
Extending Symmetry Reduction
by Exploiting System Architecture

Richard Trefler1? and Thomas Wahl2??

1 David R. Cheriton School of Computer Science, University of Waterloo, Canada
2 Computer Systems Institute, ETH Zurich, Switzerland and

Oxford University Computing Laboratory, Oxford, United Kingdom

Abstract. Symmetry reduction is a technique to alleviate state explo-
sion in model checking by replacing a model of replicated processes with
a bisimilar quotient model. The size of the quotient depends strongly
on the set of applicable symmetries, which in many practical cases al-
lows only polynomial reduction. We introduce architectural symmetry,
a concept that exploits architectural system features to compensate for
a lack of symmetry in the system model. We show that the standard
symmetry quotient of an architecturally symmetric and well-architected
model preserves arbitrary Boolean combinations and nestings of reach-
ability properties. This quotient can be exponentially smaller than the
model, even in cases where traditional symmetry reduction is nearly in-
effective. Our technique thus extends the benefits of symmetry reduction
to systems that are in fact not symmetric. Finally, we generalize our re-
sults to all architecturally symmetric models, including those that are
not well-architected. We illustrate our method through examples and
experimental data.

1 Introduction

Symmetry is a feature of many multi-process systems that can be exploited in or-
der to alleviate state explosion in model checking. A symmetry is a permutation
of process indices that leaves the system model invariant. The idea of symmetry
reduction is to replace the model by a smaller and bisimilar quotient that con-
tains only one of the many states from the original model that are identical up
to permutations. When the set of symmetries is large, the quotient model can
be significantly smaller than the model under verification. In particular, under
full symmetry the system model is invariant under all permutations of the pro-
cess indices. This scenario is attractive for symmetry reduction as it allows an
exponential reduction in model size.

Unfortunately, a system model may not be fully symmetric even when the
system consists of replicated processes that execute the same parametrized pro-
gram. Consider, for instance, protocols that assume a ring-like communication

? Supported by an Individual Discovery grant from NSERC, Canada.
?? Supported by the EPSRC, United Kingdom, grant no. EP/G026254/1.

structure, in the style of the Dining-Philosophers resource allocation scheme.
The fact that a process may only communicate with its neighbor to the “right”
breaks full symmetry, as neighborhood is not preserved by arbitrarily rearranging
processes. Similarly, consider the cache coherence problem in a modern multi-
core hardware design. As the number of cores continues to grow, they will likely
not be pairwise connected, but instead exhibit lean communication topologies,
permitting only few process symmetries. As a result, symmetry reduction of a
significant magnitude cannot be expected.

In this paper we address this lack of reduction by generalizing existing
symmetry-based techniques for multi-process programs. More precisely, we show
that full symmetry reduction is applicable to systems that are not fully symmet-
ric, provided (i) the system model is architecturally symmetric, (ii) the system
model is well-architected, and (iii) the property of interest is expressible in a
rich subset of CTL called Safety CTL. Under these conditions, which we explain
below, architectural symmetry reduction produces a quotient structure that is
an exact abstraction and can be exponentially smaller than the traditional sym-
metry quotient.

Conditions (i) through (iii) form the core of our approach. An architectural
symmetry of a structure M is a permutation of the process indices that leaves
the positive transitive closure of M ’s transition relation R invariant, i.e. M ’s
reachability relation R+. In contrast, traditional symmetry reduction requires
more strictly that R itself be invariant under permutations. A system model
is well-architected if it provides, at all reachable system states, the possibil-
ity of return to an initial state. This property is common in reactive protocols
that continuously respond to user requests, and in many non-terminating sys-
tems as a means to counter the effects of resource leaks. Finally, Safety CTL
consists of all formulas built out of Boolean connectives and CTL’s EF opera-
tor, including arbitrary nestings. We show that the standard symmetry quotient
of a well-architected and architecturally symmetric system preserves—in both
directions—Safety CTL properties. We formalize this preservation property in
the notion of safety bisimulation, a relationship between structures that allows
transitions in one system to be simulated by finite-length paths in the other and
is therefore weaker than traditional bisimulation.

In summary, the contribution of this paper is to extend a well-known and
popular technique, symmetry reduction, to a class of systems that the technique
was previously considered inapplicable to. Given conditions (i) through (iii), any
existing symmetry reduction technique can be applied to the model—no new
reduction algorithm is required. This makes our technique combine effortlessly
with existing tools. We finally extend our results to programs that are not well-
architected: we show that architectural symmetry alone is enough to give rise
to an exponentially smaller quotient that preserves—again in both directions—
reachability properties.

