entropy

space that are measure-preserving. In the next section we use these functions to justify reordering

and rearranging subexpression evaluation.

Definition 6.4 (measure-preserving). A function ϕ : S → S is measure-preserving when for all

measurable д : S→ R+, ∫
д(ϕ (σ)) dσ =

∫
д(σ) dσ

Note that this definition is implicitly specific to the stock entropy measure µS, which is sufficient

for our needs.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:19

More specifically, the kinds of functions we are interested in are ones that break apart the entropy

into independent pieces using πL and πR and then reassemble the pieces of entropy using ::. Pieces
may be discarded, but no piece may be used more than once.

For example, the following function is measure-preserving:

ϕc (σ1::(σ2::σ3)) = σ2::(σ1::σ3)

Or equivalently, written using explicit projections:

ϕc (σ) = πL (πR (σ))::(πL (σ)::πR (πR (σ)))

We will use this function in Theorem 6.9 to justify let-reordering. Another example is

ϕd (σ1::σ2) = σ2

which could be used to drop dead let bindings.
To characterize such functions, we need some auxiliary definitions:

• A path p = [d1, . . . ,dn] is a (possibly empty) list of directions (L or R). It represents a sequence
of projections, and it can be viewed as a function from S to S.

[d1, . . . ,dn](σ) = (πd1 ◦ · · · ◦ πdn) (σ)

• A finite shuffling function (FSF) ϕ is either a path or ϕ1::ϕ2 where ϕ1 and ϕ2 are FSFs. It

represents the disassembly and reassembly of entropy, and it can be viewed as a recursively

defined function from S to S.

ϕ (σ) =



p (σ) if ϕ = p

ϕ1 (σ)::ϕ2 (σ) if ϕ = ϕ1::ϕ2

• A sequence of paths is said to be non-duplicating if no path is the suffix of another path in

the sequence.

• An FSF is said to be non-duplicating if the sequence of paths appearing in its definition is

non-duplicating.

Lemma 6.5. Let p1, . . . ,pn be a non-duplicating sequence of paths and д : Sn → R+. Then∫
д(p1 (σ), . . . ,pn (σ)) dσ =

∫
. . .
∫
д(σ1, . . . ,σn) dσ1 . . . dσn

Proof. By strong induction on the length of the longest path in the sequence, and by the

definition of non-duplicating and Lemma 2.2 (Tonelli). □

Theorem 6.6. If ϕ is a non-duplicating FSF then ϕ is measure preserving.

Proof. We need to show that for any д : S→ R+,∫
д(ϕ (σ)) dσ =

∫
д(σ ′′) dσ ′′

If ϕ has paths p1, . . . ,pn , then we can decompose ϕ using s : Sn → S such that

ϕ (σ) = s (p1 (σ), . . . ,pn (σ))

where the pi are non-duplicating. Then by Lemma 6.5 it is enough to show that∫
. . .
∫
д(s (σ1, . . . ,σn)) dσ1 . . . dσn =

∫
д(σ ′′) dσ ′′

We proceed by induction on ϕ.

• case ϕ = p. This means that n = 1 and s is the identity function, so the equality holds trivially.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

• case ϕ = ϕ1::ϕ2. If m is the number of paths in ϕ1, then there must be s1 : Sm → S and
s2 : S

n−m → S such that

s (σ1, . . . ,σm ,σm+1, . . . ,σn) = s1 (σ1, . . . ,σm)::s2 (σm+1, . . . ,σn)

We can conclude that∫
. . .
∫
д(s (σ1, . . . ,σn)) dσ1 . . . dσn

=
∫
. . .
∫
д(s1 (σ1, . . . ,σm)::s2 (σm+1, . . . ,σn)) dσ1 . . . dσn

=
!

д(σ ::σ ′) dσ dσ ′ (IH twice)

=
∫
д(σ ′′) dσ ′′ (Property 2.1(4))

□

6.3 Equivalences that depend on rearranging entropy
We first prove a general theorem relating value-preserving transformations on the entropy space:

Theorem 6.7. Let e and e ′ be closed expressions, and let ϕ : S → S be a measure-preserving
transformation such that for all σ , K , τ , and A

eval(σ , e,K ,τ , 1,A) ≤ eval(ϕ (σ), e ′,K ,τ , 1,A)

Then (e, e ′) ∈ CTX.

Proof. Without loss of generality, assume e and e ′ are closed (otherwise apply a closing substi-

tution). By Theorem 5.8, it is sufficient to show that for any K and A, µ (e,K ,A) ≤ µ (e ′,K ,A). We

calculate:

µ (e,K ,A) =
!

eval(σ , e,K ,τ , 1,A) dσ dτ

≤
!

eval(ϕ (σ), e ′,K ,τ , 1,A) dσ dτ

=
!

eval(σ , e ′,K ,τ , 1,A) dσ dτ (ϕ is measure-preserving)

= µ (e ′,K ,A)

□

Theorem 6.8. Let e and e ′ be closed expressions, and let ϕ : S → S be a measure-preserving
transformation such that for all v andw ,

σ ⊢ e ⇓ v,w =⇒ ϕ (σ) ⊢ e ′ ⇓ v,w .

Then (e, e ′) ∈ CTX.

Proof. We will use Theorem 6.7. Assume eval(σ , e,K ,τ , 1,A) = r > 0. Hence by Theorem 2.11,

there exist quantities v ′,w ′, σ ′, and τ ′ such that

⟨σ | e | K | τ | 1⟩ →∗ ⟨σ ′ | v ′ | halt | τ ′ | r ⟩

with v ′ ∈ A. By Theorem 2.11 there exist v ′′, σ ′′, andw ′′ such that

σ ⊢ e ⇓ v ′′,w ′′ and ⟨σ ′′ | v ′′ | K | τ | w ′′⟩ →∗ ⟨σ ′ | v ′ | halt | τ ′ | r ⟩

By the assumption of the theorem, we have ϕ (σ) ⊢ e ′ ⇓ v ′′,w ′′.
Therefore, by Theorem 2.5, there is a σ ′′′ such that

⟨σ ′ | e | K | t | 1⟩ →∗ ⟨σ ′′′ | v ′′ | K | τ | w ′′⟩

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:21

We claim that eval(ϕ (s), e ′,K ,τ , 1,A) = r .We proceed by cases onK .We have ⟨σ ′′ | v ′′ | K | τ | w ′′⟩ →∗

⟨ϕ (s) | v ′ | halt | τ ′′ | r ⟩. If K = halt, this reduction must have length 0. Therefore v ′′ = v ′ ∈ A
andw ′′ = r , so eval(ϕ (s), e ′,K ,τ , 1,A) = r .
Otherwise assume K = (x → e3)K

′
. Then both ⟨σ ′′ | v” | K | t | w ′′⟩ and ⟨σ ′′′ | v” | K | t | w ′′⟩

take a step to ⟨πL (τ) | e3[v
′′/x] | K ′ | πR (τ) | w

′′⟩, whence eval(ϕ (s), e ′,K ,τ , 1,A) = eval(σ , e,K ,τ , 1,A) =
r , as desired, thus establishing the requirement of Theorem 6.7. □

Now we can finally prove the commutativity theorem promised at the beginning.

