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Abstract. Symmetry reduction is a technique to counter state explosion
for systems of regular structure. It relies on idealistic assumptions about
indistinguishable components, which in practice may only be similar.
In this paper we present a generalized algebraic approach to symmetry
reduction for exploring a structure without any prior knowledge about its
global symmetry. The more behavior is shared among the components,
the more compression takes effect. Our idea is to annotate each encoun-
tered state with information about how symmetry is violated along the
path leading to it. Previous solutions only allow specific types of asym-
metry, such as up to bisimilarity, or seem to incur large overhead before
or during the verification run. In contrast, our method appeals through
its balance between generality and simplicity. We include analytic and
experimental results to document its efficiency.

1 Introduction

Symmetry reduction is a well-investigated technique to reduce the impact of
state-explosion in temporal logic model checking [2,5]. It has been applied mainly
to models of concurrent systems of processes, such as communication and mem-
ory consistency protocols. In an ideal scenario, symmetry reduction makes it
possible to verify a model over a reduced quotient model, which is not only
much smaller, but also bisimulation-equivalent to the original.

The aforementioned ideal scenario is characterized by a transition relation
that is invariant under any interchange of the components. In other words, con-
sistently renaming components in both source and target state of any transi-
tion must again yield a valid transition in the structure. This condition can be
formally violated by systems that nevertheless seem to be approximately sym-
metric. For example, consider a perfectly symmetric system that evolves into
an asymmetric one simply by customizations on some components. The num-
ber of transitions that would have to be added or removed in order to make it
symmetric is small compared with the total number of transitions.

In this paper we present a new approach to verifying systems of processes with
similar behavior. Intuitively, similarity can be expected if many transitions of the
system remain valid under many permutations of the processes. Our approach
is to annotate each state, space-efficiently, with information about whether and
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how symmetry is violated along the path to it. More precisely, the annotation is
a partition of the set of all component indices: if the path to the state contains a
transition that distinguishes two components, their indices are put into different
partition cells. Only components in the same cell can be permuted during future
explorations from the state—the algorithm adapts to the state’s history.

Suppose a given state can be reached along two paths: one with many asym-
metric transitions and one with only symmetric ones. This state thus appears
twice, once annotated with a fine partition, once with a coarse one. In order
to analyze the state’s future, we can assume that we reached it along the sym-
metric path and thus take full advantage of symmetry. The annotated state
with the fine partition can be ignored; we say it is subsumed by the other one.
Subsumption allows us to collapse many states during the exploration. The price
we have to pay is that the adaptive algorithm, by its own means, is only suitable
for reachability analysis. Throwing away a state subsumed by another leads to
an implicit reduced structure that is not bisimulation-equivalent to the original.
This price is worth paying since it allows us to improve the analysis of systems
with respect to safety properties, a significant and frequent type of formula.

We present an exact and efficient algorithm for reachability analysis, suitable
especially on an approximately fully symmetric Kripke structure. The property
to be verified may be asymmetric, i.e. it may distinguish between components.
Errors are discovered at minimum distance from the initial state, and paths
to them can be recovered, provided a breadth-first search order. Following the
presentation of the technical details of our method, we give analytic and practical
results substantiating its usefulness.

2 Related Work

There are many publications on the use of symmetry for state space exploration
and model checking, both of fundamental nature [2,5] and specific for tools [7,8].
One of the first to apply symmetry reduction strategies to partially symmetric
systems is [6]. The authors present the notions of near and rough symmetry,
which are defined with respect to a Kripke structure; especially for rough sym-
metry it is unclear how to verify it on a high-level system description. Examples
are limited to versions of the Readers-Writers problem.