2

2 Background

2.1 Kripke Structures

We use the standard nomenclature. Let AP be a finite set of atomic propositions.
A Kripke structure is a tuple M = (S,R,L, I), where S is a finite set of states,
R ⊆ S×S is a set of transitions (state changes) of M , L : S → 2AP is a labeling
function that assigns to each state a set of atomic propositions considered true
in that state, and finally I ⊆ S is a set of designated initial states of M . A path
in M from s to t is a sequence (pi)ki=0 of states such that k ≥ 0, p0 = s, pk = t
and (pi, pi+1) ∈ R for all i with 0 ≤ i < k. The length of a path is the number of
transitions in it. For instance, path (pi)ki=0 has length k. A state t is reachable
in M if there is a path in M from some initial state to t. We write R+ for the
positive transitive closure of R, i.e. R+ is the smallest set such that
1. R ⊆ R+, and
2. whenever (u, v) ∈ R+ and (v, w) ∈ R+, then also (u,w) ∈ R+.

We have (s, t) ∈ R+ exactly if there is a path in M from s to t of length at least 1.

Bisimulation. Let M1 = (S1, R1, L1, I1) and M2 = (S2, R2, L2, I2) be Kripke
structures over AP . A relation ≈⊆ S1 × S2 is a bisimulation if s1 ≈ s2 implies:
1. L1(s1) = L2(s2),
2. for every t1 ∈ S1 such that (s1, t1) ∈ R1, there exists t2 ∈ S2 such that
t1 ≈ t2 and (s2, t2) ∈ R2, and

3. for every t2 ∈ S2 such that (s2, t2) ∈ R2, there exists t1 ∈ S1 such that
t1 ≈ t2 and (s1, t1) ∈ R1.

If ≈ is a bisimulation, and for each s1 ∈ I1 there exists s2 ∈ I2 such that s1 ≈ s2,
and for each s2 ∈ I2 there exists s1 ∈ I1 such that s1 ≈ s2, then M1 and M2 are
bisimilar. Bisimilarity implies that the structures satisfy the same properties of
the temporal logic CTL. CTL is the smallest set of formulas that comprises false,
true, the atomic propositions (AP), and is closed under Boolean connectives and
the temporal modalities EX, AX, EF, EG, EU, etc.

Canonical Quotients. Many existential abstractions are based on the forma-
tion of a canonical quotient of the given Kripke structure, as follows. Let M =
(S,R,L, I) and ≡ be an equivalence relation on S such that s ≡ t implies
L(s) = L(t), with equivalence classes written as [s]. The canonical quotient
of M is given by the structure M ′ = (S′, R′, L′, I ′) such that

S′ = { [s] : s ∈ S },
R′ = { ([s], [t]) ∈ S′ × S′ : ∃s0 ∈ [s], t0 ∈ [t] : (s0, t0) ∈ R },
L′([s]) = L(s), and
I ′ = {[s] : s ∈ I} .

The requirement that s ≡ t imply L(s) = L(t) ensures that L′ is well-defined.
As an example, let ≡L be the labeling equivalence with respect to L, i.e. the
relation on S defined by s ≡L t iff L(s) = L(t). Relation ≡L is the coarsest
equivalence relation that allows L′ to be well-defined.

3

2.2 Symmetry in Multi-Process Systems

The term “process” is used in this paper generically for a component of a con-
current system. A state (~g, l1, . . . , ln) in such a system consists of the values ~g
of all global variables (not associated with any process) and the local state li of
each process i ∈ {1, . . . , n} (values of all local variables of process i).

Symmetries of a Kripke model M are defined with respect to permutations
(bijections) π : S → S on the state space S; we describe such permutations in
more detail in the next paragraph. We extend π to a mapping π : R→ R on the
transition level by defining π((s, t)) = (π(s), π(t)).

Definition 1 A permutation π on S is said to be a symmetry of Kripke struc-
ture M = (S,R,L, I) if

1. R is invariant under π: π(R) = R, and
2. L is invariant under π: L(s) = L(π(s)) for any s ∈ S, and
3. I is invariant under π: π(I) = I.

The symmetries of M form a group under function composition. Model M is said
to be symmetric if its symmetry group G is non-trivial; we speak of symmetry
with respect to G.

For an n-process system, a symmetry π is derived from a permutation on
{1, . . . , n} and acts on a state s = (~g, l1, . . . , ln) as π(s) = (~g π, lπ(1), . . . , lπ(n)).
That is, the local states of the processes are permuted by permuting their posi-
tions in the state vector. Further, π acts on ~g by acting component-wise on each
global variable g. The action of π on g depends on the nature of g; we refer the
reader to [8] for details.

Exploiting symmetry. Given a group G of symmetries, the relation s ≡o t iff
∃π ∈ G : π(s) = t defines an equivalence between states and is known as the
orbit relation; the equivalence classes it entails are called orbits [4], written [s]
for s ∈ S. Observe that s ≡o t implies L(s) = L(t), since L is invariant under
permutations in G (Definition 1). Let therefore M be the canonical quotient
of M with respect to ≡o. Quotient M turns out to be bisimilar to M [4]. As a
result, for two states s ∈ S, s ∈ S with s ∈ s and any CTL formula f over AP
whose atomic propositions are invariant under permutations in G,

M, s |= f iff M, s |= f. (1)

Depending on the size of G, M can be up to exponentially smaller than M .
For example, for full symmetry in n-process systems, all n! many permutations
of a global state with pairwise distinct local states are orbit-equivalent and can
be collapsed into a single abstract state.

