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Abstract

Floating-point arithmetic is an essential ingredient of embedded systems, such as in the avionics
and automotive industries. By nature, many of these applications are safety-critical, requiring rigor-
ous mathematical methods such as model checking to verify the adherence to safety standards. One
of the bottlenecks in comparing different approaches to the floating-point program verification prob-
lem is the lack of a standardised formal language to interface with SMT and constraint solvers. In this
paper, we propose a theory, FPA, of floating-point arithmetic for the recently released SMT-LIB 2.0
standard. We rigorously define the semantics of FPA, following the IEEE binary floating-point stan-
dard 754-2008. We motivate our design decisions and deviations from the IEEE standard. The long-
term goal is the development of SMT solvers with FPA support, as well as a set of FPA benchmarks
in the SMT-LIB format that allow comparative studies of floating-point verification techniques.

1 Introduction

Many embedded systems are controlled by software that conceptually manipulates real-valued quantities,
for instance measurements of environment data. Such quantities are stored in a computer as floating-point
numbers. As computer memory is bounded, calculations with floating-point numbers can at best approx-
imate real-valued calculations. The resulting floating-point calculus has become known as floating-point
arithmetic.

Embedded software is common in mobile systems, such as in aircraft and automobiles. By nature,
these systems are safety-critical; their design must abide by the highest reliability standards. Errors due
to floating-point peculiarities such as rounding tend to be particularly unintuitive and are often system-
dependent and hard to test for [1]. Techniques most promising for ensuring correctness are rigorous
formal methods such as abstract interpretation, theorem proving, or model checking.

The automated verification of floating-point programs is, however, still in its infancy. We contribute
this state of the art not only to the (unavoidable) computational complexity of this problem, but also to
the lack of SMT solvers that can handle floating-point arithmetic, and the lack of a set of benchmarks
that would enable the comparison of results obtained using various verification methods.

To address these problems, this paper proposes a theory, denoted FPA, of floating-point arithmetic
for the (recently released) SMT-LIB 2.0 standard [2] that can serve as a reference point for benchmark
design. To support the development of tools, the paper gives a self-contained and rigorous definition of
the FPA syntax and semantics, largely following the IEEE standard 754-2008 [3]. Our proposal concen-
trates on arithmetic aspects, abstracting from more operational topics such as exception handling. Also,
we only consider the case of binary (as opposed to decimal) floating-point arithmetic, which is most
widely used in practice. As a result, our theory avoids the very problems that render the standard unsuit-
able as a direct reference in developing floating-point solvers or benchmarks, namely its complexity, and
the occasional lack of rigour.

Our formalisation supports all aspects of floating-point arithmetic that are relevant for a logical the-
ory: rounding modes, positive and negative infinity and zeroes, the not-a-number quantity, and arithmetic
and comparison operations. Deviations from the IEEE standard are mentioned and motivated below.

∗This research is supported by the EPSRC project EP/G026254/1, and by the EU ARTEMIS CESAR project.
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Related work. The computational complexity of exhaustive floating-point program verification men-
tioned above has, in the past, mostly been addressed by resorting to interactive analysis using proof
assistants [4], or to abstract interpretation [5, 1]. A problem common to these approaches is the lack of
evidence returned in case the given property could not be proved, which may be due to it not being true,
due to the imprecision of the abstraction, or due to the weakness of the proof strategy.

To counter these deficiencies, automated reasoning tools and model checkers are being developed
[6, 7]. The work in [7], however, reduces the floating-point verification problem to a propositional SAT
problem and does not employ an SMT solver. Among the many theorem proving approaches to program
analysis that require modelling floating-point operations [8, 6] (see [9] for an overview), the authors of [6]
propose an axiomatic formalisation of FPA. They model floating-point operations via rounding applied to
the result of the corresponding real-arithmetic operations, similar to our approach. The major difference
is that our formalisation follows the SMT-LIB standard and should thus be able to assist the development
of benchmarks for automated provers and model checkers alike. We also believe our formalisation to be
closer to the IEEE standard; for example, we directly support rounding functions, and represent non-real
quantities like +∞ as explicit constant symbols, rather than implicitly via predicates.

