
A Functorial, Mostly Functional Approach to the

Model-View-Controller Software Architecture in

Standard ML

Alley Stoughton

Kansas State University

stough@cis.ksu.edu

August 16, 2006

Abstract

We report on our attempt to transfer the model-view-controller soft-
ware architecture to a mostly functional setting in Standard ML (SML).
In our approach, a controller’s algorithm is apparent; it doesn’t have to
be mentally pieced together from a set of event handlers. Furthermore,
what would be the state of a model (domain-specific part of program)
in an object-oriented setting becomes arguments to the functions of the
controller in our setting. For us, a controller mediates between its view
(user-interface) and model. The controller calls its view to get user input,
and to display results to the user; it calls its model to do domain-specific
work. To increase adaptability, a controller is an SML functor, parame-
terized by its view and model. In our experience, one can write controllers
that work simultaneously with both terminal- and graphical-based views.
Of particular note is the way we are able to allow certain computations
of the model to be monitored and aborted by the user, via the view. Our
approach makes much use of SML’s module system and higher-order func-
tions, and we illustrate it with a case study of a complete application. The
application’s code is available for downloading.

1 Background

Most Standard ML (SML) programs have user-interfaces. Terminal user-
interfaces can be built using the facilities of the Standard ML Basis Library
[1]. Alternatively, one can build graphical user-interfaces (GUIs) using a GUI
toolkit, e.g., eXene [2] or sml tk [3]. Surprisingly, and in stark contrast to the
situation with object-oriented programming, it seems that very little has been
written about the software architecture of SML programs with user-interfaces.
How should the module system be used when writing such programs? How can
the programmer facilitate the switching from one kind of user-interface to an-

1



other. How should a program with multiple user-interfaces best be structured?
SML programmers must answer these questions for themselves.

In the object-oriented world, programs are typically structured according to
the model-view-controller (MVC) software architecture [4, 5]. According to this
architecture, a program should be structured as three objects/classes:

• a model, which is concerned with the simulation of the application domain;

• a view, which handles the presentation of the model to the user; and

• a controller, which determines how the user may interact with the model.

In the original Smalltalk-80 MVC scheme [4], user input wasn’t seen as coming
from the view, but more recent presentations of MVC typically consider the
view to be both an input and output medium. In MVC, user input is passed
from the view to the controller, which may ask the model and view to update
themselves. When the model updates itself, it notifies registered observers—
e.g., the controller and view—of the changes; the observers may ask the model
for more information about its state. Changes in the model may trigger changes
in the appearance of the view and the behaviour of the controller.

Although models are not supposed to know about controllers and views,
there is typically a fairly close dependence between controllers and views.
Nonetheless, the separation of concerns leads to programs that are better struc-
tured and more adaptable. Some more recent presentations of MVC, e.g., that
of Apple’s Cocoa framework [5], specify that any communication between views
and models should be mediated by their controllers, claiming better modularity
and adaptability as consequences of this choice.

Although MVC is typically used for constructing graphical user-interfaces,
terminal-based users-interfaces can also be structured according to this archi-
tecture. Whereas the controller of a program with a GUI typically consists of
event handlers, responding to events generated from a user’s interaction with
the view, the controller of a program with a terminal-based user-interface would
typically be the locus of control.

2 Functorial, Mostly Functional MVC in SML

This paper reports on our attempt to transfer MVC to a mostly functional
setting in SML. Although it would be possible to structure a controller in SML
as a set of event handlers, we reject this approach as unnecessarily imperative.
In our approach, the algorithm of the controller is apparent; it doesn’t have to be
mentally pieced together from a set of event handlers. Furthermore, what would
be the state of a model in an object-oriented setting more naturally should be
arguments to the functions of the controller in our setting. In our approach, a
controller mediates between its view and model. The controller calls its view to
get user input, and to display results to the user; it calls its model to carry out
domain-specific work.

2



To increase adaptability, a controller in our setting is an an SML functor,
parameterized by its view and model. Different views (user-interfaces) can then
be written and supplied as arguments to the same controller. Our experience
indicates one can write controllers that work simultaneously with both terminal-
and graphical-based views. Different models can be written too, carrying out
the domain-specific computations using different algorithms. This makes it
easy to generate multiple versions of a program, e.g., by using the conditional
compilation feature of Standard ML of New Jersey’s (SML/NJ’s) compilation
manager [6].

It is important that a controller be a functor, instead of a structure that
uses a particular view and model. This way the controller may be typechecked
independently from a model and view. In fact, it may be typechecked before a
model and view are written. Furthermore, the functor’s type makes clear the
sharing constraints that relate the types of the model and view.

Of particular note is the way we are able to allow certain computations that
are carried out by the model to be monitored and aborted by the user, via the
view. Our approach makes much use of SML’s module system and higher-order
functions.

3 Related Work

C. Lüth and B. Wolff have contructed an SML functor transforming a model for
a theorem-prover-like application into an sml tk-based GUI for that application
[7]. Their functor can be seen as a combined controller and view.