3 Safety Bisimulation

The goal of this paper is to dramatically reduce the verification complexity for
certain systems with only little symmetry. The quotients that we obtain can

4

therefore not be expected to be bisimilar to the original system model. Instead,
we will use the following weaker notion.

Definition 2 Let M1 = (S1, R1, L1, I1) and M2 = (S2, R2, L2, I2) be Kripke
structures over AP. Relation ≈r⊆ S1×S2 is a safety bisimulation if s1 ≈r s2
implies:

1. L1(s1) = L2(s2),
2. for every t1 ∈ S1 such that (s1, t1) ∈ R1, there exists t2 ∈ S2 such that

t1 ≈r t2 and (s2, t2) ∈ R+
2 , and

3. for every t2 ∈ S2 such that (s2, t2) ∈ R2, there exists t1 ∈ S1 such that
t1 ≈r t2 and (s1, t1) ∈ R+

1 .

If ≈r is a safety bisimulation, and for each s1 ∈ I1 there exists s2 ∈ I2 such that
s1 ≈r s2, and for each s2 ∈ I2 there exists s1 ∈ I1 such that s1 ≈r s2, then M1

and M2 are safety-bisimilar.

Safety bisimilarity is identical to bisimilarity except for the occurrences of R+
2

and R+
1 in conditions 2 and 3. Figure 1 shows pairs of safety-bisimilar structures

that are not bisimilar. The safety bisimulation relates states with identical labels.

C B

C

AA

B
(a)

A

B C

D

D

A

B C

D

(b)

Fig. 1. Examples of safety-bisimilar structures

As with bisimilarity and CTL, there is a temporal logic that cannot distin-
guish safety-bisimilar structures.

Definition 3 Safety CTL, denoted by EF-CTL, is the smallest set of formulas
satisfying the following conditions:

base formulas: The Boolean constants false and true are EF-CTL formulas.
For P ∈ AP, P is an EF-CTL formula.

closure under Boolean connectives: If f is an EF-CTL formula, so is ¬f .
If g and h are EF-CTL formulas, so are g ∧ h, g ∨ h, etc.

closure under EF: If f is an EF-CTL formula, so is EF f .

By definition, EF-CTL is a strict subset of CTL: neither next-time nor until
operators can be expressed in (or generally translated into) EF-CTL. On the
other hand, as common in CTL we use AG f as an abbreviation for ¬EF¬f .
Thus, a CTL formula belongs to EF-CTL if any modality occurring in it is

5

EF or AG. For instance, consider a system with two processes i and j and the
property that it always be possible to reach a state in which the processes are
synchronized. This property, which is neither of the classical safety nor liveness
type, is expressed in EF-CTL as AG EF synch(i, j).

Since EF-CTL is a sub-logic of CTL, we can define its semantics by resorting
to CTL. We write M, s |= f to mean that the EF-CTL formula f evaluates to
true over structure M and state s, which in turn is to mean that with CTL
semantics, M, s |= f .

We now establish the relationship between safety bisimilarity and EF-CTL:

Theorem 4 Let M1 = (S1, R1, L1, I1) and M2 = (S2, R2, L2, I2) be Kripke
structures over AP and ≈r a safety bisimulation between them. Let further s1, s2
be states with s1 ≈r s2 and f be an EF-CTL formula. Then M1, s1 |= f exactly
if M2, s2 |= f .

Proof : We show the ⇒ direction; the inverse direction follows since the inverse
relation ≈−1

r ⊆ S2×S1 is a safety bisimulation as well. The proof is by induction
on the structure of f .

(base formulas)
The interpretations of false and true are independent of M1, s1, M2, s2.
Let f ∈ AP . From s1 ≈r s2, it follows that L1(s1) = L2(s2) and therefore
M1, s1 |= f implies f ∈ L1(s1), hence f ∈ L2(s2) and thus M2, s2 |= f .

(closure under Boolean connectives)
The result follows immediately from the induction hypothesis and the se-
mantics of ¬, ∧, ∨.