This work was generalized in [4] to virtual symmetry, the most general con-
dition that allows a bisimilar symmetry quotient. A limitation of all preceding
approaches is the existence of a strict precondition for their principle applicabil-
ity. As with [6], it is left open whether virtual symmetry can be verified efficiently;
the techniques presented in [4] seem to incur a cost proportional to the size of
the unreduced Kripke structure. On the other hand, bisimilarity makes these
approaches suitable for full μ-calculus model checking, whereas the adaptive
technique trades “property coverage” in for “system coverage”.

Symmetry detection solves the problem of suspected but formally unknown
symmetry by inferring structure automorphisms from the program text [3]. This
approach is principally different from ours. A structure automorphism is global



Adaptive Symmetry Reduction 395

in character, being defined over the transition relation. It ignores the possibil-
ity of a large part of the state space being unaffected by symmetry breaches.
The adaptive approach, which can be viewed as on-the-fly symmetry violation
detection, operates directly on the Kripke structure. As such, it can reduce local
substructures with more symmetry than revealed by global automorphisms.

Closest in spirit to our work is that by P. Sistla and P. Godefroid [9], who
also target arbitrary systems and properties. A guarded annotated quotient is
obtained from a symmetric super-structure by marking transitions that were
added to achieve symmetry. As an advantage, this method can handle arbitrary
CTL* properties. In our work, annotations apply to states, not edges, and seem
more space-efficient; in [9] there can be multiple annotations to a quotient edge.
Further, the adaptive method does not require any preprocessing of the program
text, such as in order to determine a symmetric super-structure.

3 An Example

Consider the variant of the Readers-Writers problem shown in figure 1. There
are two “reader” processes (indices 1, 2) and one “writer” (3). In order to access
some data item, each process must enter its critical section, denoted by local
state C. The edge from (the non-critical section) N to (the trying region) T is
unrestricted, as is the one from C back to N . There are two edges from T to C.

Ti Ci

∀j : sj �= C

i < 3 ∧ s3 �= C

Ni

Fig. 1. Local state transition diagram of process i for an asymmetric system

The first is executable whenever no process is currently in its critical section
(∀j : sj �= C, for current state s). The second is available only to readers (i < 3),
and the writer must be in a non-critical local state (s3 �= C). Intuitively, since
readers only read, they may enter their critical section at the same time, as long
as the writer is outside its own.

With each process starting out in local state N , the induced Kripke structure
has 22 reachable states. The adaptive method, however, constructs a reacha-
bility tree of only 9 abstract states (figure 2).An abstract state of the form
XYZ represents the set of concrete states obtained by permuting the local state
tuple (X, Y, Z). Consider, for example, the abstract state NNT , representing
(N, N, T ), (N, T, N) and (T, N, N). Guard ∀j : sj �= C of the first edge from T
to C is satisfied in all three states. Executing this edge leads to the successor
states (N, N, C), (N, C, N), (C, N, N), succinctly written as NNC in figure 2.
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NNN

NNC

NTT

NTC

TTT TTC

CC |T
NNT

CC |N

Fig. 2. Abstract reachability tree for the model induced by figure 1

Now consider the abstract state NTC . None of the six concrete states it
represents satisfies the condition ∀j : sj �= C. Thus, regarding steps from T to C,
we have to look at the second—asymmetric—edge, guarded by i < 3 ∧ s3 �= C.
Of the six represented states, two satisfy this condition with an index i < 3 such
that si = T , namely (T, C, N) and (C, T, N). In both cases, the edge leads to
state (C, C, N). We now have to make a note that this state is reached through
an asymmetric edge. The edge’s guard is invariant under the transposition (1 2),
but not under any permutation displacing index 3. We express this succinctly
in figure 2 as abstract state CC |N . Intuitively, permutations across the “|” are
illegal; this abstract state hence represents neither (N, C, C) nor (C, N, C).