The Unison [8] file synchronizer is an example of an ML (OCaml) program
that can be built with both terminal and graphical user-interfaces. However, this
program isn’t structured in the way we propose, with a shared controller. I was
unable to find examples of other ML programs with multiple user-interfaces, or
examples of programs with controllers parameterized by their models and views.

4 Case Study: A Cryptogram Encoder/Decoder

In this section, we illustrate our functorial, mostly functional approach to the
MVC architecture using a case study of a complete application. We consider the
implementation of Crypto, a Linux/Unix/Mac OS X program for encoding and
decoding cryptograms. The decoding process is structured as a game. The are
two versions of the program, one with a terminal-based user-interface, and one
with an X window system graphical user-interface. The program makes use of
some special features of the Standard ML of New Jersey (SML/NJ) implementa-
tion of SML [6], including its signal processing facilities, Concurrent ML (CML)
[9] and the X window system toolkit eXene [2]. The carefully commented code
and further documentation for crypto are available at:

http://www.cis.ksu.edu/~stough/crypto/

Crypto’s implementation should be useful as an example in teaching.

3



4.1 Specification

Crypto makes use of a lexicon lex , consisting of a set of words, which are
nonempty sequences of lowercase letters. A message is a list of lines, each
of which is a list of words. A renaming ren is a bijection over the lowercase
letters. We apply a renaming ren to a message by applying ren to each letter
of each word of each line of the message. A decoding of a message msg is a
message msg ′ such that

• each word of msg ′ is in the lexicon lex ;

• msg ′ can be formed by applying some renaming to msg .

Crypto has primary and secondary command loops. In the terminal-based
version of Crypto, a command’s arguments are listed after the command. In
the GUI version of the program, commands are selected by clicking on buttons,
after which the user is prompted to enter or select any command arguments.

Upon invocation, Crypto enters its primary command loop. There are pri-
mary commands for quiting (quit), loading a lexicon from a file (lexicon), gen-
erating a random encoding of a message (encode), and interactively decoding a
message (decode). The encoding process first checks that the supplied message
is the unique decoding of itself. This checking can take a long time in the worst
case, and the user is allowed to abort it (by interrupting in the terminal version,
and clicking on the Cancel button in the GUI version).

The decoding process begins with an abortable check that the supplied mes-
sage has a unique decoding. If it does, that decoding is saved but not reported
to the user. Then, Crypto enters its secondary command loop, in which the user
attempts to decode the message. At each iteration of the secondary command
loop, Crypto first displays the current partially decoded message (pdm) consist-
ing of a sequence of partially decoded lines, each of which consists of a sequence
of partially decoded words, i.e., nonempty sequences of upper- and lowercase
letters. Initially, this partially decoded message is msg . The uppercase letters
represent the renamings already performed by the user and program.

It will always be the case that the current partially decoded message, pdm,
is consistent with the message msg being decoded, i.e.,

• msg and pdm have the same shape, and

• for all lowercase letters a, either

– a appears in msg at exactly the same positions as it appears in pdm,
or

– there is an uppercase letter b such that a appears in msg at exactly
the same positions that b appears in pdm.

Suppose pdm is a partially decoded message that is consistent with the
message msg being decoded, and that msg ′ is the decoding of msg . We say
that pdm is decodable iff each occurrence of an uppercase letter in pdm appears

4



-----
iEEe Id THE zOjEST Id THE jAeIiLs iEkjEASIdq LIqHT
IT tAS iIzzIkmLT TO TELL tHO tAS AeejOAkHIdq mS
-----
secondary command >> hint
replacing d by n
-----
iEEe IN THE zOjEST IN THE jAeIiLs iEkjEASINq LIqHT
IT tAS iIzzIkmLT TO TELL tHO tAS AeejOAkHINq mS
-----
secondary command >> replace j r
-----
iEEe IN THE zOREST IN THE RAeIiLs iEkREASINq LIqHT
IT tAS iIzzIkmLT TO TELL tHO tAS AeeROAkHINq mS
-----
secondary command >>

Figure 1: Terminal Version Snapshot

in the same position in msg ′, but in its lowercase form. We say that pdm is
decoded iff pdm is decodable and has no lowercase letters. Given a lowercase
letter a that appears in pdm, we say that the decoding of a is the lowercase
letter b that appears in msg ′ at the positions corresponding to the positions at
which a appears in pdm (i.e., the positions at which a appears in msg).

There are secondary commands for exiting the program (quit), returning to
the primary command loop (abort), checking whether the current pdm is de-
codable (check), asking for a hint (hint), replacing a lowercase letter by a fresh
uppercase letter (replace) and undoing the last replacement (undo). The hint

command complains if the current pdm isn’t decodable; otherwise, it replaces
the lowercase letter of the pdm that occurs most often (ties are broken by favor-
ing earlier letters in the alphabet) with the uppercase version of its decoding.
The check and hint commands return to the primary command loop if the cur-
rent pdm is decoded. The undo command returns to the primary command loop
if there are no replacements (either carried out by replace or hint) to undo.