(closure under EF)
Suppose M1, s1 |= EF g. This means that there is a path p := (pi)ki=0 in
M1 with p0 = s1 and M1, p

k |= g. We now claim that there exists a state
q ∈ S2 that is reachable from s2 and satisfies pk ≈r q. Given this claim and
M1, p

k |= g, we apply the induction hypothesis to conclude that M2, q |= g.
Since q is reachable from s2, this proves M2, s2 |= EF g.
To show the claim, we proceed by induction on k. If k = 0, then pk = p0 = s1.
Choosing q := s2 satisfies all requirements.
Assume now p has the form (pi)k+1

i=0 , and consider the prefix (pi)ki=0 of p.
By the induction hypothesis (of the claim), there exists a state q′ ∈ S2 that
is reachable from s2 and satisfies pk ≈r q′. Further, (pk, pk+1) ∈ R1. Since
≈r is a safety bisimulation between M1 and M2, there is a state q ∈ S2 with
(q′, q) ∈ R+

2 and pk+1 ≈r q. In particular, q is reachable from q′ and thus
reachable from s2 and satisfies all requirements of the claim. �

Figure 1 demonstrates that the addition of CTL’s next-time (X) or until (U)
operators is enough to distinguish safety-bisimilar structures. The CTL formula
EXB is true of the first structure in (a), but not of the second. Likewise, the
CTL formula E((EFC) UD) is true of the first structure in (b), but not of the
second. In contrast, the two structures in (a) satisfy the same EF-CTL formulas,
as do the two structures in (b).

6

4 Architectural Symmetry

We are now ready to define architectural symmetry and show that, under certain
conditions, it permits a safety-bisimilar quotient. Looking back at Definition 1
(symmetry), the crucial property of a symmetric model is its invariance under
permutations. Since safety bisimilarity is weaker than bisimilarity, we can afford
a weaker invariance notion, thus capturing a larger class of systems.

Definition 5 A permutation π on S is said to be an architectural symmetry
of the Kripke structure M = (S,R,L, I) if

1. R+ is invariant under π: π(R+) = R+,
2. L is invariant under π: for any s ∈ S, L(s) = L(π(s)), and
3. I is invariant under π: π(I) = I.

The architectural symmetries of M form a group under function composition.
Structure M is said to be architecturally symmetric if its architectural sym-
metry group G is non-trivial; we speak of architectural symmetry with respect
to G.

Note the difference to Definition 1: in item 1, instead of requiring R to be per-
mutation invariant, we require R+ to be. Consider a finite path p between two
states s and t. Under symmetry, the permuted sequence π(p) is a valid path as
well, connecting π(s) and π(t). Under architectural symmetry, all we can say is
that π(s) and π(t) are connected in M as well, since (π(s), π(t)) ∈ π(R+) = R+.

Comparing the two types of symmetry, we confirm that architectural sym-
metry is weaker than symmetry:

Lemma 6 If M is symmetric with respect to a group G, then M is architec-
turally symmetric with respect to G.

Proof : We have to show that each symmetry is an architectural symmetry. Let
π ∈ G be a permutation on S. Requirements 2 and 3 are identical in definitions 1
and 5. Regarding requirement 1, suppose π(R) = R, we show π(R+) ⊆ R+ (the
other inclusion follows with a symmetric argument; note that R+ is a finite set).

To this end, consider (s1, t1) ∈ π(R+), i.e. (s1, t1) = π((s2, t2)) for some pair
(s2, t2) ∈ R+. Let p2 be a path in M that connects s2 to t2. Each transition of
p2 belongs to R. Therefore, each transition of p1 := π(p2) belongs to π(R) = R,
so p1 is a valid path. Since p1 connects π(s2) = s1 to π(t2) = t1, it follows that
(s1, t1) ∈ R+. �

Example. In the following we demonstrate that Lemma 6 can in general not be
strengthened to an equivalence. Consider a token ring model where the shared
token regulates access to some resource. Such rings occur in hardware models
and in communication protocols. Figure 2 shows the local transition diagram
of process i. The process may be in one of the local states N , N+, T , T+, C;
there are no global variables. Intuitively, N , T and C indicate that the pro-
cess is “not trying” to access the resource, “trying” to do so, or is “currently”

7

accessing it. The superscript + indicates ownership of the token. The process
can move freely between local states N and T , and also between N+ and T+.
To acquire the token, it must currently be possessed by the left neighbor, process
i − 1 (i − 1 and i + 1 are defined cyclically within the index range {1, . . . , n}),
and that neighbor must be willing to release the token. This is indicated by
the simultaneous transition N+

i−1 → Ni−1 in Figure 2. Analogously, to release
the token it must be received by process i + 1, which must be ready to do so
(indicated by Ni+1 or Ti+1). Let finally

I := {(s1, . . . , sn) : ∃i : si = N+ ∧ ∀j : j 6= i : sj = N}

be the set of initial states: every process is non-trying, and any one of them owns
the token.

N+
i

T+
i

Ci

Ni

Ti

N+
i−1 → Ni−1

Ni+1 → N
+
i+1 ∨ Ti+1 → T

+
i+1

N+
i−1 → Ni−1

Fig. 2. Token ring example for resource allocation lacking full symmetry

It is easy to prove that the Kripke structure M induced by the parallel com-
position of n processes running the program in Figure 2 enjoys rotational sym-
metry: permutations of the cycle form (1 2 . . . n) leave the structure invariant.
M is not, however, fully symmetric: consider n = 3 and the transition

τ := (N+
1 , T2, T3) → (N1, T

+
2 , T3) .