We finally remark that the induced structure is not virtually symmetric and
hence not nearly or roughly so. To see this, consider the (valid) transition
(T, C, T ) → (C, C, T ). Applying transposition (2 3) to it we obtain transition
(T, T, C) → (C, T, C), which is invalid, but belongs to the structure’s sym-
metrization [4]. Virtual symmetry requires a way to permute the target state
that makes the transition valid, which is impossible here. As a corollary, this
structure is not bisimilar to its natural symmetry quotient.

4 Preliminaries: Permutations, Symmetry, Partitions

Consider a Kripke structure M = (S, R) modeling a system of n concurrently
executing processes. Let Symn be the group of permutations on [1..n] and let
π ∈ Symn operate on a state s ∈ S in the form π(s1, . . . , sn) = (sπ(1), . . . , sπ(n)).
M is said to be fully symmetric if for every π ∈ Symn,

(s, t) ∈ R iff (π(s), π(t)) ∈ R . (1)

A symmetric structure can be reduced to a bisimilar and smaller quotient struc-
ture based on the orbit relation: s ≡ t iff ∃π : π(s) = t. More details of symmetry
reduction are available in the literature [2,5].

A partition of [1..n] is a set of disjoint, non-empty subsets, called cells, that
cover [1..n]. We use a notation of the form | 1, 4 |2, 5 | 3, 6 | to represent the parti-
tion into the three cells {1, 4}, {2, 5} and {3, 6}. The coarsest partition | 1, . . . , n |
consists of a single cell, the finest partition | 1 | . . . | n | consists of n singleton cells.
A partition P induces an equivalence relation on [1..n]: we write i ≡P j exactly
if i and j belong to the same cell of P.

We say a partition P of [1..n] generates all permutations π on [1..n] such
that for all i, i ≡P π(i). These permutations form a group, denoted by 〈P〉.
For example, the partition | 1, 4 | 2, 5 | 3, 6 | generates a group of six permutations.
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The coarsest partition | 1, . . . , n | generates the entire symmetry group Symn .
The finest partition | 1 | . . . | n | generates only the identity permutation.

5 Computational Model

We assume a system is modeled as a local state transition diagram. This level
of abstraction is fully expressive for shared-memory systems and lets us focus
on synchronization aspects. Precisely, the system is specified as a number n of
processes and a graph with local states as nodes. Local transitions, called edges,
have the form

A
φ,Q−→ B . (2)

φ is a two-place predicate taking a state s and an index i. State s defines the
context in which the edge is to be executed [1]. The intended semantics is that
φ(s, i) returns true exactly if in state s process i is allowed to transit from local
state A to local state B. Predicate φ can be written in any efficiently decidable
logic, such as propositional logic with simple arithmetic over state variables and
index i. In figure 1 we have seen the predicate

φ(s, i) = i < 3 ∧ s3 �= C . (3)

It is asymmetric (and thus is the edge) since we can find s, i and a permutation π
such that φ(s, i) �= φ(π(s), π(i)). On the other hand, asymmetric edges are often
symmetric with respect to a subgroup of Symn. For instance, predicate (3) is
invariant under the transposition σ = (1 2), i.e. φ(s, i) = φ(σ(s), σ(i)) for all s, i.
In common variants of the r-readers/(n − r)-writers problem, the asymmetric
edges are immune to any products of permutations of [1..r] and [r+1..n]. Such
permutations are generated by the partition | 1..r | r+1..n |.

Symbol Q in equation (2) stands for a partition generating the automorphism
group of the edge, i.e. a set of permutations that preserve predicate φ. For the
asymmetric edge in (3), we choose Q = | 1, 2 | 3 |. In approximately symmetric
systems, Q is for most edges the coarsest partition, generating Symn. For the re-
maining edges—those that destroy the symmetry—we expect the user to provide
a suitable Q. The high-level description of the edge often suggests a group of au-
tomorphisms; see section 9 for an example. If needed, a propositional SAT-solver
can aid the verification of the automorphism property.