2 Syntax of FPA

The next pages define the FPA syntax. We assume that the reader has some familiarity with the SMT-LIB
standard [2] and the basic concepts of floating-point arithmetic. The complete syntax of our FPA formal-
isation (sorts and operations) is given in Appendix A. In the following two subsections, we comment on
these definitions and provide intuition for the symbols defined; for their precise semantics, see Section 3.

2.1 Sorts of FPA

The floating-point sorts. Floating-point sorts are represented as indexed nullary sort identifiers of
the form (_ FP 〈ebits〉 〈sbits〉), where FP symbolises the floating-point sorts, and the indices 〈ebits〉 and
〈sbits〉 are positive integers. Intuitively, 〈ebits〉 and 〈sbits〉 define the number of available bits in the expo-
nent and in the significand, respectively, of a particular floating-point sort. For example, (_ FP 11 53)
represents the binary64 format of IEEE 754-2008.

We introduce constants for distinguished floating-point numbers, for all positive integers 〈ebits〉 and
〈sbits〉:

(plusInfinity (_ FP 〈ebits〉 〈sbits〉)) (NaN (_ FP 〈ebits〉 〈sbits〉))
(minusInfinity (_ FP 〈ebits〉 〈sbits〉))

Given 〈ebits〉 and 〈sbits〉, i.e., one fixed floating-point sort, there are exactly one FP representing, intu-
itively, +∞, and exactly one FP representing −∞, in agreement with the IEEE standard. Similarly, given
〈ebits〉 and 〈sbits〉, there is exactly one NaN, representing the not-a-number quantity, such as obtained
when adding +∞ and−∞. This simplifies the IEEE standard in that we do not distinguish signalling and
quiet NaNs. The former are used in operations that may raise exceptions, which are not part of this FPA
theory.

Rounding Modes. Our formalisation supports all five rounding modes introduced by the IEEE stan-
dard. In the standard, the rounding mode is an attribute associated with a program block. In our theory,
it is a parameter to many (but not all) arithmetic operations:
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:sorts ((RoundingMode 0))
:funs ((roundNearestTiesToEven RoundingMode)

(roundNearestTiesToAway RoundingMode)
(roundTowardPositive RoundingMode)
(roundTowardNegative RoundingMode)
(roundTowardZero RoundingMode))

2.2 Operations of FPA

Binary arithmetic. For all positive integers 〈ebits〉 and 〈sbits〉, we define operations that take two FP
numbers and return, intuitively, their sum, difference, etc.:

(+ RoundingMode (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉))
(- RoundingMode (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉))
(* RoundingMode (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉))
(/ RoundingMode (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉))

Here, - stands for the binary minus. The results of these operations depend on the rounding mode, which
is passed as their first argument. Note that each of the symbols is overloaded and can receive FP numbers
of arbitrary bit-widths.

Basic unary operations. The following operations accept and return a FP number:

(abs (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉))
(- (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉))

Intuitively, these return the absolute value and the negation of a FP number. Because the operations do
not require rounding, no rounding mode is given as an argument (similarly to comparison operators,
zero-tests, and min/max operations defined below).