Theorem 6.9. Let e1 and e2 be closed expressions, and {x1,x2} ⊢ e0 exp. Then the expressions

letx1 = e1 in letx2 = e2 in e0

and
letx2 = e2 in letx1 = e1 in e0

are contextually equivalent.

Proof using big-step semantics. Let e and e ′ denote the two expressions of the theorem. We

will use Theorem 6.8 with the function ϕc (σ1::(σ2::σ3)) = σ2::(σ1::σ3), which preserves entropy as

shown in the preceding section. We will show that if σ ⊢ e ⇓ v,w , then ϕ (σ) ⊢ e ⇓ v,w .

Inverting σ ⊢ e ⇓ v,w , we know there must be a derivation

πL (σ) ⊢ e1 ⇓ v1,w1

πL (πR (σ)) ⊢ e2 ⇓ v2,w21 πR (πR (σ)) ⊢ e0[v1/x1][v2/x2] ⇓ v,w22

πR (σ) ⊢ letx2 = e2 in e0 ⇓ v,w2

σ ⊢ letx1 = e1 in letx2 = e2 in e0 ⇓ v,w

wherew = w1 ×w2 = w1 × (w21 ×w22).
Since e1 and e2 are closed, they evaluate to closed v1 and v2, and so the substitutions [v1/x1] and

[v2/x2] commute. Using that and the associativity and commutativity of multiplication, we can

rearrange the pieces to get

πL (πR (σ)) ⊢ e2 ⇓ v2,w21

πL (σ) ⊢ e1 ⇓ v1,w1 πR (πR (σ)) ⊢ e0[v2/x2][v1/x1] ⇓ v,w22

πL (σ)::πR (πR (σ)) ⊢ letx1 = e1 in e0 ⇓ v,w1 ×w22

πL (πR (σ))::πL (σ)::πR (πR (σ)) ⊢ letx2 = e2 in letx1 = e1 in e0 ⇓ v,w

The entropy in the last line is precisely ϕ (σ), so the requirement of Theorem 6.8 is established. □

Theorem 6.9 can also be proven directly from the small-step semantics using the interpolation

and genericity theorems (2.8 and 2.9) to recover the structure that the big-step semantics makes

explicit. The proof may be found in Appendix A.6.

Corollary 6.10 (Commutativity). Let e1 and e2 be expressions such that x1 is not free in e2 and
x2 is not free in e1. Then

(letx1 = e1 in letx2 = e2 in e0) =ctx (letx2 = e2 in letx1 = e1 in e0)

Proof. Same as Corollary 6.3: since all of the closed instances are equivalent by Theorem 6.9,

the open expressions are equivalent. □

The proofs of let-associativity and letid follow the same structure, except that associativity uses

ϕa ((σ1::σ2)::σ3) = σ1::(σ2::σ3) and letid uses ϕi (σ1::σ2) = σ1.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

6.4 Quasi-denotational Reasoning
In this section we give a powerful “quasi-denotational” reasoning tool that shows that if two

expressions are denote the same measure, they are contextually equivalent. This allows us to import

mathematical facts about real arithmetic and probability distributions.

To support this kind of reasoning, we need a notion of measure for a (closed) expression indepen-

dent of a program continuation. We define µ̂ (e,−) as a measure over arbitrary syntactic values—not
just real numbers as with µ (e,K ,−). This measure corresponds directly to the µe of ? and [[e]]S of ?.
The definition of µ̂ uses a generalization of eval from measurable sets of reals (A) to measurable

sets of syntactic values (V). This requires a measurable space for syntactic values; we take the

construction of ?, Figure 5 mutatis mutandis.

Definition 6.11.

µ̂ (e,V) =
!

eval(σ , e, halt,τ , 1,V) dσ dτ

eval(σ , e,K ,τ ,w,V) =




w ′ if ⟨σ | e | K | τ | w⟩ →∗ ⟨σ ′ | v | halt | τ ′ | w ′⟩,

where v ∈ V

0 otherwise

Our goal is to relate an expression’s measure µ̂ (e,−) with the measure of that expression with a

program continuation (µ (e,K ,−)). Then if two expressions have the same measures, we can use

CIU to show them contextually equivalent.

First we need a lemma about decomposing evaluations. It is easiest to state if we define the value

and weight projections of evaluation:

ev(σ , e,K ,τ) =



v when ⟨σ | e | K | τ | 1⟩ →∗ ⟨σ ′ | v | halt | τ ′ | w⟩

⊥ otherwise

ew(σ , e,K ,τ) =



w when ⟨σ | e | K | τ | 1⟩ →∗ ⟨σ ′ | v | halt | τ ′ | w⟩

0 otherwise

Note that

eval(σ , e,K ,τ , 1,V) = IV (ev(σ , e,K ,τ)) × ew(σ , e,K ,τ)

µ̂ (e,A) = µ (e, halt,A) for A ∈ ΣR

Lemma 6.12.

ev(σ , e,K ,τ) = ev(σ ′, ev(σ , e, halt,τ ′),K ,τ)

ew(σ , e,K ,τ) = ew(σ ′, ev(σ , e, halt,τ ′),K ,τ) × ew(σ , e, halt,τ ′)

Proof. By reduction-sequence surgery using Theorem 2.9. Note that the primed variables are

dead: σ ′ because ev returns a value and τ ′ because halt does not use its entropy stack. □

Next we need a lemma from measure theory:

Lemma 6.13. If µ and ν are measures and ν (A) =
∫
IA (f (x)) ×w (x) µ (dx), then∫

д(y) ν (dy) =
∫
д(f (x)) ×w (x) µ (dx)

Proof. By the pushforward and Radon-Nikodym lemmas from measure theory. □

Now we are ready for the main theorem, which says that µ (e,K ,−) can be expressed as an

integral over µ̂ (e,−) where K appears only in the integrand and e appears only in the measure of

integration.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:23

Theorem 6.14.

µ (e,K ,A) =
#

eval(σ ,v,K ,τ , 1,A) µ̂ (e,dv) dσ dτ

Proof. By integral calculations and Lemma 6.12:

µ (e,K ,A) =
!

eval(σ , e,K ,τ , 1,A) dσ dτ

=
!

