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ABSTRACT

Microarchitectural side-channel attacks have posed serious threats
to many computing systems, ranging from embedded systems and
mobile devices to desktop workstations and cloud servers. Such
attacks exploit side-channel vulnerabilities stemming from funda-
mental microarchitectural performance features, including the most
common caches, out-of-order execution (for the newly revealed
Meltdown exploit), and speculative execution (for Spectre). Prior
efforts have focused on identifying and assessing these security
vulnerabilities, and designing and implementing countermeasures
against them. However, the efforts aiming at detecting specific
side-channel attacks tend to be narrowly focused, which can make
them effective but also makes them obsolete very quickly. In this
paper, we propose a new methodology for detecting microarchitec-
tural side-channel attacks that has the potential for a wide scope of
applicability, as we demonstrate using a case study involving the
Prime+Probe attack family. Instead of looking at the side-effects of
side-channel attacks on microarchitectural elements such as hard-
ware performance counters, we target the high-level semantics and
invariant patterns of these attacks. We have applied our method
to different Prime+Probe attack variants on the instruction cache,
data cache, and last-level cache, as well as several benign programs
as benchmarks. The method can detect all of the Prime+Probe at-
tack variants with a true positive rate of 100% and an average false
positive rate of 7.4%.
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1 INTRODUCTION

With the advent of Internet of Things (IoT) and ever increasing
demand for connected systems, many more accessible and yet con-
nected points of intrusion could be exposed to cyber criminals
for them to launch catastrophic attacks [30][4][19]. These attacks
may leak secret system information, breach users’ privacy and data
confidentiality, disrupt digital transactions, or even cause physi-
cal damage to vital equipment and infrastructures. Side-channel
attacks (SCAs) have become a realistic threat to many computing
systems, where observable side-channel leakage is utilized to infer
secret information. Typical side-channel leakage includes timing
information, power consumption, electromagnetic emanations, or
other physical side-effects [36].

Microarchitectural cache timing attack has become an effective
and realistic cyber threat [13][23][3]. The goal of this attack is to
infer some information about the victim’s sensitive data or code
blocks by monitoring the cache state. This attack is possible be-
cause the attacker program and the victim program, although in
different address spaces and disjoint in memory, share the common
on-chip caches at different levels of the cache hierarchy. In fact, the
attacker observes cache hits and misses sourced from the victim
program, and either finds the set index, as in Prime+Probe, or the
exact cache line, as in Flush+Reload, that is accessed by the victim.
With such information and knowledge of the victim’s program
implementation, the attacker can reveal the victim’s secret data or
operation.

Several methods have been proposed in the literature to detect
cache timing attacks. There are mainly two categories, static code
analysis and run-time detection. The existing static code analysis
methods e.g., a tool called MASCAT, focuses on detecting different
instruction groups or attributes that are typically used in cache tim-
ing attacks, such as timers, memory barriers, and memory moves,
in disassembled program binaries. However, attackers can use dif-
ferent obfuscation techniques and packing schemes to avoid being
detected by such static code analysis. The tool also has high false
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positive rates because there are many benign applications that
use the same instructions or attributes that MASCAT relies on.
Zhang et. al. in [34] propose another type of cache timing attack
detection method: monitoring the hardware performance counters
at run-time. It first detects the running of cryptographic applica-
tions, and then captures the cache miss rate to identify abnormal
behavior and interactions of programs over the cache. This type
of approaches [8][11][5][9][26] that use hardware performance
counter monitoring or kernel tracing have the advantage of per-
forming runtime or in the best case real-time detection. However,
the main challenge that they are facing is that the patterns captured
by the very low-level hardware performance counters or kernel
probes could be attributed to a mix of programs running in paral-
lel, leading to high false positive rates. Another challenge is that
the detection tool (including monitoring or tracing, and analyzing)
has to be fast enough to keep up with the execution of the victim
program, so as to detect the attack in time.