Letting l be the number of local states, an asynchronous semantics of the
induced n-process concurrent system is given by the following Kripke structure:
S := [1..l]n, and R is the set of transitions (s1, . . . , sn) → (t1, . . . , tn) with the
property that there is an index i ∈ [1..n] such that

1. there exists an edge si
φ,Q−→ ti with φ((s1, . . . , sn), i) = true and

2. ∀j : j �= i : sj = tj .

Note that Q is irrelevant for the definition of the Kripke structure; it is in-
stead part of the syntax of an edge. Extending the method to work with shared
variables or with a synchronous execution semantics is fairly straightforward.
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6 Orbits and Subsumption

The goal of this paper is an efficient exploration algorithm for the Kripke struc-
ture defined in the previous section. The algorithm accumulates states annotated
with partitions that indicate how symmetry was violated in reaching this state.
Thus, the formal search space of the exploration is the set Ŝ := [1..l]n × Partn,
where Partn is the set of all partitions of [1..n]. The partition is used to de-
termine which permutations can be applied to the state in order to obtain the
concrete states it represents. These permutations are those that do not permute
elements across cells, i.e. those generated by the partition (see end of section 4):

Definition 1. Let π be a permutation on [1..n]. For an n-tuple s = (s1, . . . , sn),
let π(s) denote the expression (sπ(1), . . . , sπ(n)). We extend π to operate on an
element ŝ = (s, P) of Ŝ in the form

π(s, P) =
{

(π(s), P) if π ∈ 〈P〉
(s, P) otherwise.

This mapping defines a bijection on Ŝ. Note that π never changes the partition
associated with a state; if π is not generated by P, it does not affect (s, P) at all.

In standard symmetry reduction, algorithms operate on representative states
of orbit equivalence classes. Systems with asymmetries require a generalized
notion of an orbit that defines the relationship between states in Ŝ and in S:

Definition 2. The orbit of a state ŝ = (s, P) ∈ Ŝ is defined as

orbit(s, P) = {t ∈ S : ∃π ∈ 〈P〉 : π(s) = t} .

We say that ŝ represents t if t ∈ orbit(ŝ).

Examples. For n = 4, consider the following states and the sizes of their orbits:

ŝ = (s, P) orbit size
(ABCD, | 1, 2, 3, 4 |) 4! = 24 (standard symmetry)
(ABCD, | 1, 2 |3, 4 |) 2 × 2 = 4
(ABCD, | 1, 2 |3 | 4 |) 2 × 1 × 1 = 2
(ABCD, | 1 | 2 | 3 | 4 |) 1 × 1 × 1 × 1 = 1

If P is the coarsest partition | 1, . . . , n |, then orbit(s, P) reduces to the equivalence
class that s belongs to under the standard orbit relation.

Subsumption. Orbits in standard symmetry reduction are equivalence classes
and as such either disjoint or equal. In contrast, the new orbit definition is not
based on an equivalence relation. Indeed, the orbits of the four example states
in the table above form a strictly descending chain. It is therefore unnecessary
to remember all four states if encountered during exploration: the first subsumes
the others.

Definition 3. State ŝ ∈ Ŝ subsumes t̂ ∈ Ŝ, written ŝ � t̂, if orbit(ŝ) ⊇ orbit(t̂).
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Examples. For n = 3, consider the following states and examples of what they
subsume and don’t subsume (Q is arbitrary):

ŝ = (s, P) ŝ subsumes: ŝ does not subsume:
(ABC, | 1, 2, 3 |) (ABC, Q), (BCA, Q) (ABB, Q)
(ABC, | 1, 3 |2 |) (ABC, | 1 | 2 | 3 |), (CBA, | 1 | 2 | 3 |) (BAC, Q)
(ABC, | 1 | 2 | 3 |) itself only (ABC, | 1, 3 | 2 |)

Definition 3 provides no clue about how to efficiently detect subsumption. An
alternative characterization is the following. Recall that i ≡P j iff i and j belong
to the same cell within P.