Figures 1 and 2 contain execution snapshots of similar stages of the exe-
cutions of the terminal and GUI versions of Crypto. The second-to-last pdm
of the terminal version and the pdm of the GUI version are identical. In the
last pdm of the terminal version, the user has just replaced j by r. In the GUI
version, the first and second rows of buttons correspond to the commands of
the primary and secondary command loops, respectively. Only certain buttons
are enabled/active. In the snapshot, the user has already elected to replace the
letter j of the pdm, and is being asked to select one of the indicated letters as
its replacement (these are the only letters not already in uppercase in the pdm),
or to cancel the replacement.

4.2 Basic Data

Although both versions of Crypto work with words made up of lowercase letters,
everything but the views/user-interfaces is written so as to allow other choices

5



Figure 2: GUI Version Snapshot

of basic symbols. There is a standard linear ordering signature, LIN ORD, whose
type is called elem, along with lexicon (LEXICON, with main type lexicon) and
set (SET, with main type set) signatures based on a linear ordering. The lexicon
signature includes a function for checking whether there is a word in a lexicon
matching a certain kind of pattern.

These signatures are used to defined a signature DATA whose structures define
the basic data used by Crypto; see Fig. 3. The value symbols consists of the
elements of sym that may actually be used, e.g., in words. The functor DataFunc
takes in a linear ordering and a list of symbols, and forms a data structure. Here,
as elsewhere, we use opaque ascription to a signature in which the non-abstract
types have been specified using where type. This functor is then applied to a
linear ordering based on characters, plus the lowercase letters, to form the Data

structure.

4.3 Model/Coding

Figure 4 contains the coding signature, functor and structure, which constitute
the model of our program. The signature CODING builds on the signature DATA.
It contains functions for:

• returning the symbols of a message;

• converting a message to a pdm in which all symbols are old;

• making a replacement in a pdm;

• getting information about the decodings of a message;

• getting a hint about a pdm and how it should be altered, given the message
from which it was formed, the old symbols of the pdm, and the decoding
of the pdm;

• returning the words of a message that aren’t in the lexicon; and

6



signature DATA =
sig

structure SymLinOrd : LIN_ORD
structure SymLexicon : LEXICON where type LinOrd.elem = SymLinOrd.elem
structure SymSet : SET where type LinOrd.elem = SymLinOrd.elem

type sym = SymLinOrd.elem
type sym_lexicon = SymLexicon.lexicon
type sym_set = SymSet.set

val symbols : sym_set (* symbols actually allowed *)

type word = sym list
type line = word list
type msg = line list

structure WordSet : SET where type LinOrd.elem = word (* sets of words *)

type word_set = WordSet.set

datatype pds = Old of sym | New of sym (* partially decoded symbol *)
type pdw = pds list (* partially decoded word *)
type pdl = pdw list (* partially decoded line *)
type pdm = pdl list (* partially decoded message *)

end

functor DataFunc(structure LinOrd : LIN_ORD
val symbols : LinOrd.elem list) :>

DATA where type SymLinOrd.elem = LinOrd.elem =
struct

...
end

structure Data =
DataFunc(structure LinOrd = CharLinOrd

val symbols = explode "abcdefghijklmnopqrstuvwxyz");

Figure 3: Data Signature, Functor and Structure

7



signature CODING =
sig

include DATA

val symsMsg : msg -> sym_set
val msgToPDM : msg -> pdm
val replacePDM : sym * sym -> pdm -> pdm

datatype decodings =
DecodingsNone | DecodingsUnique of msg | DecodingsMultiple

val decodings :
(IntInf.int -> bool) * sym_lexicon * msg ->
IntInf.int * decodings option

datatype hint = HintDecoded | HintNotDecodable | HintReplace of sym * sym

val findHint : msg * pdm * sym_set * msg -> hint
val unknownWordsMsg : sym_lexicon * msg -> word_set
val encode : msg -> msg

end

functor CodingFunc(structure Data : DATA) :>
CODING
where type SymLinOrd.elem = Data.SymLinOrd.elem
and type pds = Data.pds
and type SymSet.set = Data.SymSet.set
and type SymLexicon.lexicon = Data.SymLexicon.lexicon
and type WordSet.set = Data.WordSet.set =

struct
open Data
...

end

structure Coding = CodingFunc(structure Data = Data);

Figure 4: Coding Signature, Functor and Structure

• generating a random encoding of a message.

As expected, the decodings function takes in the lexicon lex and a message
msg . Ideally, it would simply return a value of type decodings. But making
the necessary determination can take a long time in the worst case (try “the
quick brown fox jumps over the lazy dog”), at least with the algorithm we are
using, and so it must be possible to abort this computation, at an observer’s
discretion, and to provide the observer with feedback as to the progress of the
computation. For this purpose, decodings takes in a function ca (for “check
abort”), and returns an optional value of type decodings along with an integer.
It periodically calls ca with the number of “steps” it has completed so far,
and uses the value returned by ca to determine whether it should abort (true
means abort, false means don’t abort). When decodings aborts, it returns the
number of steps completed plus NONE; when it terminates normally, it returns
the number of steps completed, plus SOME of the answer. The ca function may
be called a very large number of times, and so should be fast. In another

8



application, ca might return some other indication of how much progress had
been made so far.