In this paper, we propose a new methodology and implement
it in a tool, SCADET-Side-Channel Attack DEtection Tool. We
used Prime+Probe as our case study, while our approach can be
extended to detect other cache timing attacks. SCADET accepts
the executable binary of a user program as input and identifies any
potential for Prime+Probe attack behavior. SCADET consists of
two stages, dynamic binary instrumentation and offline pattern
detection. SCADET conducts the instrumentation in a controlled
(virtual or non-virtual) environment and collects the address traces
of the input program. In the current version of SCADET the analysis
is performed offline to have higher flexibility in the analysis and to
avoid extra overhead on the instrumentation and the host system.
Currently our tool only supports x86 architectures, although it can
be extended to support different architectures, such as ARM for
embedded systems. We view our tool as a side-channel “anti-virus”
tool, advocated by Spreitzer et. al. in [29], which performs deep
scanning on program binaries in the APP stores to identify threats.
Our contributions in this research are summarized as follows:

e Proposed a methodology to detect microarchitectural SCAs
based on their memory-access behavior

e Analyzed Prime+Probe attacks from the algorithmic level
down to the microarchitectural level for identifying its in-
variant pattern

e Developed a tool to instrument program binaries and analyze
their address traces

e Evaluated the accuracy and the performance of the tool for
different types of attack and benign programs

SCADET could successfully detect all of the studied Prime+Probe
attack variants with a 100% true positive rate and an average false
positive rate of 7.4%.

The rest of the paper is organized as follows. In Section 2, we
describe Prime+Probe attack, its implementations, and its primary
signature. In Section 3, we elaborate on our detection method and
the algorithm we designed for detecting the Prime+Probe signature.
We talk about the SCADET components and their tasks in Section 4.
In Section 5, we explain our experimental setup and provide the
results of our experiments. We discuss the performance, the accu-
racy, and the limitations of SCADET and some of our future plans
to address them in Section 6. Finally, we conclude in Section 7.
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Figure 1: An 8-way L1 cache organization (a), and virtual and
physical memory address fields (b).

2 PRIME+PROBE ATTACK ON CACHES

Prime+Probe [25] is one of the most effective cache timing at-
tacks. It can detect which cache sets are accessed by the victim
and infer some secret information. Another cache timing attack,
Flush+Reload [33], can be more accurate than Prime+Probe be-
cause it detects the accesses to specified cache lines. However,
Prime+Probe is more generic as it does not need to use flush in-
structions, and it also works on non-shared memory environments.
To better explain the Prime+Probe attack, in Section 2.1 we provide
some background on the cache organization and memory address-
ing in modern processors.

2.1 CPU caches and memory addressing

Caches, a hierarchy of small but fast on-chip storage units, play an
important role in improving computer performance. However, the
access time difference between cache hit and cache miss can leak
memory addresses being used by the victim and therefore cause
secret leakage.

2.1.1 Cache organization. In a typical cache hierarchy, there
are three levels. L1 and L2 caches are private to each core and L3
cache is shared among several cores. Modern caches are typically
set-associative, where the cache is organized into multiple cache
sets, with each set containing multiple cache lines. Each memory
address can be mapped onto one set but any line within that. In
a set-associative cache, the associativity therefore is denoted by
#ways. Figure 1a, exemplifies an 8-way set-associative cache, with
8 cache lines in each cache set.

Cache replacement policies determine which cache line in a set
should be evicted when a new memory block is brought into the
cache. Commonly used policies are the Least recently used (LRU),
Pseudo-LRU, and adaptive replacement policy [28].

2.1.2  Memory addressing. Virtual addressing enables processes
to view the memory as if they own it all. The operating system
allocates a part of memory to each process, and performs the virtual
to physical address translation. Figure 1b shows different fields of
virtual and physical addresses. Note that, the page offset stays
the same in both the virtual and the physical addresses, while the
page number get translated to the frame number using page tables.
When the CPU wants to read or write a data or an instruction
from/to caches, it uses their virtual addresses. However, depending
on whether the caches are virtually or physically indexed or tagged,
an address translation might happen. Figure 1b shows the address
breakdown, where a memory address consists of set index (which
cache set the line is mapped onto), the cache line tag (to search the
cache line in the set), and cache line offset (which word in a cache



line). The number of bits in these fields depends on the cache size,
number of sets in the cache, and the cache line size.

2.2 Prime+Probe implementations

Prime+Probe attack can target different levels and types of caches
in modern x86 architectures, specifically, L1 data (D) [27], L1 in-
struction (I) [1], and last-level caches (LLC) [23]. Depending on the
level and the type of caches, attacker would have to change the
attack procedure although the core behavior may remain the same.