IA (ev(σ , e,K ,τ)) × ew(σ , e,K ,τ) dσ dτ

=
%

IA (ev(σ , e,K ,τ)) × ew(σ , e,K ,τ) dσ ′dτ ′dσ dτ (µS (S) = 1)

=
%

IA (ev(σ
′, ev(σ , e, halt,τ ′),K ,τ)) × ew(σ ′, ev(σ , e, halt,τ ′),K ,τ)

× ew(σ , e, halt,τ ′) dσ ′dτ ′dσ dτ
(Lemma 6.12)

=
#

IA (ev(σ
′,v,K ,τ)) × ew(σ ′,v,K ,τ) µ̂ (e,dv) dσ ′dτ (Lemma 6.13)

=
#

eval(σ ′,v,K ,τ , 1,A) µ̂ (e,dv) dσ ′dτ

□

As a consequence, two real-valued expressions are contextually equivalent if their expression

measures agree:

Theorem 6.15 (µ̂ is qasi-denotational). If e and e ′ are closed expressions such that
• e and e ′ are almost always real-valued—that is, µ̂ (e,Values − R) = 0 and likewise for e ′—and
• for all A ∈ ΣR, µ̂ (e,A) = µ̂ (e ′,A)

then e =ctx e ′.

Proof. The two conditions together imply that µ̂ (e,−) = µ̂ (e ′,−).
We use Theorem 5.8; we must show (e, e ′) ∈ CIU and (e ′, e) ∈ CIU. Choose a continuation K

and a measurable set A ∈ ΣR. Then

µ (e,K ,A) =
#

eval(σ ,v,K ,τ , 1,A) µ̂ (e,dv) dσ dτ (by Lemma 6.14)

=
#

eval(σ ,v,K ,τ , 1,A) µ̂ (e ′,dv) dσ dτ (µ̂ (e,−) = µ̂ (e ′,−))

= µ (e ′,K ,A) (by Lemma 6.14 again)

The proof of (e ′, e) ∈ CIU is symmetric. □

Theorem 6.15 allows us to import many useful facts from mathematics about real numbers, real

operations, and real-valued probability distributions. For example, here are a few equations useful

in the transformation of the linear regression example from Section 1:

• x + y = y + x
• (y + x) − z = x − (z − y)
• normalpdf(x − y; 0, s) = normalpdf(y;x , s)
• The closed-form posterior and normalizer for a normal observation with normal conjugate

prior [?]:

letm = normal(m0, s0) in
let _ = factor normalpdf(d ;m, s) in
m

=
letm = normal(

(
1

s2
0

+ 1

s2

)−1 (
m0

s2
0

+ d
s2

)
,
(
1

s2
0

+ 1

s2

)−1/2
) in

let _ = factor normalpdf(d ;m0, (s
2

0
+ s2)1/2) in

m

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Note that we must keep the normalizer (the marginal likelihood of d); it is needed to score

the hyper-parametersm0 and s0.

Section 7.2 contains an additional application of Theorem 6.15.

7 FORMALLY RELATEDWORK
Our language model differs from other models of probabilistic languages, such as that of ?, in the

following ways. Our language

• uses splitting rather than sequenced entropy,

• requires let-binding of nontrivial intermediate expressions, and

• directly models only the standard uniform distribution.

These differences, while they make our proofs easier, do not amount to fundamental differences

in the meaning of probabilistic programs. In this section, we show how our semantics corresponds

to other formulations.

7.1 Splitting versus Sequenced Entropy
Let the sequenced entropy space T be the space of finite sequences (“traces”) of real numbers [?,
Section 3.3]:

T =
⋃
n≥0

Rn

Its stock measure µT is the sum of the standard Lebesgue measures on Rn (but restricted to the

Borel algebras on Rn rather than their completions with negligible sets). Note that µT is infinite.
We write ϵ for the empty sequence and r ::t for the sequence consisting of r followed by the

elements of t . Integration with respect to µT has the following property:∫
f (t) µT (dt) = f (ϵ) +

!
f (r ::t) µT (dt) λ(dr)

We define →̈, ev̈al(t , e,K ,w,A), and µ̈ (e,K ,A)2 as the sequenced-entropy analogues of→, eval,

and µ. Here are some representative rules of →̈:

⟨t | letx = e1 in e2 | K | w⟩ →̈ ⟨t | e1 | (x → e2)K | w⟩

⟨t | v | (x → e2)K | w⟩ →̈ ⟨t | e2[v/x] | K | w⟩

⟨r ::t | sample | K | w⟩ →̈ ⟨t | cr | K | w⟩ (when 0 ≤ r ≤ 1)

⟨t | factor cr | K | w⟩ →̈ ⟨t | cr | K | w × r ⟩ (when r > 0)

and here are the definitions of ev̈al and µ̈:

ev̈al(t , e,K ,w,A) =



w ′ if ⟨t | e | K | w⟩→̈∗⟨ϵ | r | halt | w ′⟩, where r ∈ A

0 otherwise

µ̈ (e,K ,A) =
∫
ev̈al(t , e,K , 1,A) µT (dt)

Note that an evaluation counts only if it completely exhausts its entropy sequence t . The approxi-
mants ev̈al

(n)
and µ̈ (n) are defined as before; in particular, they are indexed by number of steps, not

by random numbers consumed.

In general, the entropy access pattern is so different between split and sequenced entropy models

that there is no correspondence between individual evaluations, and yet the resulting measures are

equivalent.

Lemma 7.1. If ⟨t | e |K |w⟩→̈⟨t ′ | e ′ |K ′ |w ′⟩, then ev̈al(p+1) (t , e,K ,w,A) = ev̈al
(p) (t ′, e ′,K ′,w ′,A).

2
The dots are intended as a mnemonic for sequencing.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:25

Proof. By the definition of ev̈al
(p+1)

. □

Lemma 7.2. The equations of Lemma 2.15 also hold for µ̈ (n) and µ̈.

Proof. By definition of µ̈ and Lemma 7.1. In fact, in contrast to Lemma 2.15, most of the cases

are utterly straightforward, because no entropy shuffling is necessary. The sample case is different,

because it relies on the structure of the entropy space:

µ̈ (e,K ,A) =
∫
ev̈al(t , sample,K , 1,A) d (t)

= ev̈al(ϵ, sample,K , 1,A) +
!

ev̈al(r ::t , sample,K , 1,A) µT (dt) λ(dr)

= 0 +
!

I[0,1] (r) × ev̈al(t , cr ,K , 1,A) µT (dt) λ(dr)

=
∫

1

0
µ̈ (cr ,K ,A) λ(dr)

□

Theorem 7.3 (µ̈ = µ). For all e , K , and A ∈ ΣR, µ̈ (e,K ,A) = µ (e,K ,A).