Remainder. The following operation takes two FP numbers x and y and returns x−y∗n, where n is the
integer nearest to x/y (using the rounding mode ties to even defined in Section 3.2):

(remainder (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉))

Ternary arithmetic. The following operation takes three FP numbers x, y, z and computes (x∗ y)+ z.
This is known as fused multiply-add:

(fusedMA RoundingMode (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉)
(_ FP 〈ebits〉 〈sbits〉))

Square root and explicit rounding. The following unary operations intuitively compute the square
root and the nearest integral FP number of their argument and depend on the rounding mode:

(squareRoot RoundingMode (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉))
(roundToIntegral RoundingMode (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉))
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Binary comparison operations. The following operations compare two FP numbers. They return a
Boolean and thus do not require rounding:

(== (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) Bool :chainable)
(<= (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) Bool :chainable)
(< (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) Bool :chainable)
(>= (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) Bool :chainable)
(> (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) Bool :chainable)

When comparing FPs for equality, the IEEE 754-2008 standard treats NaNs and signed zeros specially
(see Section 3.3). We therefore introduce a second equality operator == in addition to the pre-defined
SMT-LIB operator = . We declare the operations as chainable: they can be used with any number of
arguments, as in (== x1 x2 x3), denoting a conjunction (and (== x1 x2) (== x2 x3)).

Unary comparison operations: zero-tests. The following operations return true exactly if, intuitively,
their FP argument is zero-valued with either sign, has a negative sign, is a negative zero, or is a positive
zero, respectively. For the precise semantics and meaning of “positive zero”, etc., see Section 3 below.
These operations return a Boolean and thus do not require rounding.

(isZero (_ FP 〈ebits〉 〈sbits〉) Bool) (isNZero (_ FP 〈ebits〉 〈sbits〉) Bool)
(isSignMinus (_ FP 〈ebits〉 〈sbits〉) Bool) (isPZero (_ FP 〈ebits〉 〈sbits〉) Bool)

Minimum/Maximum operations. The following operations compare their arguments and return one
of them; they thus do not require rounding:

(min (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉))
(max (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉) (_ FP 〈ebits〉 〈sbits〉))

2.3 Decimal Literals of FPA

We allow concrete (literal) floating-point numbers to be specified in decimal notation. To this end, we
first define that decimal literals evaluate to elements of a sort Rational of rational numbers:

:sorts ((Rational 0))
:funs ((DECIMAL Rational))

Rational numbers can then be converted to floating-point numbers (which can involve rounding):

((_ asFloat 〈ebits〉 〈sbits〉) RoundingMode Rational (_ FP 〈ebits〉 〈sbits〉))

2.4 Example

The following formula expresses that every 64-bit FP number less than +∞ is strictly less than some
square:

(forall ((x (_ FP 11 53)))
(=> (< x (as plusInfinity (_ FP 11 53)))

(exists ((y (_ FP 11 53))) (< x (* roundTowardZero y y)))))

According to the SMT-LIB standard, the type of the constant plusInfinity in the inequality expres-
sion (< x ...) must be specified using the operator as, to avoid ambiguities.
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3 Semantics of FPA

Following the SMT-LIB conventions, the FPA semantics is defined in terms of mappings [[·]] from sorts
to sets, and from function symbols to set-theoretic functions.

Preliminaries. In the following,R denotes the set of real numbers, Z the set of integers, andQ the set
of rational numbers. We introduce an extension of real arithmetic to the setR+ =R∪{+∞,−∞,NaN},
where +∞,−∞,NaN are individuals different from any real number. The set R+, together with the
operations defined next, forms an algebraic structure that captures mathematical features distinguishing
FPA from real arithmetic: the presence of infinities and the non-number NaN, modelling partiality of
operations. In this sense, R+ can be considered as an idealised (continuous) version of FPA. However,
R+ does not incorporate features of FPA that are artifacts of the way numbers are represented. For
instance, since every number of FPA has a sign, FPA distinguishes between +0 and−0. This distinction
is not realised inR+.

The arithmetic operations +,−, ·,/, | · |,<,>,≤,≥ naturally extend from R to R+, except that divi-
sion by 0 is defined in some cases. Whenever any of the arguments of the predicates <,>,≤,≥ is NaN,
the result is false. Whenever any of the arguments of +,−, ·,/, | · | is NaN, the result is NaN (the NaN is
“propagated”). All other operations, i.e. division by 0 and those involving +∞,−∞, are defined by the
axioms in Fig. 1.