In D-cache attacks, the attacker wants to extract secret infor-
mation from the victim’s data-access patterns in L1 or Last-level
caches. In these types of Prime+Probe attacks, an attacker monitors
the footprint of a victim in certain cache sets by replacing the vic-
tim’s data with its own data and evaluating the (re)access time to
this data after victim runs its sensitive code. These types of attacks
can be either launched on one core or across multiple cores.

In [1] Aciigmez introduces an I-cache Prime+Probe attack, where
the goal is to find the execution path or instruction flow of a vic-
tim program, such as RSA [3] or ElGamal encryption [35], which
executes different branches depending on a secret value. Similarly,
the attacker attempts to create conflicts on certain cache sets that
both the attacker code block and the sensitive victim code block
map onto. I-cache attacks have a broad range of targets, including
not only conditional branches which Branch Prediction Analysis
(BPA) [2][16][24] applies to, but also unconditional branches. In
I-cache attacks, the spy process is launched either quasi-parallel
(by time-slicing and frequent pauses/interrupts in victim operation)
or simultaneously (using simultaneous multi-threading) with the
victim process on the same core.

In both I-cache and D-cache attacks, cache sets can be primed
and probed in several ways. For example, all the sets can be primed
at once and then probed one by one, or prime and probe is done with
a certain period across a group of sets. Besides that, cache mapping
method as well as cache replacement policy are other factors that
should be considered in these attacks. In fact, the strategy that the
attacker chooses can affect the success or failure of an attack. We
evaluated the detection accuracy of SCADET for some of the afore-
mentioned variants of conducting Prime+Probe attacks. SCADET
achieved similar accuracy in detecting these attack variants and
the default approaches of conducting the attacks.

2.3 Primary signature (invariant pattern) of
Prime+Probe attacks

The core behavior of the Prime+Probe attack can be described as
coupled two groups of cache accesses in a short interval of time,
where certain cache sets are first primed completely (i.e., mounting
the attacker data in the cache) and after a delay (to let the victim
run) a few or all of the primed cache locations are reaccessed and
the access time is measured. To prime a cache set completely the
attacker should at least perform #ways accesses (number of ways
in each cache set) each having a unique cache line address for the
same set index. If the cache replacement policy is LRU then #ways
cache accesses is enough. For other policies such as pseudo-LRU
or adaptive replacement policy, however, the attacker may need to
perform more than #ways accesses as some of the access requests
may go to the same cache way. The time between consecutive
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Figure 2: Access pattern of Prime+Probe in one set of an 8-
way L1 data cache.

accesses to the same set is identified by an empirically chosen
threshold (which also depends on the attack implementation). We
call this threshold the intra-group threshold. On the other hand, the
distance between Prime and Probe access groups (where each group
consists of accesses to the same set) is another important factor
in attacks which is compared against a predetermined threshold
that we name as the inter-group threshold. These thresholds enable
our tool to correctly identify the groups of accesses. The way that
proper intra-group and inter-group thresholds are chosen is detailed
in Section 3.1.1.

We define the primary signature of Prime+Probe attacks as at
least two consecutive groups of accesses to at least one cache set,
which pass both intra-group and inter-group threshold conditions.
Figure 2 illustrates an example of Prime+Probe signature for an L1
data cache attack based on the Mastik library [32].

3 DETECTION METHOD

We propose an algorithm for detecting the Prime+Probe signature
in the target program’s executable binary by analyzing the footprint
(addresses) of its instruction or data access. After instrumenting
the binary and capturing the program’s address trace, we follow
these steps:

(1) Add sequence number: a sequence number is added to each
address in the trace as its order in the program which can
save memory space than real time-stamps. Also, it makes
the trace acquisition faster.

Filter reads/writes: based on the type of analysis, either the

read accesses or write accesses are kept (since in the real

Prime+Probe attack priming and probing are done by a group

of reads or a group of writes and not a mix of both). An

exception is I-cache analysis, which consists of reads only.

Calculate the cache set indexes and cache line tags: for each

physical address in the trace, we calculate the set indexes

and line tags based on the cache configuration.

(4) Group by set indexes: all of the line tags and their corre-
sponding sequence numbers are grouped by the set indexes
which they belong to.

(5) Filter the sets: any sets which have fewer than #ways unique
line accesses are removed.