The encoding function needs a source of random numbers. As can be in-
ferred from the signature, this source must be stored in a mutable variable,
encapsulated in the model. This is the one instance in Crypto’s design when it
seemed best for the model to have state. In other applications, the model might
have more or less state.

The functor CodingFunc makes a model out of a DATA structure. Its imple-
mentation of the decoding function uses a recursive function that takes in a
pdm and returns an answer that is relative to that pdm. It uses the matching
function of the lexicon structure to immediately return DecodingsNone when
there are no words in the lexicon that are consistent with the pdm. The function
ca is called on each call of this function, and a “step” of its computation corre-
sponds to a call of the function. CodingFunc is applied to our Data structure
to form our standard model, Coding.

4.4 View/User-interface

The signature of our view/user-interface is listed in Fig. 5. As with the signature
(CODING) of our model, it builds on the DATA signature. The ui type consists of
whatever data the functions of the user-interface need in order to do their work.
In the graphical user-interface described below, this type consists of several
CML channels, which can only be allocated once CML is running.

The function run takes in the name of the program, its command line ar-
guments, and a function f (which in, practice, comes from the main proces-
sor/controller). It processes the command line arguments, initializes the user-
interface, producing user-interface data ui , and then calls f with ui . Once f

returns, it finalizes the user-interface, and then returns a status of success. If the
command line arguments are inappropriate, or if initializing the user-interface
fails, then it outputs an error message and returns a status of failure, without
first calling f .

The primaryInput function is used to get a primary command from the user.
The argument to a lexicon command is a lexicon, not the file from which the
lexicon was obtained. The primaryOutput function is used to tell the user about
a response to a primary command. Only the encode and decode commands have
responses.

The secondaryInput function is called with a pdm and its sets of old and
new symbols; it displays this pdm to the user, and then gets a secondary com-
mand from the user. The arguments (a, b) to a replace command are required
to be consistent with the pdm: a must be an old symbol of the pdm, and b must
not be a new symbol of the pdm. The secondaryOutput function is used to tell
the user about a response to a secondary command.

If the value of type ui needed to change over time, it could be returned by
the functions of the user-interface.

The function abortable is called with the user interface data ui , an integer
n and a function f . It uses ui to tell the user that an abortable computation is

9



signature USER_INTERFACE =
sig

include DATA

datatype primary_command =
QuitPC | LexiconPC of sym_lexicon | EncodePC of msg

| DecodePC of msg

datatype primary_response =
EncodeWordsNotInLexiconPR of word_set (* responses from encode *)

| EncodeMultipleDecodingsPR
| EncodingPR of msg
| DecodeNoDecodingsPR (* responses from decode *)
| DecodeMultipleDecodingsPR

datatype secondary_command =
QuitSC | AbortSC | CheckSC | HintSC | ReplaceSC of sym * sym

| UndoSC

datatype secondary_response =
CheckNotDecodableSR (* responses from check *)

| CheckDecodedSR
| CheckDecodableButNotDecodedSR
| HintNotDecodableSR (* resonses from hint *)
| HintDecodedSR
| HintReplaceSR of sym * sym

type ui

val primaryInput : ui -> primary_command
val secondaryInput : ui * pdm * sym_set * sym_set -> secondary_command
val primaryOutput : ui * primary_response -> unit
val secondaryOutput : ui * secondary_response -> unit

val abortable :
ui * int * ((IntInf.int -> bool) -> IntInf.int * ’a option) ->
’a option

val run : string * string list * (ui -> unit) -> OS.Process.status
end

Figure 5: User-interface Signature

10



signature MAIN =
sig

structure UserInterface : USER_INTERFACE
structure Coding : CODING

sharing type UserInterface.SymLinOrd.elem =
Coding.SymLinOrd.elem

sharing type UserInterface.pds = Coding.pds
...

val main : string * string list -> OS.Process.status
end

Figure 6: Main Signature

being begun. It then calls f with a function ca (check abort) that f can use to
communicate (using ui) to the user how many ”steps” it has completed so far,
as well as find out whether the user has asked for it to abort its computation
(true means abort, false means don’t abort). The integer n controls how often
calls to ca actually communicate with the user: this happens every n calls; in
all other calls, ca quickly returns false.

If f returns (m, NONE), meaning it aborted after completing m steps, then
abortable returns NONE, after telling the user that the computation was aborted
after m steps; if f returns (m, SOME v), meaning that it terminated normally with
value v after m steps, then abortable returns SOME v, after telling the user that
the computation terminated normally after m steps.

Our controller/main processor calls the user-interface functions in a specific
order. A given view/user-interface may make as much use of this order as it
wishes. Views may be stateless or stateful; our terminal-based user-interface is
stateless, whereas our graphical user-interface is stateful.