+∞ 6< x, x < +∞⇐⇒ x 6= +∞, −∞ < x⇐⇒ x 6=−∞, x 6<−∞

x≤ y⇐⇒ (x < y∨ x = y), x > y⇐⇒ y < x, x≥ y⇐⇒ y≤ x

(+∞)+ x = x+(+∞) =

{
NaN x =−∞

+∞ otherwise
,

|x|=

{
x x≥ 0
−x otherwise

(−∞)+ x = x+(−∞) =

{
NaN x = +∞

−∞ otherwise
,

− (+∞) =−∞, −(−∞) = +∞, x− y = x+(−y)

(+∞) · x = x · (+∞) =


+∞ x > 0
−∞ x < 0
NaN otherwise

, (−∞) · x = x · (−∞) =−(x · (+∞))

(+∞)/x =


NaN x = +∞ or x =−∞

+∞ x ∈R and x≥ 0
−∞ otherwise

, x/(+∞) =

{
NaN x = +∞ or x =−∞

0 x ∈R

(−∞)/x =−((+∞)/x), x/(−∞) =−(x/(+∞)), x/0 =


+∞ x > 0
−∞ x < 0
NaN otherwise

Figure 1: Axioms defining the operations inR+. In all formulae, we assume x,y ∈R+ \{NaN}.
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3.1 The Domain of Floating-Point Numbers

FP numbers are represented by triplets (s,m,e) of integers: the sign s, the significand m, and the expo-
nent e. The domain of FPA is organised as an indexed family FE−,E+,M of sets, where the integers E−

and E+ (with E− ≤ E+) define the range of the exponent e, and the integer M ≥ 0 defines the range of
the significand m:

FE−,E+,M =
{
(s,m,e) ∈ Z3 | s ∈ {0,1}, 2M−1 ≤ m < 2M, E− ≤ e < E+}

∪
{
(s,m,E−) ∈ Z3 | s ∈ {0,1}, 0≤ m < 2M−1}

∪ {+∞,−∞,NaN}

Each set FE−,E+,M is defined as the union of three (disjoint) sets: (i) the set of normal numbers, whose
significand is in the range [2M−1,2M), (ii) the set of subnormal numbers, whose exponent is E− and
whose significand is in the range [0,2M−1), and (iii) distinguished individuals representing infinities and
non-numbers.

We also define an embedding of FP numbers into the extended realsR+:

re :
( ⋃

E−,E+,M

FE−,E+,M

)
→R+,

re(s,m,e) = (−1)s ·m ·2e

re(x) = x (x ∈ {+∞,−∞,NaN})

Note that re is injective on each setFE−,E+,M, with the only exception that re(0,0,E−) = re(1,0,E−) = 0.
This is unavoidable, because zero does not have a sign inR+.

Domain interpretation. For any numerals 〈ebits〉> 0 and 〈sbits〉> 0, we define the interpretation of
the sort (_ FP 〈ebits〉 〈sbits〉) as follows:

[[(_ FP 〈ebits〉 〈sbits〉)]] =FE−,E+,〈sbits〉 ,

where E− = 1−2〈ebits〉−1−〈sbits〉 and E+ = 2〈ebits〉−1−〈sbits〉 .
The sort Rational is interpreted as the set [[Rational]] =Q of rational numbers.

3.2 Rounding to Floating-Point Numbers

If the result of an arithmetic operation cannot be represented as a FP number, it is necessary to perform
rounding to derive a FP number close to the precise result. We generally define the semantics of FPA
operations as follows: (i) use the embedding re to convert the floating-point argument(s) to elements of
R+, (ii) apply the mathematical function onR+ corresponding to the FPA function to compute a precise
result, (iii) use a rounding operation roundE−,E+,M to round the R+ result to the floating-point domain
w.r.t. the chosen rounding mode, (iv) check whether the result is zero-valued and thus corresponds to one
of the two signed FPA zeros. If so, identify the correct sign of the result, depending on the individual
semantics of each function. The last step is necessary since floating-point arithmetic, unlike R+ and R,
distinguishes between different zeros.