Theorem 4. State ŝ = (s, P) subsumes state t̂ = (t, Q) exactly if

1. i ≡Q j ⇒ (i ≡P j ∨ ti = tj) is a tautology, and
2. t ∈ orbit(ŝ).

Remark. Condition 1 is slightly weaker than the condition i ≡Q j ⇒ i ≡P j,
which states that P is coarser than Q. As a hint why ti = tj is needed for an
equivalent characterization of subsumption, consider ŝ = (AA, | 1 | 2 |), which has
a finer partition than t̂ = (AA, | 1, 2 |), but subsumes t̂.

Condition 1 can, using appropriate data structures for partitions, be decided in
O(n2) time. In practice, violations are often detected much faster using heuristics
such as comparing the cardinalities of P and Q. Condition 2 requires checking
whether P generates a permutation π that satisfies π(s) = t. This can be decided
in O(n) time by treating each cell P ∈ P separately: we project both s and t to
the positions in P and use a counting argument to verify that the projections
are the same up to permutation.

Algebraic Properties of Subsumption. Relation � is a preorder : it is reflexive and
transitive. It is, however, neither symmetric (e.g. (AB, | 1, 2 |) �(AB, | 1|2 |) but
not vice versa) nor anti-symmetric (e.g. (AB, | 1, 2 |) and (BA, | 1, 2 |) subsume
each other but differ). Thus, it is neither an equivalence nor a partial order.

We can derive an equivalence relation from a preorder by making it bidirec-
tional: write ŝ �� t̂ if ŝ � t̂ ∧ t̂ � ŝ. How is this equivalence related to the orbit
relation on Ŝ, written ŝ ≡ t̂ if there exists π such that π(ŝ) = t̂ ?

Lemma 5. For any ŝ, t̂ ∈ Ŝ, ŝ ≡ t̂ implies ŝ �� t̂.

According to the lemma, the orbit relation achieves less compression than sub-
sumption: the latter is coarser, i.e. it relates more states. We note that in per-
fectly symmetric systems, where each state is (implicitly) annotated with the
coarsest partition | 1, . . . , n |, the three relations �, �� and ≡ coincide.

7 State Space Exploration Under Partial Symmetry

We are now ready to present an algorithm for state space exploration on the
(partially symmetric) structure M = (S, R). The goal is to compute the set of
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Algorithm 1. State space exploration under partial symmetry

Input: initial state s0 ∈ S
1: Reached := Unexplored := {(s0, | 1, . . . , n |)}
2: while Unexplored �= ∅ do
3: let ŝ = (s,P) ∈ Unexplored ; remove ŝ from Unexplored

4: for all edges e = A
φ,Q−→ B do

5: R := glb(P, Q)
6: U := unwind(s, P, Q)
7: for all states u ∈ U do
8: for all cells R ∈ R do
9: if ∃i ∈ R : ui = A ∧ (u, i) |= φ then

10: v := (u1, . . . , ui−1, B, ui+1, . . . , un)
11: canonicalize(v)
12: update(v, R)

states reachable under R from some initial state s0 ∈ S. Technically, the algo-
rithm operates on elements of Ŝ; we later present a one-to-one correspondence
between the states reachable in M and the states found by algorithm 1.

In line 1, the initial state is annotated with the coarsest partition (indicating
absence of symmetry violations so far) and put on the Unexplored and Reached
lists. While available, one state ŝ is selected from Unexplored for expansion.

Successors of ŝ are found by iterating through all edges (line 4). We now have
to reconcile two partitions: P, expressing symmetry violations on the path to s,
and Q, expressing violations to be caused by e. Routine glb in line 5 determines
the partition R such that 〈R〉 = 〈P〉 ∩ 〈Q〉. R can be computed as the greatest
lower bound (meet) of P and Q in the complete lattice of partitions, which uses
“finer-than” as the partial order relation.