Proof. We first show µ̈ (n) = µ (n) by induction on n. The base case is µ̈ (0) (e,K ,A) = µ (0) (e,K ,A).
There are two subcases: if e = r and K = halt, then both results are IA (r). Otherwise, both
measures are 0. Lemma 7.2 handles the inductive case. Finally, since the approximants are pointwise

equivalent, their limits are equivalent. □

7.2 Distributions
The language of ? supports multiple real-valued distributions with real parameters; sampling from

a distribution, in addition to consuming a random number, multiplies the current execution weight

by the density of the distribution at that point. In this section we show that sample is equally

expressive, given the inverse-CDF operations.

For each real-valued distribution of interest with n real-valued parameters, we add the following

to the language: a sampling form D(v1, . . . ,vn) and operations Dpdf, Dcdf, and Dinvcdf represent-
ing the distribution’s density function, cumulative distribution function, and inverse cumulative

distribution function, respectively. The operations take n + 1 arguments; by convention we write a

semicolon before the parameters. For example, gammapdf(x ;k, s) represents the density at x of the

gamma distribution with shape k and scale s .
We define the semantics of D using the sequenced-entropy framework by extending →̈ with the

following rule schema:

⟨r ::t | D(r1, . . . , rn) | K | w⟩ →̈ ⟨t | r | K | w ×w ′⟩ wherew ′ = Dpdf(r ; r1, . . . , rn) > 0

Theorem 7.4. D(v1, . . . ,vn) and Dinvcdf(sample;v1, . . . ,vn) are CIU-equivalent (and thus
contextually equivalent).

Proof. By Theorem 6.15. Both expressions are real-valued.Wemust show that their realmeasures

are equal. We abbreviate the parameters as v⃗ . The result follows from the relationship between the

density function and the cumulative density function.

µ̂ (Dinvcdf(sample; v⃗),A) =
∫

1

0
IA (Dinvcdf(x ; v⃗)) dx

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

We change the variable of integration with x = Dcdf(t ; v⃗) and
dx
dt = Dpdf(t ; v⃗):

=
∫ ∞
−∞

IA (Dinvcdf(Dcdf(t ; v⃗); v⃗)) × Dpdf(t ; v⃗) dt

=
∫ ∞
−∞

IA (t) × Dpdf(t ; v⃗) dt

= µ̂ (D(v⃗),A)

□

7.3 From let-style to direct-style
Let us call the language of Section 2.1 L (for “let”) and the direct-style analogue D (for “direct”).

Once again following ?, we give the semantics of D using a CS-style abstract machine, in contrast

to the CSK-style machines we have used until now [?].
Here are the definitions of expressions and evaluation contexts for D:

e ::= v | letx = e in e | (e e) | op (e, . . . , e) | if e then e else e

E ::= [] | letx = E in e | (E e) | (v E) | op(v, . . . ,E, e, . . .) | if E then e else e

Here are some representative rules for its abstract machine:

⟨t | E[((λx .e) v)] | w⟩ →D ⟨t | E[e[v/x]] | w⟩

⟨r ::t | E[sample] | w⟩ →D ⟨t | E[cr] | w⟩

And here are the corresponding definitions of evaluation and measure:

evalD (t , e,w,A) =



w ′ if ⟨t | e | w⟩ →∗
D
⟨ϵ | r | w ′⟩, where r ∈ A

0 otherwise

µD (e,A) =
∫
evalD (t , e, 1,A) µT (dt)

To show that our L corresponds withD, we define a translation tr[[−]] : D → L. More precisely,

tr[[−]] translates D-expressions to L-expressions, such as

tr[[r]] = r

tr[[λx .e]] = λx .tr[[e]]

tr[[(e1 e2)]] = letx1 = tr[[e1]] in letx2 = tr[[e2]] in (x1 x2)

tr[[letx = e1 in e2]] = letx = tr[[e1]] in tr[[e2]]

and it translates D-evaluation contexts to L-continuations, such as

tr[[[]]] = halt

tr[[E[([] e2)]]] = (x1 → letx2 = e2 in (x1 x2))tr[[E]]

tr[[E[(v1 [])]]] = (x2 → (v1 x2))tr[[E]]

tr[[E[letx = [] in e]]] = (x → e)tr[[E]]

Now we demonstrate the correspondence of evaluation and then lift it to measures.

Lemma 7.5 (Simulation). evalD (t ,E[e],w,A) = ev̈al(t , tr[[e]], tr[[E]],w,A)

Proof. From the CS-style machine above we can derive a corresponding CSK machine (call it

→Dcsk); the technique is standard [?]. Then it is straightforward to show that

⟨t | e | K | w⟩ →Dcsk ⟨t
′ | e ′ | K ′ | w⟩ =⇒ ⟨t | tr[[e]] | tr[[K]] | w⟩→̈∗⟨t ′ | tr[[e ′]] | tr[[K ′]] | w ′⟩

and thus the evaluators agree. □

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:27

Theorem 7.6. µD (E[e],A) = µ (tr[[e]], tr[[E]],A)

Proof. By definition of µD and Lemmas 7.3 and 7.5. □

The equational theory forD is the pullback of theL equational theory over tr[[−]]. Compare with

?, which explores the pullback of λβη and related calculi over the call-by-value CPS transformation.

For our language D, associativity and commutativity combine to yield a generalization of their

βflat and β ′Ω equations to “single-evaluation” contexts S :

S ::= [] | (S e) | (e S) | letx = S in e | letx = e in S
| op (e, . . . , S, e, . . .) | if S then e else e

letx = e in S[x] =ctx S[e] when x < FV (S) ∪ FV (e) (letS)

8 INFORMALLY RELATEDWORK
The construction of our logical relation follows the tutorial of ? on the construction of biorthogonal,

step-indexed [?] logical relations. Instead of termination, we use the program measure as the

observable behavior, following ?. But unlike that work, where the meaning of an expression is a

measure over arbitrary syntactic values, we define the meaning of an expression and continuation

together (representing a whole program) as a measure over the reals. This allows us to avoid the

complication of defining a relation on measurable sets of syntactic values [?, the A relation].

There has been previous work on contextual equivalence for probabilistic languages with only

discrete random variables. In particular, ? define a step-indexed, biorthogonal logical relation

whose structure is similar to ours, except that they sum where we integrate, and they use the

probability of termination as the basic observation whereas we compare measures. Others have

applied bisimulation techniques [??] to languages with discrete choice; ? have constructed fully

abstract models for PCF with discrete probabilistic choice using probabilistic coherence spaces.

? gives a denotational semantics for a higher-order, typed language with continuous random

variables, scoring, and normalization but without recursion. Using a variant of that denotational

semantics, ? proves the soundness of the let-reordering transformation for a first-order language.