Applying the transposition (1 2) to τ results in the two states (T1, N
+
2 , T3) and

(T+
1 , N2, T3). The transition from T1 to T+

1 is not allowed by Figure 2 in the
context of state (T1, N

+
2 , T3). In fact, consider any permutation π such that

π(i−1)+1 6= π(i). Then π is not a symmetry of M , by the same argument. As a
consequence, for a symmetry π the condition π(i− 1) + 1 = π(i) is necessary for
all i, and it is also sufficient. Thus, the rotation group is the largest symmetry
group of M , and one cannot expect more than linear savings due to standard
symmetry reduction for this structure.

On the other hand, applying Definition 5, we see that M is fully architec-
turally symmetric. We first show that π(R) ⊆ R+. The only interesting cases are
the transitions where process i acquires the token from its left neighbor i − 1.
After permuting such a transition, the process π(i − 1) releasing the token is
generally someone other than the left neighbor. The resulting invalid transition

8

can be simulated by a path that passes the token from π(i − 1) successively
to that process’ right neighbors until it eventually reaches process π(i) (some
temporary moves from T to N may be required to enable the passing of the
token). To show that π(R+) = R+, one applies this idea to each transition of
a permuted path and connects the resulting paths to a (long) final path. Also,
I is invariant under arbitrary permutations, and L can be defined to be so. In
conclusion, M features an exponential-size architectural symmetry group, but
only a small polynomial-size standard symmetry group. (End of example.)

Before we demonstrate the benefits of reducing architecturally symmetric
systems in the next section, we show the following property.

Lemma 7 Let M be architecturally symmetric with respect to G and Reached
be the set of reachable states of M . Then, for all π ∈ G, π(Reached) = Reached.

Proof : We show π(Reached) ⊆ Reached (the other inclusion follows with a
symmetric argument; note that Reached is a finite set). Assume π(R+) = R+,
and consider t ∈ π(Reached), i.e. t = π(r) for some r ∈ Reached. Then there
is some initial state s ∈ I such that (s, r) ∈ R+, i.e. π(s, r) = (π(s), π(r)) =
(s′, t) ∈ π(R+) = R+, where s′ := π(s). Since, by Definition 5, I is invariant
under π, it follows that s′ ∈ I. Thus, t is reachable in M (namely, from s′), i.e.
t ∈ Reached . �

5 Well-Architected Systems

Architectural symmetry alone is not yet enough to permit a safety-bisimilar
quotient. We therefore now consider models satisfying the following condition:

Definition 8 A system model M = (S,R,L, I) is well-architected if

1. M ’s initial states are all reachable from each other, and
2. for every reachable state s, there is an initial state that is reachable from s.

The possibility of returning to the initial state at any time is common in reac-
tive systems to prevent resource leaks in long-running executions, for instance
through micro-reboots [2]. Communication protocols in the IP and telephony
communities regulate the coexistence of interacting features. Each feature is a
finite-state terminating process; overall behavior is described by continuously
selecting an appropriate feature based on current input, executing the feature
to completion, issuing appropriate output and then returning to some (often the
unique) initial state.

As a concrete example, the model of the resource allocation scheme shown in
Figure 2 is well-architected: first, the initial states are reachable from each other,
since the token can be passed around until it reaches which ever process requested
to have it. Second, every initial state can be reached from any reachable state
by letting each process individually return to its initial local state (N or N+);
the token may again have to be passed around to whoever held it initially.

9

From the definition of well-architectedness, we conclude:

Observation 9 Let M = (S,R,L, I) be well-architected and u and v be reach-
able states. Then u and v are reachable from each other.

Proof : Since M is well-architected, there is a path from u to some s ∈ I. Since
v is reachable, there is a path from some t ∈ I to v. Again since M is well-
architected, s and t are mutually reachable. Putting it all together, there is a
path from u to v. The reachability of u from v follows symmetrically. �

Architectural Symmetry Quotients of Well-Architected Systems

We now present the main result of this paper: From a well-architected and archi-
tecturally symmetric model M , one can derive a safety-bisimilar quotient struc-
ture M ′. Quotient M ′ is obtained as the canonical quotient (see Section 2.1)
of M with respect to the orbit relation ≡o on S. In other words, EF-CTL formu-
las can be verified reliably over the standard symmetry quotient, although the
underlying model is not symmetric.

Theorem 10 Let M be well-architected and architecturally symmetric with re-
spect to G. Let further ≡o be the orbit relation on S, i.e. s ≡o t iff ∃π ∈ G :
π(s) = t. Let finally M ′ be the canonical quotient of structure M with respect
to ≡o. Then M ′ is safety-bisimilar to M .

Proof : We first remark that the labeling function of the quotient is well-defined:
Let s ≡o t. Then there exists π ∈ G such that π(s) = t. Since M is architecturally
symmetric, L is invariant under π, which implies L(s) = L(t).