(6) Cluster the line tags based on the Prime+Probe pattern: for
each set, the line tags and their corresponding sequence
numbers are organized into different clusters based on a
clustering algorithm which is explained in Section 3.1.

(7) Filter the clusters: any clusters which have fewer than #ways
unique line tags are removed. This is because, we assume
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there are at least #ways unique line tags for both the prime
and probe access groups.

(8) Evaluate the Prime+Probe pattern: if at least two clusters
remain, we report this binary as containing a potential attack
code with at least one instance of the Prime+Probe signature.

3.1 Clustering the line tags

To organize the line tags and sequence numbers into different clus-
ters we devised a custom light-weight clustering algorithm. Before
describing the algorithm, we define the intra-group and inter-group

thresholds.

3.1.1 Intra-group and inter-group thresholds. In Section 2.3, we
described the Prime+Probe signature as grouped accesses which
exhibit certain properties. First, all of the accesses in a group should
go to a single set and they should be in temporal proximity. In other
words the temporal distance of two consecutive accesses should be
less than or equal to a threshold, the intra-group threshold. Second,
since in practical attacks the prime and probe access groups should
not be far apart, otherwise there may be a large amount of cache
access noise by other irrelevant programs (in addition to the victim
program), we define another threshold called inter-group threshold
as the upper bound of this distance. These thresholds are measured
by number of accesses (or memory references) as the indicator
of temporal distance. For example, an intra-group threshold of 10
for an I-cache attack means that the consecutive targeted accesses
(those that are intended to prime or probe a cache set) to the same
L1 I-cache set should have sequence numbers differing by at most
10 (i.e., there are at most 9 other accesses in between).

Both the intra-group and inter-group thresholds are chosen em-
pirically after evaluating many attack and benign programs. How-
ever, to better select the thresholds we also evaluated the source
codes of the attacks. For example, to choose a proper intra-group
threshold for I-cache attacks we recorded the assembly instructions
that are executed by the I-cache attack in the Mastik library [32].
Listing 1 shows a code block that is used by the I-cache attack to
prime an 8-way L1 instruction cache. This code block is the body
of a function which contains a chain of eight continuous jmp in-
structions and a ret instruction that, when called, primes all of the
cache lines of the target set (assuming an LRU cache or pseudo-LRU
replacement policy). Therefore, we expect the intra-group thresh-
old to be 1 (that is completely back to back accesses). As we show
in Section 5 our experiments confirm that 1 is an excellent value
for the intra-group threshold in I-cache attacks. Similarly, the best
intra-group threshold value for L1 D-cache attacks is 1.

Listing 1: Code snippet from the Mastik I-cache attack.

jmp 0x7f2ee3alc9cO
jmp 0x7f2ee3al1d9c0O
jmp 0x7f2ee3ale9cO
jmp 0x7f2ee3alf9c0
jmp 0x7f2ee3a209c0
jmp 0x7f2ee3a219c0
jmp 0x7f2ee3a229c0
ret

In contrast to L1 cache attacks, based on our experiments the
intra-set threshold for LLC attack is about 24 which is significantly
larger than 1. We analyzed the reason to be the replacement policy
of the LLC as well as the speculative and out-of-order execution in
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Figure 3: Cache line tag clustering

modern processors. Our analyses are done on a Skylake microar-
chitecture CPU which we expect to have an adaptive replacement
policy for its LLC [14]. To fully evict a set, there need to be more
than #ways accesses to the same set because some of the accesses
may touch the same way in the set. Therefore the attack code has
to loop over the eviction procedure multiple times to evict all of
the ways in a cache set (e.g. about 9 times for each way in a 16-way
cache in libflush L3 Prime+Probe attack [20][21] assuming a uni-
form distribution for accesses). It means that we have some redun-
dant memory accesses pertaining to the for loop execution between
the target accesses. Moreover, in modern processors instructions
are executed speculatively and out-of-order, which means different
memory accesses are issued between consecutive targeted accesses.
In view of these reasons, a larger threshold has to be selected to
capture the targeted accesses.

On the other hand, inter-group threshold also affects the perfor-
mance of the detection method. This threshold is chosen empirically
based on the relative distance of Prime and Probe access group cen-
ters. The value for this threshold could be as large as 10000 for LLC
analysis.