Edge predicate φ may not be invariant under permutations from 〈P〉, but it
is under permutations from 〈Q〉 and thus from 〈R〉. We account for this fact by
unwinding s into a set of states to be annotated by R whose orbits exactly cover
the orbit of ŝ = (s, P), i.e. into a set U ⊂ S that satisfies

⋃
u∈U

orbit(u, R) = orbit(s, P) . (4)

The objective is of course to find a small set U with this property. In line 6,
routine unwind returns the set U = {s} ∪ {π(s) : π ∈ 〈P〉 \ 〈Q〉}, which is easily
seen to satisfy (4). This step can be a bottleneck; we discuss in section 8 how to
avoid it in most cases and alleviate it in the remaining ones.

Processes with indices in different cells of R are distinguishable; we must con-
sider these cells separately (line 8). Edge e can be executed if there is a process i
in local state A such that (u, i) satisfies φ. If so, we let the process proceed,
resulting in a new state v (line 10). In line 11, v is canonicalized within R:
the sequence of local states with indices in R is lexicographically sorted.

The update function determines whether to add a new state v̂ to the lists
Unexplored and Reached (algorithm 2). If some state in Reached subsumes v̂,
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Algorithm 2. Updating Unexplored and Reached : update(v, R)

Input: newly computed state v̂ = (v, R)
1: if no state in Reached subsumes v̂ then
2: check whether v̂ represents a concrete error state
3: remove from Unexplored each ŵ such that v̂ � ŵ
4: add v̂ to Unexplored and to Reached

nothing needs to be done; this also covers the case v̂ ∈ Reached . Otherwise
(line 2), v̂ is checked for errors (discussed below). Then, states that v̂ subsumes
are removed from Unexplored : such states are implicitly explored as part of v̂
and are thus redundant. Finally, v̂ is added to both lists.

States reachable from s0 in M are related to states in Reached as follows.

Theorem 6. Let s0 ∈ S and Reached as computed by algorithm 1. A state s ∈ S
is reachable from s0 in M exactly if there exists ŝ ∈ Reached that represents s.

Error conditions to be checked in line 2 of algorithm 2 need not be symmetric.
For example, suppose the claim is that process 3 never enters local state X .
Given v̂ = (v, R), we determine the unique cell R ∈ R such that 3 ∈ R. An error
is reported exactly if the property ∃i ∈ R : vi = X evaluates to true.

If M has an error at distance d from s0, then algorithm 1, if organized in a
breadth-first fashion, detects it at distance d from the root of the abstract reach-
ability tree. Using back-edges from each encountered node to its predecessor,
a shortest error path can be reconstructed and lifted to a concrete path as usual.

Regarding line 3 of algorithm 2, the only reason not to remove ŵ from Reached
(but only from Unexplored) is to retain the ability to trace encountered errors
back to the initial state, for which those states may be needed. They are not
needed for just finding errors or for termination detection.

8 Implementation and Efficiency

We discuss essential refinements of algorithm 1 and derive analytic results.
In approximately symmetric systems, most edges are symmetric, resulting

in a search that annotates many states with the coarsest partition | 1, . . . , n |.
We encode this partition space-efficiently using the empty string. Further, a sym-
metric edge e in line 4 of algorithm 1 allows dramatic simplifications: Lines 5, 6
and 7 can be removed, as R equals P and U reduces to {s}. The test (u, i) |= φ
can be factored out of the loop in line 8 (replacing i with 0), since it is indepen-
dent of i (due to φ’s symmetry). Almost the same simplifications apply if e is
asymmetric but Q is coarser than P (〈Q〉 ⊇ 〈P〉), which is easy to test.