4.5 Controller/Main Processor

The signature MAIN given in Fig. 6 is the signature of our controller/main proces-
sor. It consists of a main processing function that uses the view/user-interface
and model/coding structures to do its work. The sharing constraints require
that the basic data types of the two structures are identical; otherwise, values
couldn’t be passed back and forth between the two structures.

A controller with signature MAIN is constructed by the functor MainFunc of
Figs. 7 and 8. Note how the controller’s algorithm is apparent. It is mostly
functional, and doesn’t have to be mentally stitched together out of a set of
event handlers.

The sharing constraints in the functor’s parameter list are necessary; oth-
erwise, the functor fails to compile. The function main uses the run function
of the supplied UserInterface structure to process the command line argu-
ments, start up the user-interface, and then call the primary function with the
user-interface data and an empty lexicon, entering the primary command loop.
When primary returns to run, the user-interface will shut itself down, returning

11



functor MainFunc(structure UserInterface : USER_INTERFACE
structure Coding : CODING
sharing type UserInterface.SymLinOrd.elem =

Coding.SymLinOrd.elem
...) :>

MAIN =
struct

structure UserInterface = UserInterface
structure Coding = Coding
structure UI = UserInterface
structure Cg = Coding
...

exception Abort
exception Quit

fun secondary(data as (ui, lex, msg, pdm, olds, news, msg’)) =
case UI.secondaryInput(ui, pdm, olds, news) of

UI.QuitSC => raise Quit
| UI.AbortSC => raise Abort
| UI.CheckSC => ...
| UI.HintSC =>

(case Cg.findHint(msg, pdm, olds, msg’) of
Cg.HintDecoded =>

(UI.secondaryOutput(ui, UI.HintDecodedSR); raise Abort)
| Cg.HintNotDecodable =>

(UI.secondaryOutput(ui, UI.HintNotDecodableSR);
secondary data)

| Cg.HintReplace(a, b) =>
let val pdm = Cg.replacePDM (a, b) pdm
in UI.secondaryOutput(ui, UI.HintReplaceSR(a, b));

secondary(ui,
lex,
msg,
pdm,
SymSet.minus(olds, SymSet.fromList[a]),
SymSet.union(news, SymSet.fromList[b]),
msg’);

secondary data
end)

| UI.ReplaceSC(a, b) => ...
| UI.UndoSC => ()

Figure 7: Main Functor, Part 1

12



fun primary(ui, lex) =
case UI.primaryInput ui of

UI.LexiconPC lex => primary(ui, lex)
| UI.QuitPC => ()
| UI.EncodePC msg =>

let val xs = Cg.unknownWordsMsg(lex, msg)
in if WordSet.size xs = 0

then case UI.abortable
(ui, 50000, fn ca => Cg.decodings(ca, lex, msg)) of
NONE => primary(ui, lex)

| SOME Cg.DecodingsNone =>
raise Fail "cannot happen"

| SOME(Cg.DecodingsUnique _) =>
let val msg’ = Cg.encode msg
in UI.primaryOutput(ui, UI.EncodingPR msg’);

primary(ui, lex)
end

| SOME Cg.DecodingsMultiple =>
(UI.primaryOutput(ui,

UI.EncodeMultipleDecodingsPR);
primary(ui, lex))

else (UI.primaryOutput(ui, UI.EncodeWordsNotInLexiconPR xs);
primary(ui, lex))

end
| UI.DecodePC msg =>

(case UI.abortable
(ui, 50000, fn ca => Cg.decodings(ca, lex, msg)) of
NONE => primary(ui, lex)

| SOME Cg.DecodingsNone =>
(UI.primaryOutput(ui, UI.DecodeNoDecodingsPR);
primary(ui, lex))

| SOME(Cg.DecodingsUnique msg’) =>
if (secondary(ui, lex, msg, Cg.msgToPDM msg,

Cg.symsMsg msg, SymSet.fromList nil,
msg’);

true)
handle Quit => false

| Abort => true
then primary(ui, lex)
else ()

| SOME Cg.DecodingsMultiple =>
(UI.primaryOutput(ui, UI.DecodeMultipleDecodingsPR);
primary(ui, lex)))

fun main(cmd, args) =
UI.run(Aux.lastPartOfPath cmd,

args,
fn ui => primary(ui, SymLexicon.empty))

end

Figure 8: Main Functor, Part 2

13



a status of success back to main, which will return that status. (If something
goes wrong when processing the command line arguments or starting the user-
interface, then run will immediately return a status of failure, which will be
returned by main.)

The function primary is tail-recursive and keeps track of the user-interface
data and the current lexicon. In response to a decode command, it uses the
abortable function of the user-interface to tell the user that an abortable com-
putation is being begun. The abortable function then calls the decodings

function of the Coding structure with:

• a function ca (check abort) that decodings uses to communicate to the
user how many ”steps” it has completed so far, as well as to find out
whether the user has asked for it to abort its computation;

• the current lexicon;

• the message of interest.

Because of the second argument to abortable, the calls to ca only actually
communicate with the user every 50,000 times.