IEEE defines five modes of rounding, which are formalised in this section. We define rounding
modes as the elements of the set RM:

[[RoundingMode]] = RM =
{

tiesToEven, tiesToAway,
towardPositive, towardNegative, towardZero

}
[[roundNearestTiesToEven]] = tiesToEven, [[roundTowardPositive]] = towardPositive

[[roundNearestTiesToAway]] = tiesToAway, [[roundTowardNegative]] = towardNegative

[[roundTowardZero]] = towardZero
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The rounding operation is introduced as a family roundE−,E+,M : RM×R+→FE−,E+,M of mappings
from the set of rounding modes and R+ to the various floating-point domains. The result of rounding
NaN is always NaN:

roundE−,E+,M(d,NaN) = NaN

In the following, we therefore assume that r ∈R+ \{NaN}. In general, we define that roundE−,E+,M(d,r)
does not return the value (1,0,E−) (negative zero) for any number r ∈R+; the other cases are handled
in the following sections.

3.2.1 Rounding Ties to Even

Numbers that are too large or too small to be represented are rounded to +∞ or −∞:

roundE−,E+,M(tiesToEven,r) = +∞ if r ≥ B

roundE−,E+,M(tiesToEven,r) =−∞ if r ≤−B

where B =
(
2M− 1

2

)
·2E+

. In case of r ∈ (−B,B), the result roundE−,E+,M(tiesToEven,r) of rounding r
is a finite FP number (s,m,e) such that:

|r− re(s,m,e)| ≤ |r− re(s′,m′,e′)| for all (s′,m′,e′) ∈FE−,E+,M

If two FP numbers are equi-distant to r, the one with even significand is chosen:

for all (s′,m′,e′)∈FE−,E+,M : if |r−re(s,m,e)|= |r−re(s′,m′,e′)| and m′ is even, then m is even. (1)

3.2.2 Rounding Ties to Away

The result of roundE−,E+,M(tiesToAway,r) is defined exactly like roundE−,E+,M(tiesToEven,r) in the pre-
vious paragraph, only that (1) is replaced with the condition:

for all (s′,m′,e′)∈FE−,E+,M : if |r−re(s,m,e)|= |r−re(s′,m′,e′)| then |re(s,m,e)| ≥ |re(s′,m′,e′)| .

3.2.3 Rounding Towards Positive

In towardPositive mode, a number r is rounded to the least upper floating-point bound. More precisely,
we define

roundE−,E+,M(towardPositive,r) = f ∈FE−,E+,M \{NaN}
such that r ≤ re( f ) and for all f ′ ∈FE−,E+,M: if r ≤ re( f ′) then re( f )≤ re( f ′).

3.2.4 Rounding Towards Negative

Similarly, in towardNegative mode, a number r is rounded downwards:

roundE−,E+,M(towardNegative,r) = f ∈FE−,E+,M \{NaN}

such that r ≥ re( f ) and for all f ′ ∈FE−,E+,M: if r ≥ re( f ′) then re( f )≥ re( f ′).

3.2.5 Rounding Towards Zero

In the mode towardZero, numbers r are rounded to the closest FP number whose absolute value is at
most r:

roundE−,E+,M(towardZero,r) = f ∈FE−,E+,M \{NaN}
such that |r| ≥ |re( f )| and for all f ′ ∈FE−,E+,M: if |r| ≥ |re( f ′)| then |re( f )| ≥ |re( f ′)|.
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3.3 Semantics of Floating-Point Arithmetic Operations

The following pages define the semantics of the FPA operations, following the schema described in the
beginning of Section 3.2. With the exception of the min and max symbols, the semantics of all function
symbols is to return NaN (or false in case of Boolean-valued functions) whenever one of their arguments
is NaN. Following IEEE 754-2008, the functions min and max are treated specially since a non-NaN,
when compared against a NaN, is propagated.