If Q is finer than P, we must compute U = {s} ∪ {π(s) : π ∈ 〈P〉 \ 〈Q〉}.
Doing this by enumerating 〈P〉 \ 〈Q〉 is inefficient and unnecessary: state s likely
contains redundancy in the form of duplicate local states (especially if there are
more processes than local states). Thus, many permutations of 〈P〉 \ 〈Q〉 result
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in the same state when applied to s. This redundancy can be avoided up front
using buckets, i.e. sets of process counters for each local state, separately in each
cell of Q. Permutations outside 〈Q〉 are applied to s by changing the contents of
the buckets. As a result, the complexity of unwind is proportional to |U |, which
is usually much smaller than |〈P〉 \ 〈Q〉|. The set U itself is large only when Q is
very fine, which is not typical for approximately symmetric systems.

To make the update function in algorithm 2 efficient, the list Reached is sorted
such that states with local state vectors that are permutations of each other are
adjacent, for example states of the forms (AAB, P1), (AAB, P2), (BAA, P3).
Given the newly reached v̂ = (v, R), we first use binary search to identify the
range in which to look for candidates for subsumption as the contiguous range
of states in Reached whose local state vectors are permutations of v. The search
in line 1 of algorithm 2 for states subsuming v̂ can now be limited to this range.

We present complexity bounds for the adaptive exploration technique. Con-
sider the abstract state space Ŝ = S × Partn, which is conceivably much bigger
than S. Our algorithm, however, only explores states not subsumed by others.
Comparing the adaptive technique to standard symmetry reduction and to plain
exploration oblivious to symmetry, our informal goal is to show that

complexity(adaptive) ≤ complexity(standard) < complexity(plain) . (5)

If the automorphism group of the structure induced by a program is non-trivial,
standard symmetry reduction is guaranteed to achieve some compression.1 The
meaning of “≤” in (5) is that this compression is preserved by our technique.

To demonstrate this, we first quantify the effect of standard symmetry reduc-
tion on a program in our input syntax. Call two processes friends if they are
not distinguished by any edge, i.e. for each edge A

φ,Q−→ B there is a cell Q ∈ Q

containing both processes. Friendship is an equivalence relation on [1..n]. Each
class of friends induces a group of permutations that can be extended to auto-
morphisms of the program’s Kripke structure. The orthogonal product of these
groups is the largest symmetry group that can be derived from the program text.

Friends enjoy the following property:

Theorem 7. Let F be a set of friends. Algorithm 1 reaches at most
� |F | + l − 1

|F |
�

local state tuples over the indices in F .

The quantity in theorem 7 equals the number of representative states under
standard symmetry reduction over the group Sym F of all permutations of F .
As a special case, if all n processes are friends, algorithm 1 reduces to standard
symmetry reduction and introduces nearly no search overhead.

Whether the “≤” in (5) is actually “<” or “�” depends on the way symmetry
is violated and is hard to quantify analytically. We observe, however, that for the
adaptive technique, the notion of friends can be extended to include processes
not distinguished by edges that are actually followed during the exploration.
1 We overlook the pathological case in which only symmetric states are reachable.
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Unreachable asymmetric edges reduce the automorphism group, but have no ef-
fect on our algorithm. This observation is supported by our experimental results.

9 Experimental Evaluation

We tested the adaptive method in a variety of experiments. We borrow a re-
source controller example from the work by Sistla and Godefroid [9, p. 729ff.].
In short, process indices are partitioned into intervals of equal priority. In case
of simultaneous requests, a server grants the resource to one of the highest-
priority processes, thus introducing asymmetry. For a process belonging to the
priority interval [lc..uc], we annotate each asymmetric edge with the partition
| 1, . . . , lc−1 | lc, . . . , uc | uc+1, . . . , n |, separating higher, equal and lower priority.