3.1.2  Clustering algorithm. Figure 3 illustrates an example of
line tag clustering for a 4-way set. To cluster the addresses of ac-
cesses to each cache set based on the sequence numbers we first find
the temporal distance (difference of sequence numbers) of all con-
secutive accesses. Then, we group the accesses that their distance
are less than or equal to the intra-group threshold. If a distance is
larger than the intra-group threshold, a new group of accesses is
created. This procedure repeats until all of the line tags are clus-
tered into different groups. The groups that have less than #ways
unique line tags are removed. Finally, if the differences between
the centers (averages of the sequence numbers) of the remaining
pairs of groups are less than or equal to the inter-group threshold,
these pairs are returned as the Prime+Probe access groups. This
algorithm is run for each candidate cache set that is selected by
step 5 of detection steps in Section 3.

4 SCADET COMPONENTS

We designed SCADET, a tool which automates the acquisition of
address traces from executable binaries as well as the analysis for
detecting attack signatures. Figure 4 shows a high-level diagram
of SCADET and its components. This tool has two primary parts.
First part, as detailed in Section 4.1, is dedicated to trace acquisition
through binary instrumentation. The output trace of the first part,
is passed to the second part for address analysis and signature
detection stage.
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Figure 4: SCADET components.

4.1 Trace acquisition

We use Pin, which is a dynamic binary instrumentation frame-
work developed by Intel [17], to acquire memory and instruction
address traces of programs. Pin supports IA-32, x86-64 and MIC
instruction-set architectures and enables the creation of custom
program analysis tools. In particular, we designed two customs
tools based on the itrace and pinatrace Pintools to instrument
the instruction addresses, for I-cache analysis, and the memory ad-
dresses, for D-cache analysis, respectively. We run and instrument
the programs on a Linux operating system.

There are two main differences between our custom-designed
tools and the original tools. First, in order to produce a compact
trace our tool only keeps essential information and saves the traces
in binary format. Second, our tool translates the virtual addresses
to physical addresses using the pagemap kernel interface. Our Pin-
tool accesses the pagemap file located at /proc/[pid]/pagemap to
find out which physical frame each virtual page is mapped to, and
conduct the translation using a userspace program similar to the
one presented in [10].

A major challenge in monitoring memory traces is the sheer
volume of data that needs to be collected, maintained, and ana-
lyzed [31]. To mitigate this problem, our Pintool encodes the infor-
mation in a compact format and stores them in a binary file. Besides
that, we put an upper limit of 10GB for the size of output traces,
which was more than enough for the majority of the programs we
evaluated. However, it could be that our instrumentation misses
some important parts of a program. This issue can be addressed
in future work by a more targeted instrumentation (potentially
through pre-static analysis or machine learning based targeted in-
strumentation). In our current prototype, the upper limit is enforced
manually. Another important point is the time it takes to acquire the
traces. In our experiments the minimum and maximum acquisition
times were 0.38 minutes and 38.71 minutes respectively. Targeted
instrumentation also helps reducing the acquisition time. Note that
the traces used for D-cache and LLC analyses are identical, because
in both types the physical memory addresses are analyzed. The only
difference is in finding the set indexes and line tags for the right
level of caches. Also, in I-cache traces all recorded addresses are
for read accesses as the program only reads the instructions from
I-cache during execution; it does not write to it. Figure 5 shows
trace structures for different types of analyses.

4.2 Address analysis

After collecting the address traces, we send them to a computing
cluster for analysis and pattern detection. We developed a parallel
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Figure 5: SCADET raw address traces (converted to human
readable formats). (a) I-cache trace, physical instruction ad-
dresses. (b) D-cache or LLC trace, read/1 and write/0 flags and
physical memory addresses.
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Figure 6: A sample output report of SCADET.

analysis program based on the Apache Spark data processing en-
gine [12]. We used pyspark to develop our program and ran it on a
cluster of 1 master node with 5 worker nodes connected to it. Each
of the nodes had 48 computing cores. This program executes the
steps described in Section 3 using a parallel processing approach
and outputs the final report in a text format similar to Figure 6. In
our experiments, minimum and maximum I-cache analysis time
was 1.8 and 312 minutes, D-cache analysis was 0.5 and 296 minutes,
and LLC analysis was 0.5 and 84 minutes.