A ADDITIONAL PROOFS
A.1 From Section 2.3

Proof of 2.7. By induction on i . At i = 1, property (b) is true. So assume the proposition at i ,
and check it at i + 1. If property (a) holds for some j ≤ i , then (a) holds at i + 1. Otherwise, assume

that property (b) holds at i , that is, assume that (Ki ,σi) ⪰ (K1,σ1).
If ei is not a value, then either (Ki+1,τi+1) = (Ki ,τi), or else Ki+1 = (x → e)Ki and τi+1 = σ ′::τi

for some x , e and σ ′, in which case (Ki+1,τi+1) ⪰ (K1,τ1) by Rule 2 above. So the property holds at

i + 1.
If ei is a value, then consider the last step in the derivation of (Ki ,τi) ⪰ (K1,τ1). If the last step

was Rule 1, then property (a) holds at i and therefore it holds at i + 1. If the last step was Rule 2,

then (Ki ,τi) = ((x → e)K ′,σ ′::τ ′) for some σ ′, where (K ′,τ ′) ⪰ (K1,τ1). So the configuration at

step i is a return from a let, and (Ki+1,τi+1) = (K ′,τ ′) ⪰ (K1,σ1) by inversion on Rule 2, so again

the property holds at i + 1. □

A.2 From Section 2.4
Proof of 2.13 (Measurability). The argument goes as follows. Following ?, Figure 5, turn

the set of expressions and continuations into a metric space by setting d (cr , cr ′) = |r − r ′ |;
d ((e1 e2), (e

′
1
e ′
2
) = d (e1, e

′
1
) + d (e2, e

′
2
), etc., setting d (e, e ′) = ∞ if e and e ′ are not the same

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

up to constants. Extend this to become a measurable space on configurations by constructing the

product space, using the Borel sets for the weights and the natural measurable space on the entropy

components. Note that in this space, singletons are measurable sets.

The next-configuration function next-state : Config→ Config is measurable; the proof follows

the pattern of ?, Lemmas 72–84. It follows that the n-fold composition of next-state, next-state(n) is
measurable, as is finish ◦ next-state(n) , where finish extracts the weight of halted configurations.

Now we consider the measurability of eval. Let B be a Borel set in the reals and set

C = {(σ , e,K ,τ ,w) | eval(σ , e,K ,τ ,w,A) ∈ B}

=
⋃
n

((finish ◦ next-state(n))−1 (B))

SinceC is equal the countable union of measurable sets, it is measurable, and thus eval is measurable

with respect to the product space of all of its arguments. To show eval(σ , e,K ,τ ,w,A) is measurable

with respect to (σ ,τ) for any fixed e , K ,w , and A, we note that

(σ ,τ 7→ eval(σ , e,K ,τ ,w,A)) = eval ◦ (σ ,τ 7→ (σ , e,K ,τ ,w,A))

The function (σ ,τ 7→ (σ , e,K ,τ ,w,A)) is measurable, as it is just a product of constant and identity

functions. Thus the composition is measurable. □

Proof for 2.15 (sample).

µ (p+1) (sample,K ,A)

=
!

eval
(p+1) (σ , sample,K ,τ , 1,A) dσ dτ

=
!

eval
(p) (πRσ , cπU (πL (σ)),K ,τ , 1,A) dσ dτ (Lemma 2.3)

=
#

eval
(p) (σ2, cπU (σ1),K ,τ , 1,A) dσ1 dσ2 dτ (Property 2.1.4)

=
#

eval
(p) (σ2, cπU (σ1),K ,τ , 1,A) dσ2 dτ dσ1 (Lemma 2.2 twice)

=
∫
µ (p) (cπU (σ1),K ,A) dσ1

=
∫

1

0
µ (p) (cr ,K ,A) dr (Property 2.1.2)

□

A.3 From Section 3
Proof of 3.1 (Variables). We must show that for all n and (γ ,γ ′) ∈ GΓ

n , (γ (x),γ
′(x)) ∈ Vn . But

that is true by the definition of GΓ
n . □

Proof of 3.1 (λ). Without loss of generality, assume x < Γ, and hence for any γ , (λx .e)γ = λx .eγ .
We must show, for all n, if (γ ,γ ′) ∈ GΓ

n , then (λx .eγ , λx .e ′γ ′) ∈ Vn .
Following the definition ofVn , choosem < n and (v,v ′) ∈ Vm .Wemust show that (eγ [v/x], e ′γ ′[v ′/x]) ∈ Em .

Since m < n, we have (γ ,γ ′) ∈ GΓ
m and (v,v ′) ∈ Vm . Therefore (γ [v/x],γ ′[v ′/x]) ∈ GΓ,x

m , so

(eγ [v/x], e ′γ ′[v ′/x]) ∈ Em by the definition of Em . □

Proof of 3.1 (Value-compatibility implies expression-compatibility). Choosen and (γ ,γ ′) ∈
GΓ
n , so we have (vγ ,v ′γ ′) ∈ Vn . We must show that (vγ ,v ′γ ′) ∈ En .
Following the definition of En , choose m ≤ n, (K ,K ′) ∈ Km , and A. Since m ≤ n, we have

(vγ ,v ′γ ′) ∈ Vm , so µ (m) (v,K ,A) ≤ µ (v ′,K ′,A). Since we have this for allm ≤ n, we conclude that
(vγ ,v ′γ ′) ∈ En . □

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:29

Proof of 3.1 (application). Choose n, and assume (γ ,γ ′) ∈ GΓ
n . Then (v1γ ,v

′
1
γ ′) ∈ Vn and

(v2γ ,v
′
2
γ ′) ∈ Vn . We must show ((v1γ v2γ), (v

′
1
γ ′ v ′

2
γ ′)) ∈ En

If v1γ is of the form cr , then µ (m) (v1γ ,K ,A) = 0 for any m, K , and A, so by Lemma 2.14 the

conclusion holds.

Otherwise, assume v1γ is of the form λx .e , and so v ′
1
γ ′ is of the form λx .e ′. So choosem ≤ n and

A, and let (K ,K ′) ∈ Km . We must show that

µ (m) ((λx .eγ v2γ),K ,A) ≤ µ ((λx .e ′γ ′ v ′
2
γ ′),K ′,A).

Ifm = 0 the left-hand side is 0. So assumem ≥ 1. Since all the relevant terms are closed and

the relations on closed terms are antimonotonic in the index, we have (λx .eγ , λx .e ′γ ′) ∈ Vm and

(v1γ ,v
′
1
γ ′) ∈ Vm−1. Therefore (eγ [v2γ/x], e

′γ ′[v ′
2
γ ′/x]) ∈ Em−1.

Now, ⟨σ | (λx .eγ v2γ) | K | τ | w⟩ → ⟨σ | eγ [v2γ/x] | K | τ | w⟩, and similarly for the primed

side. So we have

µ (m) ((λx .eγ v2γ),K ,A) = µ (m−1) (eγ [v2γ/x],K ,A) (Lemma 2.15)

≤ µ (e ′γ ′[v ′
2
γ ′/x],K ′,A) (by (eγ [v2γ/x], e

′γ ′[v ′
2
γ ′/x]) ∈ Em−1)

= µ ((λx .e ′γ ′ v ′
2
γ ′),K ′,A)

□

Proof of 3.1 (operations). Choose n, (γ ,γ ′) ∈ GΓ
n ,m ≤ n, (K ,K ′) ∈ Km , and A.