We now define a suitable relation ≡r between S and S′, namely:

s1 ≡r [s2] iff s1 ≡o s2 .
In particular, s ≡r [s] for any s ∈ S. We claim that ≡r is a safety bisimulation.
The theorem then follows, since the initial states of M and M ′ are appropriately
related: for any s ∈ I, it is s ≡r [s] ∈ I ′. Further, for any [s] ∈ I ′, it is [s] ≡r s ∈ I.
To show the claim, let s1 ≡r [s2], hence s1 ≡o s2 and thus [s1] = [s2]. We prove
the three conditions of Definition 2. We restrict our attention to the reachable
part ofM , which is commonly achieved by exploringM and building the quotient
on the fly. That is, s1 is an actually reached and, therefore, reachable state of M .

1. By the remark above about ≡o, we obtain L(s1) = L(s2), and by the defini-
tion of M ′, L(s2) = L′([s2]). Thus L(s1) = L′([s2]).

2. Let t1 be such that (s1, t1) ∈ R. We choose t2 := t1 and consider [t2]:
It is t1 ≡r [t1] = [t2]. Further, from (s1, t1) ∈ R we conclude ([s1], [t1]) =
([s2], [t2]) ∈ R′ ⊆ R′+.

3. Let [t2] be such that ([s2], [t2]) ∈ R′. By definition of R′, there exist s ∈ [s2],
t ∈ [t2] such that (s, t) ∈ R. We conclude t ≡r [t2]. Further, from s1 ≡o s2
and s ≡o s2, we conclude s1 ≡o s. By Lemma 7 and the reachability of s1,
it follows that s is also reachable in M . Therefore t is reachable in M . Since

10

s1 is also reachable in M , by Observation 9 there is a path from s1 to t,
which implies (s1, t) ∈ R+. We now choose t1 := t to obtain t1 = t ≡r [t2]
and (s1, t1) = (s1, t) ∈ R+.

Note that well-architectedness was used only in the form of Observation 9. �

We summarize this section in the following statement:

Corollary 11 M and M ′ as in Theorem 10 satisfy the same EF-CTL proper-
ties.

We emphasize again that, assuming G is the full symmetry group, M ′ is ex-
ponentially smaller than M , although standard symmetry may allow only an
insignificant reduction. Note, however, that in order to apply full architectural
symmetry reduction, the EF-CTL properties of interest must have fully sym-
metric atomic propositions.

Consider again the example in Figure 2, which allows only polynomial sym-
metry reduction: Since it is both well-architected and architecturally symmetric
with respect to the full symmetry group, we can apply full symmetry reduction
to it when verifying EF-CTL formulas, giving rise to an exponentially smaller
quotient. In Section 7 we underpin this result with quantitative data.

6 Generalization: Non-Well-Architected Systems

We briefly demonstrate that well-architectedness is not even required if one
restricts the set of eligible formulas further, namely to reachability properties:

Theorem 12 Let M = (S,R,L, I) be architecturally symmetric with respect to
group G, and let M ′ be the canonical quotient of M with respect to the orbit
relation. For any state s ∈ S and an atomic proposition q,

M, s |= EF q iff M ′, [s] |= EF q .

Analogously, the theorem can be stated as M, s |= AG q iff M ′, [s] |= AG q.
In other words, for architecturally symmetric systems, safety properties such
as the unreachability of an error state can be equivalently formulated over the
quotient M ′. To prove the theorem, we first show a stronger path correspondence
result. It addresses the “disconnect problem” of existential abstractions, namely
that in general a path in the abstract system may not be liftable to one in the
concrete system. It turns out that under architectural symmetry, it is.

Lemma 13 Let M and M ′ be as above and (p′i)ki=0 be a path in M ′. Then, for
any s ∈ p′0, there is a path in M from s to some element t ∈ p′k.

Proof : By induction on k. If k = 0, choose t := s to get a path in M of length 0.
Now consider path (p′i)k+1

i=0 , and let s ∈ p′0. By the induction hypothesis, there
is a path p in M from s to some state tk ∈ p′k. Further, (p′k, p′k+1) ∈ R′

implies that there is a transition (x, y) ∈ R such that x ∈ p′k, y ∈ p′k+1. Then

11

x ≡o tk, so let π ∈ G be a permutation such that π(x) = tk. By architectural
symmetry, (x, y) ∈ R ⊆ R+ = π(R+), thus (π(x), π(y)) = (tk, π(y)) ∈ R+.
Concatenating path p and the path from tk to π(y) results in a path in M from
s to tk+1 := π(y) ∈ p′k+1. �

Proof [Theorem 12]:
“⇒”: Any path in M from s to t satisfying q can be mapped to a path in

M ′ from [s] to [t]. By the definition of L′, q ∈ L(t) = L′([t]).
“⇐”: Suppose M ′, [s] |= EF q, i.e. there is a path p′ in M ′ with p′0 = [s] and

q ∈ L′(p′k) for some k. By Lemma 13, since s ∈ [s] = p′0, there is a path in M
from s to some element t ∈ p′k. Thus, q ∈ L′(p′k) = L(t) by requirement 2 of
Definition 5, proving M, s |= EF q. �

7 Experiments and Further Examples

In this section we present some quantitative data to support our proposed tech-
nique. We consider the token ring example from Section 4 and show the dif-
ference between model checking this system by exploiting standard symmetry,
and by exploiting architectural symmetry. We have already established that the
Kripke structure induced by the system is rotationally symmetric, and that it
is also both well-architected and architecturally symmetric with respect to the
full symmetry group.