5 RESULTS

In this section, we describe our experiments and present their re-
sults. First, we elaborate on the experimental setup. Second, we
explain how we evaluated our tool and the metrics we used. Third,
we list the benchmarks we used to study the performance of our
tool. Finally, we describe our results for each experiment.

5.1 Experimental setup

We performed all of the binary instrumentation and trace acquisi-
tion on an Ubuntu 16.04.1 operating system with latest updates and
Linux kernel version of 4.13.0-38-generic. As a side study, we also
ran the acquisition process on an Oracle VirtualBox virtual machine



(VM), with Ubuntu 16.04 as the operating system, achieving similar
results to the non-VM settings. In both VM and non-VM settings,
the host desktop computer had Intel Skylake core-i7 6700 CPU,
16GB RAM, 16-way 8MB L3 cache, 8-way 32KB L1 I-cache, and
8-way 32KB D-cache. Note that all of our trace acquisitions are per-
formed when regular background and foreground processes, such
as OS scheduling and user applications (browsers, editors, network
applications etc.), were running at the same time. This adds real
noise to our traces. The computing cluster which we performed
the address analysis and pattern detection on had 1 master node
and 5 worker nodes connected to it. Each of the 6 nodes had Intel
Xeon CPU E5-2690 v3 2.6GHz, 48 logical cores, and 128GB RAM.
We launched our analyses on a Apache Spark platform version 1.4.1
(Hadoop 2.4) with 50GB driver memory, 50GB executor memory,
and 20GB maximum result size.

5.2 SCADET results evaluation

We run SCADET on a variety of benign and attack programs. All
of the attack programs are based on the open-source libraries from
experts in SCA research in order to conduct a fair evaluation and
allow reproducibility and comparability. We also used publicly
available benign programs.

5.2.1 Benchmarks. In total we used 21 benchmark programs,
listed in Table 1, for evaluating SCADET. We used two open-source
libraries, libflush [20] and Mastik [32], for implementing the at-
tacks. L1 I-cache and L1 D-cache attacks are implemented based
on the Mastik library. We evaluated two LLC attacks, one based
on libflush and the other from Mastik. For benign applications we
used, three types of sorting, insertion sort, merge sort, and quick
sort from an open-source repository [6], ten programs from the
PARSEC 3.0 benchmarking suit [7], a compression program, Bzip2
which is available on Linux as a tool, and three OpenSSL based
cryptographic operations — an AES encryption, a document sign-
ing, and an SSH key generation. We chose these benchmarks as
they represent a diverse class of programs with different workloads,
parallelism, and memory access intensity. Note that to successfully
run and accurately evaluate all of the benchmarks we provided
necessary inputs for them. For Prime+Probe attack binaries, we set
them up for an attack on 16 sets for libflush L3 Prime+Probe and
on 64 sets for Mastik L1 instruction, L1 data, and L3 attacks with
100 iterations for each attack. For PARSEC programs we used -i
simlarge flag to run them with a large simulation input data. For
Bzip2 we used libc-static. a as the input file of compression with
default options. For AES encryption we used 256-bit CBC mode
options, for document signing we used a 256-bit SHA hash oper-
ation and a 2048-bit RSA encryption, and for SSH key generation
we used 521 bit ECDSA.

5.2.2  Analysis results. To measure the accuracy of the tool, we
used true positive rate (TPR) and false positive rate (FPR) metrics.
We can tell from TPR and FPR how effective the tool is in detecting
the Prime+Probe pattern in attack programs and not in benign pro-
grams which may exhibit similar patterns. We studied the detection
accuracy of SCADET by running 105 experiments, corresponding to
five types of analyses (I-cache, D-cache reads, D-cache writes, LLC
reads, and LLC writes) for each of the benchmarks. The SCADET

detection result are summarized in Table 1. The results show that,
SCADET had 4 true positives, 95 true negatives, 6 false positives
(3 for D-cache analysis and 3 for I-cache analysis), and 0 false neg-
atives, achieving a TPR of 100% and an average FPR of 7.4% (FPR
is 15% for I-cache analysis, 7.3% for D-cache analysis, and 0% for
LLC analysis). This result corresponds to intra-group thresholds
of 1 for I-cache and D-cache analysis and 24 for LLC analyses, and
inter-group threshold of 3500 for L1 cache analysis and 10000 for
LLC cache analysis. Note that, we reported an attack as detected
if at least one set with the Prime+Probe pattern is identified in its
address trace. However, if we consider the number of identified sets
over the number of expected sets (those that are targeted by the
attack) the average TPR is about 73.9%.