Since the arguments are related, for each i either viγ and v ′iγ
′
are the same real number cri or

both are closures. So either

δ (opk ,v1γ , . . . ,vkγ) = δ (opk ,v ′
1
γ ′, . . . ,v ′kγ

′) = cr

or both are undefined, in which case both measures are 0. Assuming the result is defined andm > 0,

µ (m) (opk (v1γ , . . . ,vkγ),K ,A)

= µ (m−1) (cr ,K ,A) (Lemma 2.15)

≤ µ (cr ,K
′,A) (by definition of Km)

= µ (opk (v ′
1
γ ′, . . . ,v ′

1
γ ′),K ′,A)

□

Proof of 3.1 (halt). We must show that for any m and any (v,v ′) ∈ Vn , µ
(m) (v, halt,A) ≤

µ (v ′, halt,A). But (v,v ′) ∈ Vn implies either v = v ′ = cr or both v and v ′ are λ-expressions, in
which case both sides of the inequality are 0. □

Proof of 3.1 (continuations). Choose n,m ≤ n, (v,v ′) ∈ Vm , and A ∈ ΣR. We need to show

µ (m) (v, (x → e)K ,A) ≤ µ (v ′, (x → e ′)K ′,A). Assumem > 0, otherwise trivial.

By Lemma 2.15, the left-hand side is µ (m−1) (e[v/x],K ,A) and the right-hand side is µ (e ′[v ′/x],K ,A).
The inequality follows from (e, e ′) ∈ E{x } . □

To establish compatibility for let, we need some finer information:

Lemma A.1. Given n, and e , e ′ with a single free variable x , with the property that

(∀p ≤ n) (∀v,v ′)[(v,v ′) ∈ Vp =⇒ (e[v/x], e ′[v ′/x]) ∈ Ep]

Then for allm ≤ n,
(K ,K ′) ∈ Km =⇒ ((x → e)K , (x → e ′)K ′) ∈ Km

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

Proof. Choosem ≤ n and (K ,K ′) ∈ Km . To show ((x → e)K , (x → e ′)K ′) ∈ Km , choose p ≤ m,

(v,v ′) ∈ Vp , and A.

We must show µ (p) (v, (x → e)K ,A) ≤ µ (v ′, (x → e ′)K ′,A).
If p = 0, the result is trivial. So assume p > 0 and calculate:

µ (p) (v, (x → e)K ,A)

= µ (p−1) (e[v/x],K ,A) (Lemma 2.15)

≤ µ (e ′[v ′/x],K ′,A)

= µ (v ′, (x → e ′)K ′,A)

where the inequality follows from (v,v ′) ∈ Vp ⊆ Vp−1 and (K ,K ′) ∈ Km ⊆ Kp ⊆ Kp−1. □

Now we can prove compatibility under let.

Proof of 3.1 (let). Choose n and (γ ,γ ′) ∈ GΓ
n . So we have (e1γ , e

′
1
γ ′) ∈ Em for allm ≤ n.

Furthermore, if m ≤ n and (v,v ′) ∈ Vm , then (γ [x := v],γ ′[x := v ′]) ∈ GmΓ,x . Therefore
(e2γ [x := v], e ′

2
γ ′[x := v ′]) ∈ Em . So (e2γ , e

′
2
γ ′) satisfies the hypothesis of Lemma A.1.

So choose m ≤ n and (K ,K ′) ∈ Km . Without loss of generality, assume m > 0. Then by

Lemma A.1 we have

((x → eγ)K , (x → e ′γ ′)K ′) ∈ Km (3)

Choose A. Now we can calculate:

µ (m) (letx = e1γ in e2γ ,K ,A) = µ (m−1) (e1γ , (x → e2γ)K ,A) (Lemma 2.15)

≤ µ (e ′
1
γ ′, (x → e ′

2
γ ′)K ′,A)

= µ (letx = e ′
1
γ ′ in e2γ

′,K ,A)

where the inequality follows from (e1γ , e
′
1
γ ′) ∈ Em and (3). □

Proof of 3.1 (if). Choose n, (γ ,γ ′) ∈ GΓ
n , m ≤ n, (K ,K ′) ∈ Km , and A ∈ ΣR. Assume that

m > 0, otherwise the result follows trivially.

Suppose vγ = v ′γ ′ = cr , and if r > 0. Then

µ (m) (if vγ then e1γ else e2γ ,K ,A) = µ (m−1) (e1γ ,K ,A) (Lemma 2.15)

≤ µ (e ′
1
γ ,K ′,A)

= µ (if v ′γ ′ then e ′
1
γ ′ else e ′

2
γ ′,K ′,A)

Likewise for r ≤ 0 and e2, e
′
2
.

Otherwise, neither vγ nor v ′γ ′ is a real constant, and both expressions are stuck and have

measure 0. □

Everything so far is just an adaptation of the deterministic case. Now we consider our two effects.

Proof of 3.1 (factor). Choosen and (γ ,γ ′) ∈ GnΓ .Wemust show (factor vγ , factor v ′γ ′) ∈ En .

Since (v,v ′) ∈ VΓ
, it must be that (vγ ,v ′γ ′) ∈ Vn . So either vγ = v ′γ ′ = cr for some r , or vγ is a

lambda-expression.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:31

Assume vγ = v ′γ ′ = cr for some r > 0. Choose 1 ≤ m ≤ n, (K ,K ′) ∈ Km , and A ∈ ΣR. Then we

have

µ (m) (factor cr ,K ,A) = r × µ
(m−1) (cr ,K ,A) (Lemma 2.15)

≤ r × µ (cr ,K
′,A)

= µ (factor cr ,K
′,A)

So (factor cr , factor cr) ∈ En as desired.

Ifvγ is cr for r ≤ 0 or a lambda-expression, then factor vγ is stuck, so µ (m) (factor cr ,K ,A) = 0

and the desired result holds again. □

Proof of 3.1 (sample). It will suffice to show that for allm, (K ,K ′) ∈ Km , and A ∈ ΣR,

µ (m) (sample,K ,A) ≤ µ (sample,K ′,A)

Atm = 0, the left-hand side is 0 and the result is trivial. Ifm > 0, then

µ (m) (sample,K ,A) =
∫
µ (m−1) (cπU (σ),K ,A) dσ (Lemma 2.15)

≤
∫
µ (cπU (σ),K

′,A) dσ

= µ (sample,K ′,A)

□

A.4 From Section 5
Proof of 5.2. Let K1 denote (z → (z v))K , and let K ′

1
denote (z → (z v ′))K ′. To show

(K1,K
′
1
) ∈ Kn+2, choose 2 ≤ m ≤ n + 2, (u,u ′) ∈ Vm , and A ∈ ΣR. We must show

µ (m) (u,K1,A) ≤ µ (u ′,K ′
1
,A)

There are two possibilities for (u,u ′) ∈ Vm :
1.u = u ′ = cr . Then ⟨σ | cr | K1 | τ | w⟩ → ⟨σ | (cr v) | K | τ | w⟩, which is stuck, so µ

(m) (u,K1,A) =
0 ≤ µ (u ′,K ′

1
,A).