We conducted experiments using the Sviss symbolic verifier [17], an exper-
imental platform for symmetric systems. Sviss is based on the Cudd BDD
library [15] and supports various symmetry groups, in particular the rotational
and the full group, which are relevant for our example. We ran the example on
a 2GB main memory dual-core 2.2GHz system. The property we verified is mu-
tually exclusive occupancy of the C local state. This property is satisfied on this
system, so that Sviss generates the full reachable state space (up to symmetry
reduction).

Rotational Symmetry Architectural Symmetry

Numb. of BDD nodes Numb. of Numb. of
processes Trans. Rel. BDD nodes

Time
BDD nodes

Time

40 1,647 46,103 0:07m 5,612 0:02m

50 2,067 70,448 0:23m 7,052 0:06m

60 2,487 99,893 0:53m 8,492 0:11m

70 2,907 134,438 1:36m 9,932 0:21m

80 3,327 174,083 2:48m 11,372 0:35m

90 3,747 218,828 4:33m 12,812 0:58m

100 4,167 268,673 6:59m 14,252 1:24m
Table 1. Space and time requirements for the token ring example

12

The table shows, for a growing number of processes executing the protocol,
the size of the BDD for the transition relation, the maximum number of live BDD
nodes (“Numb. of BDD nodes”) during the verification run, and the running
time. This example, although small, does impart the difference an exponential
reduction makes over a polynomial one, namely the potential to scale up to large
examples, especially regarding memory, the classical bottleneck of BDDs.

Architectural symmetry and multi-core memory consistency. With the advent
of multi-core hardware designs, pairwise connected communication topologies
will be too costly to support. Instead, hardware and software communication
topologies based on rings, tori, trees, hypercubes, and specially designed patterns
will likely abound [1]. No matter what the exact topology, it will be necessary
to ensure some form of data consistency among the various cores accessing a
shared memory segment. That is, for a particular memory location accessed by
several cores, and possibly several internal core-level caches, the values stored in
those processor locations should be consistent.

Violation of multi-core memory consistency can be stated using a formula of
the form EF(∃i, j : v(pi) 6= v(pj)), expressing the reachability of a state where
two processors pi, pj have different values for a single memory location v. This
formula has fully symmetric atomic propositions, so that architectural symme-
try reduction techniques can be applied in a straightforward manner. As a con-
sequence, the property can be verified over architecturally symmetric systems
(whether well-architected or not), enjoying the same reduction as fully symmet-
ric ones, namely with an exponentially smaller quotient.

FlexRay, Time-triggered architectures. In the automotive electronics industry,
the FlexRay consortium has been formed by major car manufacturers to design
a communication protocol for the control logic in vehicles [9]. Bus and star net-
works are supported, as well as any hybrid topology resulting from a combination
of bus and stars. Many dozens of nodes can be connected in a FlexRay network,
making full interconnection too expensive. Similar structures with little conven-
tional symmetry are supported by the time-triggered protocol, where the network
is a broadcast bus, often equipped with dual channels for fault tolerance [10].

8 Conclusion and Outlook

We have described a new notion of architectural symmetry, which extends at-
tractive benefits of symmetry reduction to many systems with little symmetry.
The result is a potential for an exponentially more effective reduction in model
size. The price we pay is an architectural requirement of well-architectedness and
a specification language with less expressive power than CTL, namely EF-CTL.
We have given examples of multi-process systems that can be fully symmetry-
reduced, although the model under verification is only rotationally symmetric.
We have finally shown that the requirement of well-architectedness can be traded
in for a restriction to reachability properties.

13

Relation to previous work. Symmetry reduction for model checking was intro-
duced in [4, 6], and in [11] using scalarsets for fully symmetric systems. These
works demonstrate the potential of symmetry for an exponential reduction in
system size. This potential can in practice be thwarted if the symmetry is only
“approximate”: some permutations in the targeted symmetry group do not leave
the model invariant. The work of [7, 5, 18] generalized symmetry reduction to sys-
tems where, despite the imprecision in the symmetry, a bisimilar quotient can be
constructed. The results in [14, 16] allow in principle arbitrary deviations from
symmetry, but the reduction of course dwindles with the divergence from perfect
symmetry. Our work, in contrast, deals with a different reason for limited effect
of symmetry reduction: an insignificant symmetry group. To the best of our
knowledge, our work is the first to apply symmetry reduction based on a large
(say, the full) group to a model featuring a small (say, the rotational) group.