If decodings returns (m, NONE), meaning it aborted after completing m steps,
then abortable returns NONE, after telling the user that the computation was
aborted after m steps. This causes primary to iterate. Alternatively, decodings
returns a value with form (m, SOME v), meaning that it terminated normally with
value v after m steps, so that abortable returns SOME v, after telling the user that
the computation terminated normally after m steps. If v is DecodingsNone or
DecodingsMultiple of the Coding structure, then the user is informed, using
the function primaryOutput of UserInterface, that an error occurred, before
primary iterates.

Otherwise, v has the form Cg.DecodingsUniquemsg ′, meaning that msg ′

is the unique decoding of msg . In this case, we enter the secondary command
loop by calling the function secondary with the user-interface data, the current
lexicon, the message msg to be decoded, the result of turning this message into
a pdm, the old symbols of this pdm (which is the same as the symbols of msg),
the new symbols of this pdm (i.e., the empty set), and the unique decoding msg ′

of the message. If secondary returns normally or raises Abort, then primary

will iterate. But if secondary raises Quit, then primary will return.
Some of the details of secondary have been elided. Each recursive call

of this function is a tail-call, except for those carried out in response to the
hint and replace (not shown) commands. This allows the undo command to be
implemented by simply returning.

Finally, our controller/main processor is created by calling MainFunc with
UserInterface and Coding, as in Fig. 9. We use the conditional compila-
tion feature of the compilation manager to define the appropriate version of
UserInterface.

14



structure Main =
MainFunc(structure UserInterface = UserInterface

structure Coding = Coding);

Figure 9: Main Structure

signature INTERRUPTS =
sig

val ignore : (unit -> ’a) -> ’a
val track : (unit -> ’a) -> ’a
val check : unit -> bool

end

Figure 10: Interrupts Signature

fun run(cmd, args, f) =
(if null args
then (print "at a prompt, type \"help\" for help\n";

Interrupts.ignore f; OS.Process.success)
else (print("usage: " ^ cmd ^ "\n"); OS.Process.failure))

Figure 11: Run Function of Terminal User-Interface

4.6 Terminal View/User-interface

The terminal user-interface is stateless, and consequently the user-interface data
type ui is unit.

To handle interrupts, we use an Interrupts structure whose signature,
INTERRUPTS, is given in Fig. 10. The function ignore is used to run its ar-
gument function while ignoring interrupts. The function track is used to run
its argument function while keeping track of whether an interrupt has been sig-
naled by the user. Finally, the function check is used to determine whether the
user has signalled an interrupt so far.

The run function of the user-interface is given in Fig. 11. Note that nothing
need be done to “start up” and “shut down” the user-interface.

The functions primaryInput and secondaryInput prompt the user for a
command, and do the work of turning the user’s input into the required form.
In the case of the lexicon command, this involves turning the contents of a file
into a lexicon. In the case of the encode and decode commands, this involves
prompting the user to enter a message. If the user types an invalid command, or
aborts the process of typing in a message, then the function simply returns to its
beginning and tries again. In the case of a replace command, the user-interface
is responsible for checking that the argument letters are legal ones; if they are
not, it issues an error message, and jumps back to its beginning.

The functions primaryOutput and secondaryOutput simply output the re-
sponses they are given to the user.

The abortable function is given in Fig. 12. Note how a mutable variable is
used to keep track of when the checkAbort function should actually communi-

15



local
val delayRef = ref 0

in
fun abortable(_, n, f) =

let fun checkAbort m =
if !delayRef = 1
then (delayRef := n;

print("\rcompleted " ^ IntInf.toString m ^
" steps ...");

Interrupts.check())
else (delayRef := !delayRef - 1; false)

val _ = delayRef := n
val _ = print "computing ..."

in case Interrupts.track(fn () => f checkAbort) of
(m, NONE) =>

(print("\rinterrupted after completing " ^
IntInf.toString m ^ " steps\n");

NONE)
| (m, x) =>

(print("\rterminated after completing " ^
IntInf.toString m ^ " steps\n");

x)
end

end

Figure 12: Abortable Function of Terminal User-Interface

type ui =
{primaryCommandChan : primary_command SV.ivar chan,
secondaryCommandChan :

(pdm * sym_set * sym_set * secondary_command SV.ivar)chan,
primaryResponseChan : primary_response chan,
secondaryResponseChan : secondary_response chan,
abortableStartChan : unit chan,
abortableCheckChan : (IntInf.int * bool SV.ivar)chan,
abortableStopChan : (IntInf.int * bool)chan}

Figure 13: User-interface Data for Graphical User-interface

cate with the user.

4.7 Graphical View/User-interface

The graphical user-interface is built using eXene and CML. In contrast to the
terminal user-interface, the graphical user-interface does have state. The user-
interface data type ui consists of a record of channels that allow the functions of
the user-interface to communicate with the main thread of the GUI; see Fig. 13
for the details. In this figure, as elsewhere in the graphical user-interface, SV is
an abbreviation for the SyncVar structure, and an ’a SV.ivar is an incremental
(write-once) variable (I-var) of type ’a.