As shown in Table 1, for the libflush LLC, Mastik LLC, L1-D,
and L1-I attacks, SCADET correctly detects 15 LLC, 1 LLC, 64 L1-
D, and 64 L1-I cache sets with Prime+Probe patterns respectively
(marked in red). Also, SCADET produces 7 false positives (marked in
violet) for two types of analyses, L1-I and L1-D, in seven benchmark
programs.

13pp libflush | 13pp mastik 11dpp mastik
(15/16 LLC) | (1/48 LLC) (64/64 L1-D)
11ipp mastik | blackscholes | canneal
(64/64 L1-1) | (1 L1-D) (1L1-D)
ferret fluidanimate raytrace
(1L1-I) (1L1-I) (1L1-I)

vips (1 L1-D) | insertion sort | quick sort
merge sort freqmine bodytrack
facesim X264 bzip2
aes256cbc rsa2048sha256 | sshecdsa521

Table 1: Evaluated benchmarks and the numbers of sets with
the Prime+Probe pattern (identified/expected) in each pro-
gram (red for true positives and violet for false positives) as
detected by SCADET

5.2.3  Trace acquisition times, trace sizes, and analysis times. We
considered trace acquisition time and trace size as metrics for the
trace acquisition part of the tool. For instruction address traces
(I-cache analysis), the acquisition time had a mean of 22 minutes
and for memory address traces (D-cache and LLC analyses), the
acquisition time had a mean of 11 minutes. For I-cache analysis, the
trace size had a mean of 2.7 GB; and for D-cache and LLC analysis,
the trace size had a mean of 2.4 GB. I-cache analysis time had a
mean of 22 minutes, D-cache analysis 24 minutes, and LLC analysis
5 minutes.

6 DISCUSSION

SCADET performs L1 attack analysis as well as LLC attack analysis.
In both types of analysis, intra-group and inter-group thresholds
have a large impact on the accuracy of the detection outcome. The
intra-group threshold filters out unwanted patterns in each set
which may be similar to Prime+Probe signature in the sense that
they are frequently accessing the same set, but are in fact from
benign programs as they do not satisfy the temporal proximity con-
straint of Prime+Probe accesses. Therefore this threshold controls
which access patterns can be categorized as priming or probing.



Choosing a very large intra-group threshold may lead to false posi-
tive results (false alarms) and choosing a too small value may lead
to false negative results. On the other hand, the inter-group thresh-
old captures a more high-level behavior, which is the Prime+Probe
period. There could be two groups of access patterns which are
similar to prime and probe patterns individually, however they are
too far from each other that they cannot be considered as coupled
entities. It means that the information from one of the access groups
could not reach to the second one, as there would be a complete dis-
ruption by other programs that may exceed the span of a sensitive
code in the victim program (the accesses of the victim are mixed or
obstructed by other active code blocks or other programs).

6.1 SCADET accuracy evaluation

With the best settings, SCADET achieves a TPR of 100%, and
an average FPR of 7.4%. The false alarms produced by SCADET
were triggered by I-cache analysis of the benchmarks ferret,
fluidanimate, and raytrace, D-cache writes analysis of the
benchmarks blackscholes, canneal, and vips, and also D-cache
reads analysis of the 13pp mastik program (that is also correctly
detected as an LLC attack). For I-cache analysis, the false positives
are because of code blocks which have many short distance jumps.
For false positives in D-cache write analysis, some programs
initialize large data structures in memory which generates many
write memory accesses in a short interval of time, creating a pattern
very similar to the Prime+Probe signature in write accesses. The
false positive in D-cache read analysis of Mastik LLC Prime+Probe
attack could be because of the eviction set preparation steps in
the attack program which have frequent memory accesses to the
memory to find the congruent addresses and create the eviction
set.

Based on our analyses and experiments the intra-group threshold
plays a more important role in detecting the attacks accurately,
compared to the inter-group threshold. This is both predictable and
desirable because the intra-group threshold is capturing the core
pattern of the Prime or Probe, while the inter-group threshold is
a knob for reducing the false positive and it depends on how the
attack is implemented.