Our notion of safety bisimulation bears some resemblance with that of weak
bisimulation [12]. The latter relates systems that are bisimilar up to externally
unobservable actions, often called τ -transitions. Our setting is in a sense lower-
level, as we do not distinguish between visible and invisible system steps and
thus do not have τ -transitions.

Unrelated to symmetry, [3] defines an implementation relation that compares
sets of executions rather than computation trees. In addition, unlike our notions
of safety simulation and bisimulation, that notion does not seem to generalize to
equivalence of structures. In particular, it does not guarantee that if an abstract
model fails to satisfy a property, then so does the concrete model.

Future work. We plan to investigate precisely how to detect well-architectedness
and architectural symmetry. If a system model is well-architected, it is usu-
ally not so by coincidence, but by design. For such systems, suspected well-
architectedness can perhaps be verified at a high-level abstraction layer, akin
to symmetry being verified or enforced at the program text level. As a last
resort, well-architectedness can also be verified at the structure level, using a
reachability pass from I forward, resulting in a set Reached , and one from I
backward, resulting in a set Reached−1. The structure is well-architected ex-
actly if Reached ⊆ Reached−1. Contrast the cost of this check with verifying
symmetry, which is graph-isomorphism complete.

Regarding architectural symmetry, our approach to detecting it is based on
the observation sketched earlier that π(R+) = R+ iff π(R+) ⊆ R+ iff π(R) ⊆ R+.
That is, a model is architecturally symmetric exactly if every permuted transition
can be simulated by a finite-length path.

An open question is how symmetry reduction based on process counters [7, 13]
can be applied to a system architecturally symmetric with respect to the full sym-
metry group. Since our approach does not require full symmetry, a translation
of the program text as described in [8] is not quite applicable.

Acknowledgments. The authors wish to thank E. Allen Emerson for his inspira-
tional comments on this work, and Georg Weissenbacher for suggesting practical
motivations and for revisions on early drafts.

14

References

1. Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine Yelick. The landscape of parallel
computing research: A view from Berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, 2006.

2. George Candea, James Cutler, and Armando Fox. Improving availability with
recursive microreboots: a soft-state system case study. Performance Evaluation,
2004.

3. Xiaofang Chen, Steven German, and Ganesh Gopalakrishnan. Transaction based
modeling and verification of hardware protocols. In Formal Methods in Computer-
Aided Design (FMCAD), 2007.

4. Edmund Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha. Exploiting
symmetry in temporal logic model checking. Formal Methods in System Design
(FMSD), 1996.

5. Allen Emerson, John Havlicek, and Richard Trefler. Virtual symmetry reduction.
In Logic in Computer Science (LICS), 2000.

6. Allen Emerson and Prasad Sistla. Symmetry and model checking. Formal Methods
in System Design (FMSD), 1996.

7. Allen Emerson and Richard Trefler. From asymmetry to full symmetry: New
techniques for symmetry reduction in model checking. In Correct Hardware Design
and Verification Methods (CHARME), 1999.

8. Allen Emerson and Thomas Wahl. On combining symmetry reduction and sym-
bolic representation for efficient model checking. In Correct Hardware Design and
Verification Methods (CHARME), 2003.

9. The FlexRay Consortium, http://www.flexray.com. FlexRay—The communication
system for advanced automotive control applications.

10. Günter Heiner and Thomas Thurner. Time-triggered architecture for safety-related
distributed real-time systems in transportation systems. In Fault-Tolerant Com-
puting Symposium (FTCS), 1998.

11. Norris Ip and David Dill. Better verification through symmetry. Formal Methods
in System Design (FMSD), 1996.

12. Robin Milner. Operational and algebraic semantics of concurrent processes. In
Handbook of Theoretical Computer Science, Volume B: Formal Models and Se-
mantics. MIT Press, 1990.

13. Amir Pnueli, Jessie Xu, and Leonore Zuck. Liveness with (0, 1,∞)-counter ab-
straction. In Computer-Aided Verification (CAV), 2002.

14. Prasad Sistla and Patrice Godefroid. Symmetry and reduced symmetry in model
checking. Transactions on Programming Languages and Systems (TOPLAS), 2004.

15. Fabio Somenzi. The CU Decision Diagram Package, release 2.3.1. University of
Colorado at Boulder, http://vlsi.colorado.edu/~fabio/CUDD/.

16. Thomas Wahl. Adaptive symmetry reduction. In Computer-Aided Verification
(CAV), 2007.

17. Thomas Wahl, Nicolas Blanc, and Allen Emerson. Sviss: Symbolic verification of
symmetric systems. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2008.

18. Ou Wei, Arie Gurfinkel, and Marsha Chechik. Identification and counter abstrac-
tion for full virtual symmetry. In Correct Hardware Design and Verification Meth-
ods (CHARME), 2005.

15