Floating-point predicates such as the zero test isZero are defined directly as functions over a single
floating-point argument, returning a Boolean.

As a convention, when we define the semantics of an operation using a case-expression

[[◦]](. . .) =


t1 if C1

t2 if C2

. . .

tn otherwise

we stipulate that any Ci is implicitly strengthened by
∧

j<i¬C j. In other words, cases are to be read and
evaluated from top to bottom, choosing the first case whose condition is satisfied. Furthermore, when
defining the semantics of Boolean-valued FPA functions in terms of (meta-level) formulae, we use the
notation [φ ] to express:

[φ ] ∈B, [φ ] =

{
true if φ

false otherwise

3.3.1 Sign Operations

The operations for changing the sign of a FP number are defined by a simple case analysis:

[[abs]] : FE−,E+,M →FE−,E+,M,

[[abs]](s,m,e) = (0,m,e)
[[abs]](+∞) = +∞

[[abs]](−∞) = +∞

[[−]] : FE−,E+,M →FE−,E+,M,

[[−]](s,m,e) = (1− s,m,e)
[[−]](−∞) = +∞

[[−]](+∞) = −∞

3.3.2 Tests

Sign and zero tests do not depend on the rounding mode:

[[isZero]], [[isSignMinus]], [[isNZero]], [[isPZero]] : FE−,E+,M →B

[[isZero]](s,m,e) = [m = 0]
[[isPZero]](s,m,e) = [m = 0 and s = 0]

[[isZero]]( f ) = [[isPZero]]( f ) = false (for f ∈ {NaN,+∞,−∞})
[[isNZero]]( f ) = [[isPZero]]([[−]]( f ))

[[isSignMinus]](s,m,e) = [s = 1]
[[isSignMinus]](−∞) = true

[[isSignMinus]]( f ) = false (for f ∈ {NaN,+∞})
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3.3.3 Comparisons

The binary comparison operators are defined like the corresponding operations on R+. Besides the
standard equality predicate = already provided by the SMT-LIB core theory, we introduce a predicate ==
denoting equality as specified by IEEE; = and == will give different results when comparing NaN or the
two floating-point zeroes.

[[==]], [[<=]], [[<]], [[>=]], [[>]] : FE−,E+,M×FE−,E+,M →B, [[◦1]]( f , f ′) = [re( f )◦2 re( f ′)]

where (◦1,◦2) ∈ {(==,=),(<=,≤),(<,<),(>=,≥),(>,>)}.

3.3.4 Field Operations

Arithmetic operations receive the rounding mode as first argument:

[[+]], [[-]], [[*]], [[/]] : RM×FE−,E+,M×FE−,E+,M →FE−,E+,M

[[+]](d, f , f ′) =


z if not [[isZero]](z)
(1,0,E−) if [[isNZero]]( f ) and [[isNZero]]( f ′)
(1,0,E−) if d = roundTowardNegative

(0,0,E−) otherwise

,

where z = roundE−,E+,M(d,re( f )+ re( f ′)) ∈FE−,E+,M.

[[-]](d, f , f ′) = [[+]](d, f , [[−]]( f ′)) .

[[*]](d, f , f ′) =


z if not [[isZero]](z)
(1,0,E−) if [[isSignMinus]]( f ) 6= [[isSignMinus]]( f ′)
(0,0,E−) otherwise

,

where z = roundE−,E+,M(d,re( f ) · re( f ′)) ∈FE−,E+,M.

[[/]](d, f , f ′) =


z if not [[isZero]](z)
(1,0,E−) if [[isSignMinus]]( f ) 6= [[isSignMinus]]( f ′)
(0,0,E−) otherwise

,

where z = roundE−,E+,M(d,re( f )/re( f ′)) ∈FE−,E+,M.

