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Abstract. Sviss is a flexible platform for incorporating efficient sym-
metry reduction into symbolic model checking. The tool comes with an
extensive C++ library for system modeling using BDDs and a rich CTL-
based model checking engine. Applications range from communication
protocols to computer hardware and multi-threaded software. We be-
lieve Sviss to be the first symbolic tool to exploit symmetry in concurrent
device-driver verification, which is vital in operating system design.

1 Introduction

Symmetry reduction has proved to effectively curb the complexity of model
checking finite-state multi-process systems. Provided the transition relation of
the system is invariant under permutations of the participating processes, states
that are identical up to permutations can be collapsed into an equivalence class,
known as an orbit. This can reduce the number of states that need to be kept in
memory from exponential to polynomial in the number of processes.

In contrast to its immediate success with explicit-state model checkers such
as Murϕ [7], symmetry reduction of a system given symbolically as a Binary
Decision Diagram (BDD) was first thought to be infeasible in practice due to
the orbit problem: the BDD representing the symmetry equivalence relation
is of intractable size [3]. In this paper, we present a symbolic model checker
with symmetry reduction that never builds this BDD and thus avoids the orbit
problem: Sviss (historically, “Symbolic V erification of I nvariants of Symmetric
Systems”) implements, to our knowledge, the first efficient symbolic realization
of symmetry reduction, by dynamically mapping each encountered state to a
unique representative of its orbit [5].

Sviss comes with a rich C++ library for constructing transition relations. The
benefit of a library in a widely known programming language over a specialized
input language is flexibility: the library has been used to model systems as
diverse as asynchronous communication protocols [5], Boolean abstractions of
concurrent software (see Section 3), synchronous parallel programs [4], and finite-
state machine descriptions of computer hardware. The penalty for this flexibility
is that by using C++ constructs outside the library, the user can circumvent
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restrictions that ensure symmetry, which are therefore not enforced by the tool
(a weakness that Sviss shares with other tools exploiting symmetry including
Murϕ [7]).

Sviss especially supports experimentation. An input file contains no property
specifications. Instead, once the transition relation is built, the tool repeatedly
requests CTL-like formulas at a prompt and performs global model checking by
computing the set of states satisfying the formula. If the set is small, it can be
visualized in a compact format. The intended utility of this feature is to increase
confidence in the model by inspecting the set of initial, bad or reachable states
of a small instance of a parameterized system.

2 Tool Description and Usage

The state space of the design under investigation is described in Sviss through
model parameters, constants, and program variables. The variables can be of
type Boolean, finite range, enumeration, record and array. The C++ library of-
fers routines to access these variables, further Boolean operators, simple linear
arithmetic, and a set of specialized functions for transition relation construction.
An example illustrating the use of the library is provided on the tool website:
http://www.inf.ethz.ch/~wahlt/Sviss.

Variables are either global or belong to a symmetry block. Each block com-
prises the local variables of processes forming a symmetric factor of the state
space (such as a block of readers and a block of writers in the Readers-Writers
problem). A block also specifies the number of replicated components and the
symmetry group that is to act within it. Sviss offers reduction with respect
to full (arbitrary permutations of components) and rotational symmetry (cyclic
shifts), specified by the user individually for each block. Global variables that
store process indices (such as a token variable in a resource allocation protocol)
are allowed and treated specially by the reduction algorithms.

Sviss first compiles a system model to a customized executable. The model
may leave some parameters unspecified, such as the number of process com-
ponents. These parameters, as well as CTL specifications, can conveniently be
supplied later at the command line of the executable or at a prompt. This greatly
facilitates experimentation with different parameters and specifications.

Sviss computes the set of states corresponding to an input formula, which is
written in a dialect of CTL, augmented by past-time temporal operators, with
or without frontier set optimization. The computation can be done (i) ignoring
symmetry, (ii) using dynamic symmetry [5], (iii) using the orbit relation [3] and
(iv) by way of multiple representatives [3].3 If the result is neither empty nor
equal to the entire state space, the set of states (or a few elements of it) can be
enumerated. For experimental purposes, Sviss further supports the computation
of a set’s cardinality, of the corresponding set of symmetry-representative states,
and of the corresponding set of symmetry-equivalent states (i.e. the set’s orbit).

3 On average, efficiency seems to diminish in the order (ii), (i), (iv), (iii).



Sviss possesses a specialized operator INV, which checks invariant conditions
after each step during symbolic reachability analysis, either forward (from init)
or backward (from error). Upon failure, the tool prints an error trace in terms
of the original program variables.

Sviss uses the CUDD decision diagram package [9] for BDD manipulations.

3 Applications of SVISS

Sviss has been applied successfully to communication and locking protocols and
to systems parameterized by the number of processes, in one fell swoop over a
finite range of the parameter. Quantitative results from these experiments are
available in the cited literature [5, 4], which also compares the performance of
Sviss’s algorithms with alternative approaches to exploiting symmetry.

In this paper we share our experiences of applying Sviss to concurrent Linux
device-driver software. A driver is confronted with a set of processes repre-
senting users, the operating system environment and external events. We used
DDVerify [11] to obtain a (coarse) Boolean abstraction of the driver software
with about 10-12 Boolean predicates per driver. All abstract models contain
errors (often spurious), at depths ranging from 100 to 200 instructions.

The histograms in Figure 1 show time (top left, log-scale) and space (bottom
left) demands for safety-checking eight abstract models with a fixed number of
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Fig. 1. Resource demands without (light gray) and with (dark) symmetry across driver
models for ten processes (left) and across numbers of components for driver # 3 (right).

ten processes, ignoring (light gray) and exploiting (dark gray) symmetry dynam-
ically [5]. We see tremendous memory savings thanks to symmetry, in all cases.4

The same holds for the run-time, with a few exceptions (e.g. drivers # 1, 2, 5);
the exceptions correspond to shallow errors. The deeper the exploration, the

4 “Memory” = |BDD| = peak number of allocated BDD nodes. Experiments con-
ducted on a 3 GHz IntelTM PentiumTM 4 dual-core processor, 2 GB of main memory.



greater the time and space savings of symmetry reduction. A similarly widen-
ing gap can be observed for a growing number n of components (graph on the
right, only time is shown). After reaching a certain number of allocated BDD
nodes, the cost of computing a transition image far exceeds that of symmetry-
canonizing the set of successor states. The image computations benefit from a
small set of representative states in the case of symmetry.

4 Related Work and Conclusions

Distinguished examples of explicit-state model checkers using symmetry include
Murϕ [7], SMC [8] and Zing [1]. Due to the enumeration, these tools are limited
to systems with a manageable number of reachable states. Present-day (partially)
BDD-based model checkers that offer symmetry reduction include UPPAAL [6],
RULEBASE [2] and RED [10]. To escape the orbit problem, these tools usually
fall back on approximate reduction strategies.

Concurrent software verification is still in its infancy. Symmetry reduction
can help this effort by (i) increasing the depth up to which programs can be
explored in reasonable time, (ii) increasing the number of abstraction-refinement
iterations, each of which entails more predicates and thus more resource needs
than its predecessor, and (iii) increasing the number of processes to which, say, a
device driver can be exposed for verification. A future step is to integrate Sviss
fully into an abstraction-refinement framework based on Boolean programs.
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