The run function of the user-interface:

• starts up CML,

16



fun loop() = loop’(recv(#primaryCommandChan ui))

and loop’ iVar =
(sync delFlushEvt;
primSetActive[true, true, true, true];
messageSet "select primary command";
select
[wrap(primLabEvt,

fn "Quit" => quitPC(iVar, guiData, loop)
| "Lexicon" => lexiconPC(iVar, guiData, loop, loop’)
| "Encode" => encodePC(ui, iVar, guiData, loop, loop’)
| "Decode" => decodePC(ui, iVar, guiData, loop, loop’)
| _ => raise Fail "cannot happen"),

wrap(delEvt, fn () => quitPC(iVar, guiData, loop))])

Figure 14: Primary Command Loop of Graphical User-interface

fun primaryInput({primaryCommandChan, ...} : ui) =
let val ivar : primary_command SV.ivar = SV.iVar()
in send(primaryCommandChan, ivar);

SV.iGet ivar
end

Figure 15: Primary Input Function of Graphical User-interface

• processes the command line arguments (which can be used to control, e.g.,
which X display will be opened),

• opens a connection to the X display,

• creates the channels of the user-interface data ui ,

• spawns the main thread of the user-interface (others are embedded in
widgets), giving this thread ui , and

• calls the function f it was given with ui .

Once f returns, run closes the connection to the X server, shuts down CML,
and returns a status of success. If there are problems processing the command
line arguments or opening the X display, then run returns a status of failure
without calling f .

The user-interface thread creates and realizes the widgets of the GUI and
then executes its primary command loop, which is listed in Fig. 14. The GUI
thread begins by waiting for an I-var to be sent to it on the primary com-
mand channel. This will happen when the primaryInput function is called—see
Fig. 15, and the GUI thread is responsible for filling the I-var with a primary
command obtained from the user.

Once the I-var has been received, loop’ clears any requests from the window
manager for the program to exit, makes all of the primary command buttons
active, prompts the user to click on one of them, and then waits for the user to
click on one of them, or to ask via the window manager for the program to exit.

17



local
val delayRef = ref 0

in
fun abortable(ui : ui, n, f) =

let fun checkAbort m =
if !delayRef = 1
then let val iVar = SV.iVar()

in delayRef := n;
send(#abortableCheckChan ui, (m, iVar));
SV.iGet iVar

end
else (delayRef := !delayRef - 1; false)

val _ = delayRef := n
val _ = send(#abortableStartChan ui, ())

in case f checkAbort of
(m, NONE) =>

(send(#abortableStopChan ui, (m, false)); NONE)
| (m, x) =>

(send(#abortableStopChan ui, (m, true)); x)
end

end

Figure 16: Abortable Function of Graphical User-Interface

When a command is received, the corresponding function is called, and is
passed among other things both loop and loop’, so that the function can
return to loop or loop’, depending upon whether it is able to obtain a primary
command from the user. The secondary command loop, which will be entered
via decodePC, works similarly.

Once a command’s function delivers an obtained command in an I-var, it has
enough context to sensibly respond to what happens next. E.g., the encodePC

function could receive a response on the primary response channel listing the
words of the previously supplied message that are not in the lexicon; it can then
tell the user what those words are, as well as remind the user what the message
is. This is an example of why it is useful for the GUI to have state.

When all of the words of a message to be encoded are in the lexicon, the
encodePC function is told via the abortable start channel that the process of
verifying that this message has a unique decoding has begun. The message
originated from a call to the abortable function, which is listed in Fig. 16. The
encodePC function responds to the message on the abortable start channel by
calling abortableServer, which is listed in Fig. 17.

The abortableServer function begins by telling the user that an abortable
computation has begun. It then enables the Cancel auxiliary button, and calls
the abortSer function with false. The abortSer function keeps track of
whether the user has already asked for the computation to be aborted. At
each iteration, it can:

• Respond to the Cancel auxiliary button being clicked on, which causes it
to record that the user has asked for the computation to be aborted.

18



fun abortableServer(ui : ui, {auxLabEvt, auxSetActive, messageSet,
textSet, ...} : gui_data) =

let fun abortSer aborted =
select
[wrap(auxLabEvt, fn _ => abortSer true),
wrap(recvEvt(#abortableCheckChan ui),

fn (m, iVar) =>
(SV.iPut(iVar, aborted);
messageSet("completed " ^ IntInf.toString m ^

" steps ...");
abortSer aborted)),

wrap(recvEvt(#abortableStopChan ui), fn x => x)]

val _ = messageSet "computing ..."
val _ = auxSetActive[false, true]
val (m, b) = abortSer false
val _ = auxSetActive[false, false]

in if b
then (messageSet("terminated after completing " ^

IntInf.toString m ^ " steps");
sleep 2000; messageSet "")

else (messageSet("interrupted after completing " ^
IntInf.toString m ^ " steps");

sleep 2000; messageSet ""; textSet "");
b

end

Figure 17: Abortable Server of Graphical User-interface

• Receive on the abortable check channel notification that m steps of the
computation have been completed, along with an I-var that it must fill in
with a boolean indication of whether the user has asked that the compu-
tation be aborted. This message originated with a call to the checkAbort

function of the abortable function. The user is informed by abortSer

that m steps of the computation have been completed.