SCADET has better accuracy in LLC analysis as it produces no
false positives, compared to I-cache and D-cache analysis for which
it produces a total of 6 false positives. This is reasonable, because
LLC have a much larger size and is not accessed as frequently as
L1 caches, therefore the Prime+Probe signature stands out more
clearly among other memory accesses.

6.2 SCADET trace size vs. analysis time

Figure 7 illustrates, on logarithmic scales, the analysis time varia-
tions for different types of analyses for all of the benchmark pro-
grams as the trace size (denoted as the number of addresses stored
in the trace) increases. About 90% of the analysis times are spent
on the file I/O as well as data movement to/from the memory and
between the compute nodes in the cluster. For each of three types of
analyses, the analysis time generally increases when the trace size
increases. However, there are notable irregularities when the trace
size exceeds 108. We labeled on Figure 7 a few benchmarks which
pertain to these irregularities. For example for I-cache analysis

(dashed lined plot with red circles), although the trace size of 13pp
mastik is much smaller than PARSEC benchmarks’ trace sizes, it
takes more analysis time. Similarly for the D-cache analysis and the
LLC analysis, the bzip2 program has the largest traces size, while
much longer analysis times are used by the 13pp mastik program
and the insertion sort program respectively.

These irregular trends are due to the fact that the analysis times
significantly depend on the address filtering. As described in Sec-
tion 3, steps 1-5, SCADET performs a few levels of filtering to
remove the noise in address traces before clustering the accesses
and searching for the Prime+Probe pattern. Some benchmarks, such
as insertion sort and 13pp mastik, have very memory intensive
computations which involves many accesses to the same cache sets,
hence they have many addresses to be analyzed even after filtering.
For example, although bzip2 is a memory intensive benchmark,
about 37% of its memory accesses gets filtered out before the pattern
detection step.

-@- I|-cache insertion sort —»@
1
D-cache , . insertion sort/
E] masti 1
102 {|—&- LLC PP i —-’!\ i !
iy N\ !
2 13pp mastik ———;ﬂ\ ',’ !
IS ~ i I
é / ] !
N
9] / RN
kS 10t 4 K h " !bzip2
o _. H !
‘7>’\ - H Lbzip2
S e |/
< ~o-----00 , PARSEC
< - o /
0 n _,r/’” ~~~~~~~~
10° 4 AP
"’_-_—_—_—_-.--l—‘\ r ~
A
107 108

Trace size (number of addresses)

Figure 7: Analysis time vs. trace size for different types of
analysis.

6.3 Limitations and future work

In some types of analyses, SCADET generates false alarms for a
few of the benchmark programs. To fix that we are considering
using a more adaptive pattern detection methodology which tunes
the threshold based on each program to detect the patterns more
accurately. Besides that, for a number of benchmarks, SCADET
acquisition and detection times are very long. This could be a prob-
lem when many programs should be analyzed in large repositories
or APP stores. Selective instrumentation is another major step for
us to reduce the acquisition time and the analysis time as well
as to reduce the noise and enhance the detection capabilities of
SCADET. Furthermore, we think SCADET can be integrated into
the OS kernel as a run-time address tracking and pattern detection
framework. Currently, SCADET only supports the x86-64 ISA. We
plan to extend our tool to support different ISAs and architectures.

Furthermore, we are planning to upgrade our tool to detect
other types of microarchitectural SCAs. Attacks which exploit set-
associative caches, such as Evict+Time [25] and Evict+Reload [15]
could be detected by our tool. Also, SCADET can be extended to
detect the covert cache transmission channels used by the recent
Meltdown [22] and Spectre [18] attacks.
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CONCLUSION

In this paper, we proposed a methodology to detect microarchi-
tectural SCAs by inspecting their root cause and detecting their
primary signature. We developed SCADET, a tool which collects
address traces of programs by dynamic binary instrumentation and
performs offline analysis using a parallel processing framework
to detect the Prime+Probe signature as our case study. SCADET
can detect different variants of the Prime+Probe attack with 100%
TPR and 7.4% average FPR. We view SCADET as a side-channel
“anti-virus”, which can be deployed in APP stores and enterprise
servers as well as local machines.
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