2. u = λx .e and u ′ = λx .e ′ where for all p < m and all (u1,u
′
1
) ∈ Vp , (e[u1/x], e

′
[u ′

1
/x]) ∈ Ep .

Now, for any σ andw , we have

⟨σ | λx .e | K1 | τ | w⟩

→ ⟨σ | (λx .e v) | K | τ | w⟩

→ ⟨σ | e[v/x] | K | τ | w⟩

so µ (m) (λx .e,K1,A) = µ (m−2) (e[v/x],K ,A), and similarly on the primed side (but with µ (−,−,−)
in place of µ (m) (−,−,−) and with equality in place of ≤).

Next, observem − 2 ≤ n, so (v,v ′) ∈ Vm−2 and hence (e[v/x], e ′[v ′/x]) ∈ Em−2 by the property

of e and e ′ above. Therefore, µ (m−2) (e[v/x],K ,A) ≤ µ (e ′[v ′/x],K ′,A).
Putting the pieces together, we have

µ (m) (λx .e,K1,A)

= µ (m−2) (e[v/x],K ,A)

≤ µ (e ′[v ′/x],K ′,A)

= µ (λx .e ′,K ′
1
,A)

□

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

A.5 From Section 6.2
Proof of 6.5. By Tonelli’s Theorem (Lemma 2.2) and the fact that д is arbitrary we can freely

rearrange the parameters to д without loss of generality. In particular, all paths ending with L are

assumed to come before any paths ending with R.
Let l be the length of the longest path or 0 if n = 0. We proceed by strong induction on l .

• case l = 0. For every i , we know that pi must be the empty list. Since we also know that the

paths are non-duplicating it follows that n ≤ 1. If n = 1 then the equality holds trivially, and

if n = 0 then by Property 2.1(1) we get∫
д() dσ = д()

• case l > 0. Since at least one path is not the empty list, it follows from non-duplication that

no path is the empty list. For each i ∈ {1, . . . ,n}, let qi be pi with the last direction removed.

Assume without loss of generality that p1 . . .pk end with L and pk+1 . . .pn end with R, so
pi (σ) = qi (πL (σ)) for 1 ≤ i ≤ k and and pi (σ) = qi (πR (σ)) for k + 1 ≤ i ≤ n. Then we can

conclude:∫
д(p1 (σ), . . . ,pn (σ)) dσ

=
∫
д(q1 (πL (σ)), . . . ,qk (πL (σ)),qk+1 (πR (σ)), . . . ,qn (πR (σ))) dσ

=
!

д(q1 (σ
′), . . . ,qk (σ

′),qk+1 (σ
′′), . . . ,qn (σ

′′)) dσ ′dσ ′′ (Property 2.1(4))

Since every qi is strictly shorter than pi , we can apply the induction hypothesis, first at σ ′

and then at σ ′′.

=
∫ (∫

. . .
∫
д(σ1, . . . ,σk ,qk+1 (σ

′′), . . . ,qn (σ
′′)) dσ1 . . . dσk

)
dσ ′′ (IH)

=
∫
. . .
∫
д(σ1, . . . ,σn) dσ1 . . . dσn (IH)

□

A.6 From Section 6.3
Proof of 6.9 using Small-Step Semantics. Let e and e ′ denote the two expressions of the

theorem. We will use Theorem 6.7. To do so, we will consider the evaluations of e and e ′. For each
evaluation, we will use the Interpolation Theorem to define waypoints in the evaluation. We then

use the Genericity Theorem to establish that the ending configurations are the same.

We begin by watching the first expression evaluate in an arbitrary continuation K , saved entropy
τ , and initial weightw :

⟨σ | letx1 = e1 in letx2 = e2 in e0 | K | τ | w⟩

→ ⟨πL (σ) | e1 | (x1 → letx2 = e2 in e0)K | πR (σ)::τ | w⟩

→∗ ⟨σ1 | v1 | (x1 → letx2 = e2 in e0)K | πR (σ)::τ | w1 ×w⟩ (Interpolation)

→ ⟨πR (σ) | letx2 = e2 in e0[v1/x1] | K | τ | w1 ×w⟩

→ ⟨πL (πR (σ)) | e2 | (x2 → e0[v1/x1])K | πR (πR (σ))::τ | w1 ×w⟩

→∗ ⟨σ2 | v2 | (x2 → e0[v1/x1])K | πR (πR (σ))::τ | w2 ×w1 ×w⟩ (Interpolation)

→ ⟨πR (πR (σ)) | e0[v1/x1][v2/x2] | K | τ | w2 ×w1 ×w⟩

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:33

Next, we outline the analogous computation with the second expression e ′, starting in a different

entropy σ ′, but with the same continuation K , saved entropy τ , and weightw . We proceed under

the assumption that e ′ reduces to a value; we will validate this assumption later.

⟨σ ′ | letx2 = e2 in letx1 = e1 in e0 | K | τ | w⟩

→ ⟨πL (σ
′) | e2 | (x2 → letx1 = e1 in e0)K | πR (σ

′)::τ | w⟩

→∗ ⟨σ ′
2
| v ′

2
| (x2 → letx1 = e1 in e0)K | πR (σ

′)::τ | w ′
2
×w⟩ (Interpolation)

→ ⟨πR (σ
′) | letx1 = e1 in e0[v

′
2
/x2] | K | τ | w

′
2
×w⟩

→ ⟨πL (πR (σ
′)) | e1 | (x1 → e0[v

′
2
/x2])K | πR (πR (σ

′))::τ | w ′
2
×w⟩

→∗ ⟨σ ′
1
| v ′

1
| (x1 → e0[v

′
2
/x2])K | πR (πR (σ

′))::τ | w ′
1
×w ′

2
×w⟩ (Interpolation)

→ ⟨πR (πR (σ
′)) | e0[v

′
2
/x2][v

′
1
/x1] | K | τ | w

′
1
×w ′

2
×w⟩

To get these computations to agree, we choose σ ′ so that the entropies for e1, e2 and the substi-

tution instances of e0 are the same in both calculations. So we choose σ ′ such that

πL (πR (σ
′)) = πL (σ) (entropy for e1)

πL (σ
′) = πL (πR (σ)) (entropy for e2)

πR (πR (σ
′)) = πR (πR (σ)) (entropy for e0)

This can be accomplished by using ϕc from Section 6.2; we set

σ ′ = ϕc (σ) = πL (πR (σ))::(πL (σ)::πR (πR (σ)))

Applying the genericity theorem at e1 we conclude that that e1 reduces to a value at entropy

πL (πRσ
′)) = πL (σ) and continuation (x1 → e0[v

′
2
/x2])K , that v1 = v

′
1
, and thatw1 = w

′
1
. Similarly

applying the genericity theorem at e2 we conclude that e2 reduces to a value v ′
2
= v2 andw2 = w

′
2
.