• Receive a notification (m, b) on the abortable stop channel, where m is the
number of steps completed when the abortable computation terminated,
and the boolean b is true if the termination was normal, and false if it
was an abortion. The notification originated in the abortable function.
The pair (m, b) is then returned by abortSer.

Once the abortSer returns its result (m, b) back to abortableServer, that
function disables the Cancel button, lets the user know what happened, and
returns b.

Back in encodePC, if b is false (the computation was aborted), then a jump
is made back to the function loop of the primary command loop, so that the
GUI thread will await a request for another primary command. Otherwise,
it awaits a primary response, which will either tell it that the message to be
encoded had multiple decodings, or what random encoding was chosen.

19



5 On the General Approach

As illustrated in our case study, the cornerstone of our approach is a controller
that is truly in control. It mediates between the view/user-interface and model,
sometimes asking the view to get input from the user, sometimes asking the
view to display results to the user, and sometimes asking the model to carry
out domain-specific work. What would be the state of a model in an object-
oriented setting is the arguments to the functions of the controller in our setting.

That controllers of this sort can be written for applications with terminal
user-interfaces is unsurprising. But before working through our case study, the
reader may have thought that applications with graphical user-interfaces would
have to have controllers that were reactive, not active, or that a single controller
couldn’t work with both terminal and graphical views. Hopefully, the case study
has at least partly dispelled such worries.

On the other hand, the case study was only concerned with a few ways of
communicating with the user, and the reader might wonder which communi-
cation patterns are consistent with our architecture. It seems unclear how to
answer this question in general, so we will content ourselves with sketching how
one more communication pattern can be accommodated.

Suppose that an application’s primary command loop has a set command
for setting various parameters controlling the behavior of the application. In
a GUI, the user might click on a Set button, and then be given a form whose
parameter fields have current values that may be overridden. After resetting
the values of selected fields, the user would have the option of clicking on OK

or Cancel buttons, to either confirm the changes or abort making the changes.
How would a terminal user-interface for such an application be structured?

One possibility is for the set command to take the user to a secondary loop in
which the values of parameters may be queried and set, using secondary com-
mands. There would also be secondary commands for confirming the changes or
choosing to abort the process of making the changes, returning, in either case,
to the primary command loop.

The user-interface signature for such an application would have a new pri-
mary command constructor, SetPC, whose argument would be a record of pa-
rameter values. The controller’s primary command loop would have to keep
track of the current value of this record, and the function, primaryInput, for
getting a new primary command would take this record as an argument, so
that the user-interface would know the current values of the parameters, for the
case in which the user elects to run the set command. In both the graphical
and terminal user-interfaces, aborting the set command is internal to the user-
interface, and doesn’t result in a primary command being returned yet to the
controller.

In order to get a better idea of the generality of our approach, more case
studies should be carried out. For example, it would be instructive to try
refactoring the implementation of Unison [8], which comes with both terminal
and graphical user-interfaces, so as to use our architecture.

20



6 Acknowledgments

It is a pleasure to acknowledge helpful discussions with Brian Howard, Benjamin
Pierce, Dave Schmidt and the students in my graduate programming languages
course. Thanks are due to Dustin deBoer, Dominic Gélinas and Cole Hoosier
for contributions to eXene that made it possible to improve the functionality
and appearance of Crypto’s GUI. Referees’ comments on an earlier version of
this paper were also very helpful.

References

[1] Gansner, E.R., Reppy, J.H., eds.: The Standard ML Basis Library. Cam-
bridge University Press (2002)

[2] Gansner, E.R., Reppy, J.H.: A multi-threaded higher-order user interface
toolkit. In Bass, Dewan, eds.: User Interface Software. Volume 1 of Software
Trends. Wiley (1993)

[3] Lüth, C., Westmeier, S., Wolff, B.: sml tk: Functional programming for
graphical user interfaces. Technical Report 8/96, FB 3, Universität Bremen
(1996)

[4] Krasner, G., Pope, S.: A description of the model-view-controller user in-
terface paradigm in the Smalltalk-80 system. Journal of Object Oriented
Programming 1(3) (1988) 26–49

[5] Apple Computer, Inc.: The Model-View-Controller Design Pattern. (2006)
Apple Developer Connection Reference Library.

[6] Appel, A., Blume, M., Gansner, E., George, L., Huelsbergen, L., MacQueen,
D., Reppy, J., Shao, Z.: Standard ML of New Jersey. www.smlnj.org (2006)

[7] Lüth, C., Wolff, B.: Functional design and implementation of graphical user
interfaces for theorem provers. Journal of Functional Programming 9(2)
(March 1999) 167–189

[8] Pierce, B., Balasubramaniam, S., Vouillon, J.: The unison file synchronizer.
http://www.cis.upenn.edu/~bcpierce/unison/ (2004) Version 2.13.15.

[9] Reppy, J.H.: Concurrent Programming in ML. Cambridge University Press
(1999)

21