In a first set of experiments, we compare the memory use of the adaptive
technique to plain exploration oblivious of symmetry. Memory is measured by
the (reproducible) number of reached states (memory in bytes is linear in this
number, including the overhead due to the annotations). Figure 3 plots this
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Fig. 3. Comparing the adaptive technique (small dots) to plain exploration (large
circles): reached states for n/2 small priority classes (left) and two large classes (right)

number over various process counts n for the adaptive technique (small dots) and
plain exploration (large circles) on a logarithmic scale. The graphs on the left and
on the right differ in the priority scheme used. For n = 18, the plain algorithm
reaches 1, 310, 716 states on the left and 3, 808, 000 on the right, whereas our
algorithm reaches only 505 abstract states on the left and 316 on the right.
The right scheme allows more compression due to larger priority classes; the 316
abstract states reached by our algorithm very compactly represent the 3, 808, 000
concrete ones. In all cases, the adaptive algorithm took nearly zero time; for the
plain algorithm the largest time measured is 7:16min.

In a second set of experiments, we compare the memory use of the adaptive
technique with standard symmetry reduction, based on the induced structure’s
automorphism group (figure 4). For the highly fragmented scheme on the left,
the standard algorithm does quite poorly (thus again the logarithmic scale):
for n = 18, it reaches 78, 729 states, compared with 505 adaptively. The maxi-
mum symmetry group is the product of the 9 transpositions (1 2) through (17 18),
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Fig. 4. Comparing the adaptive technique (small dots) to standard symmetry reduction
(large circles); priority schemes as in figure 3

yielding a group size and expected compression factor of only 29 = 512. This ef-
fect is much less severe for the less fragmented scheme on the right (linear scale),
as is clearly revealed by the graph.

In a third set of experiments, we directly investigate how the adaptive method
scales with increasing fragmentation; the idea to do this is again borrowed
from [9]. The resource controller example with k priority classes is run with
a large number of 80 processes. The objective is to look for states where a pro-
cess holds the resource while the resource is globally recorded to be free. In a first
variant, denoted “1, 1, . . . , rest”, all priority classes but the last contain a single
process; the last contains the rest. In a second variant, denoted “2, 2, . . . , rest”,
all classes but the last contain two processes; the last contains the rest. We see
from table 1 that the number of reached states grows roughly linearly with k;

Table 1. Adaptive symmetry reduction against increasing fragmentation

“1, 1, . . . , rest” “2, 2, . . . , rest”
k n

Time # states Time # states
2 80 1s 558 1s 789
3 80 2s 792 4s 1245
5 80 4s 1251 13s 2121
7 80 8s 1698 24s 2949

“1, 1, . . . , rest” “2, 2, . . . , rest”
k n

Time # states Time # states
10 80 14s 2346 45s 4101
15 80 28s 3366 83s 5781
20 80 44s 4311 118s 7161
25 80 62s 5181 151s 8241

computation times are very reasonable. For fixed k, the fragmentation grows
with increasing size of the initial k classes (1 vs. 2), since then the final class
(hosting the majority of the processes) becomes smaller.

For k ≤ 5, data obtained with the GQS-based method were provided in [9].
Those running times are an order of magnitude higher, although they of course
depend on the machine used. Reproducible memory data for these examples
(such as the number of reached states) were not given in [9].

10 Summary

We presented a new adaptive method for exhaustive state space exploration. It is
intended for, and efficient with, approximately fully symmetric systems, where
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many transitions are shared by most processes. Verification of this feature is not
required; the method is exact for any input. We introduced the notion of sub-
sumption: a state subsumes another if its orbit contains that of the other one.
Subsumption induces a quotient structure with an identical set of reachable
states. We focused on full symmetry, since this type is the most frequent and
profitable in practice. The adaptive method can be implemented as well for
rotation groups; critical is the ability to represent and manipulate groups suc-
cinctly. Our implementation uses an explicit state representation. We believe the
algorithm can be incorporated into the Murϕ model checker [8] and extend its
applicability to asymmetric systems.

The subsumption relation benefits reachability analysis by aggressively sup-
pressing re-emerging states, even non-equivalent ones. This behavior is too crude
for general model checking; how to extend the method is part of our future work.
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