So the two calculations culminate in identical configurations.

So we conclude that

eval(σ , e,K ,τ , 1,A) = eval(ϕc (σ), e
′,K ,τ , 1,A)

ϕc is a non-duplicating FSF, so it is measure-preserving by Theorem 6.6. Then by Theorem 6.7,

(e, e ′) ∈ CTX. The converse holds by symmetry. □

B EXAMPLE TRANSFORMATION SKETCH
This section gives a sketch of the transformation of the linear regression example from Section 1.

Here is the initial program:

A = normal(0, 10)
B = normal(0, 10)
f(x) = A*x + B
factor normalpdf(f(2) - 2.4; 0, 1)
factor normalpdf(f(3) - 2.7; 0, 1)
factor normalpdf(f(4) - 3.0; 0, 1)

Our first goal is to reshape the program to expose the conjugacy relationship between B’s prior
and the observations. Specifically, we need the observations to be expressed with B as the mean.

The following steps perform the reshaping.

Inline f using letv :

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb

A = normal(0, 10)
B = normal(0, 10)
factor normalpdf((A*2 + B) - 2.4; 0, 1)
factor normalpdf((A*3 + B) - 2.7; 0, 1)
factor normalpdf((A*4 + B) - 3.0; 0, 1)

Rewrite using ((y+x)−z) = (x−(z−y)) three times. (This combines associativity and commutativity

of + as well as other facts relating + and −.)

A = normal(0, 10)
B = normal(0, 10)
factor normalpdf(B - (2.4 - A*2); 0, 1)
factor normalpdf(B - (2.7 - A*3); 0, 1)
factor normalpdf(B - (3.0 - A*4); 0, 1)

Rewrite using normalpdf(x − y; 0, s) = normalpdf(y;x , s) three times.

A = normal(0, 10)
B = normal(0, 10)
factor normalpdf(2.4 - A*2; B, 1)
factor normalpdf(2.7 - A*3; B, 1)
factor normalpdf(3.0 - A*4; B, 1)

Now the conjugacy relationship is explicit. The equation from Section 6.4 gives a closed-form

solution to the posterior with respect to a single observation, and it applies to a specific shape

of expression. Our new goal is to reshape the program so the conjugacy transformation can be

applied to the first observation.

First, apply letv in reverse, after the first occurrence of B:

A = normal(0, 10)
B = normal(0, 10)
factor normalpdf(2.4 - A*2; B, 1)
B1 = B
factor normalpdf(2.7 - A*3; B1, 1)
factor normalpdf(3.0 - A*4; B1, 1)

Use letS to pull out the argument to the first normalpdf:

A = normal(0, 10)
err1 = 2.4 - A*2
B = normal(0, 10)
factor normalpdf(err1; B, 1)
B1 = B
factor normalpdf(2.7 - A*3; B1, 1)
factor normalpdf(3.0 - A*4; B1, 1)

Apply let-associativity twice (viewing the factor statement as an implicit let with an unused

variable).

A = normal(0, 10)
err1 = 2.4 - A*2
B1 = { B = normal(0, 10)

factor normalpdf(err1; B, 1)
B }

factor normalpdf(2.7 - A*3; B1, 1)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Contextual Equivalence for a Probabilistic Language with Continuous Random Variables and
Recursion 1:35

factor normalpdf(3.0 - A*4; B1, 1)

Now the right-hand side of the B1 binding is in the right shape. We apply the conjugacy rule from

Section 6.4:

A = normal(0, 10)
err1 = 2.4 - A*2
B1 = { B = normal(

(
1

10ˆ2
+ 1

1ˆ2

)
ˆ(−1)

(
0

10ˆ2
+ err1

1ˆ2

)
,
(

1

10ˆ2
+ 1

1ˆ2

)
ˆ(−1/2))

factor normalpdf(err1; 0, (10ˆ2 + 1ˆ2)ˆ(1/2))
B }

factor normalpdf(2.7 - A*3; B1, 1)
factor normalpdf(3.0 - A*4; B1, 1)

We have processed one observation. Now we must clean up and reset the program so the remaining

observations can be processed. (One of the properties of conjugacy is that the posterior has the

same form as the prior, so observations can be absorbed incrementally.)

We use letS to give names to the new mean and scale parameters for B, let-associativity to

ungroup the results, and letv to eliminate the B1 binding. Finally, we use commutativity to move

the new factor expression up and out of the way.

A = normal(0, 10)
err1 = 2.4 - A*2
factor normalpdf(err1; 0, (10ˆ2 + 1ˆ2)ˆ(1/2))

m1 =
(

1

10ˆ2
+ 1

1ˆ2

)
ˆ(−1)

(
0

10ˆ2
+ err1

1ˆ2

)
s1 =

(
1

10ˆ2
+ 1

1ˆ2

)
ˆ(−1/2)

B = normal(m1, s1)
factor normalpdf(2.7 - A*3; B, 1)
factor normalpdf(3.0 - A*4; B, 1)

That completes the processing of the first observation. In its place we have B drawn from the poste-

rior distribution (with respect to that observation) and a factor expression to score A independent

of the choice of B. We can now repeat the process for the remaining observations.

Alternatively, we could have imported a transformation that used the closed-form formula for

the posterior and normalizer given multiple observations. That would have led to different shaping

steps.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

	Abstract
	1 Introduction
	2 Probabilistic Language Model
	2.1 Syntax
	2.2 Modeling Entropy
	2.3 Operational Semantics
	2.4 From Evaluations to Measures

	3 The Logical Relation
	4 CIU Ordering
	5 Contextual Ordering
	6 Contextual Equivalence
	6.1 v, let v, and
	6.2 Rearranging Entropy
	6.3 Equivalences that depend on rearranging entropy
	6.4 Quasi-denotational Reasoning

	7 Formally Related Work
	7.1 Splitting versus Sequenced Entropy
	7.2 Distributions
	7.3 From let-style to direct-style

	8 Informally Related Work
	A Additional Proofs
	A.1 From Section 2.3
	A.2 From Section 2.4
	A.3 From Section 3
	A.4 From Section 5
	A.5 From Section 6.2
	A.6 From Section 6.3

	B Example Transformation Sketch