3.3.5 Fused Multiply-Add

The operation fusedMA receives a rounding mode and three FP numbers as argument. As for the other
operations, the result of fusedMA is determined by precise calculation on R+ and rounding; the sign of
the result is computed from the sign of the precise result and the sign of the corresponding computation

9



[[+]](d, [[*]](d, f , f ′), f ′′) in terms of ordinary multiplication and addition:

[[fusedMA]] : RM×FE−,E+,M×FE−,E+,M×FE−,E+,M →FE−,E+,M

[[fusedMA]](d, f , f ′, f ′′) =



z if not [[isZero]](z)
(1,0,E−) if x < 0
(0,0,E−) if x > 0
(1,0,E−) if [[isSignMinus]](y)
(0,0,E−) otherwise

,

where x = (re( f ) · re( f ′)) + re( f ′′) ∈ R+, y = [[+]](d, [[*]](d, f , f ′), f ′′), and z = roundE−,E+,M(d,x) ∈
FE−,E+,M.

3.3.6 Square Root

We define the square root operation implicitly via multiplication on reals. Note that roundE−,E+,M(d,x)
in the following equations is always a number with positive sign.

[[squareRoot]] : RM×FE−,E+,M →FE−,E+,M

[[squareRoot]](d,(0,m,e)) = roundE−,E+,M(d,x)
[[squareRoot]](d,(1,0,E−)) = (1,0,E−)
[[squareRoot]](d,(1,m,e)) = NaN (for m > 0)

[[squareRoot]](d,+∞) = +∞

[[squareRoot]](d, f ) = NaN (for f ∈ {NaN,−∞})

where x ∈R,x≥ 0 such that x · x = re(0,m,e).

3.3.7 Rounding

The function roundToIntegral is defined in terms of the general rounding operation roundE−,E+,M by
choosing E− = 0, ensuring an integral result:

[[roundToIntegral]] : RM×FE−,E+,M →FE−,E+,M

[[roundToIntegral]](d, f ) =


z if not [[isZero]](z)
(1,0,E−) if [[isSignMinus]]( f )
(0,0,E−) otherwise

where x = round0,E+,M(d,re( f )) and z ∈FE−,E+,M such that re(z) = re(x).
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3.3.8 Remainder

The remainder operation is defined in terms of division and rounding to integers. When rounding the
quotient re( f )/re( f ′), the operation round0,0,R with R = M +E+−E− is used so that no overflows occur
and the result is guaranteed to be finite:

[[remainder]] : FE−,E+,M×FE−,E+,M →FE−,E+,M

[[remainder]]( f , f ′) =



f if f ′ ∈ {+∞,−∞}
NaN if f ∈ {+∞,−∞} or f ′ = 0
z if not [[isZero]](z)
(1,0,E−) if [[isSignMinus]]( f )
(0,0,E−) otherwise

where n = round0,0,R(tiesToEven,re( f )/re( f ′)) and z ∈FE−,E+,M such that re(z) = re( f )−re( f ′) ·re(n).

3.3.9 Minimum and Maximum

The following two operations are the only ones where a NaN is not generally propagated from arguments
to results:

[[max]], [[min]] : FE−,E+,M×FE−,E+,M →FE−,E+,M

[[max]]( f , f ′) =


f ′ if f = NaN
f if f ′ = NaN
f if re( f )≥ re( f ′)
f ′ otherwise

[[min]]( f , f ′) = [[-]]([[max]]([[-]]( f ), [[-]]( f ′))

3.3.10 Decimal Literals

The denotation [[n]] of a number n in decimal notation is the corresponding rational r ∈Q. Converting a
rational r ∈Q⊂R+ to a floating-point number reduces to rounding:

[[(_ asFloat 〈ebits〉 〈sbits〉)]] : RM×Q→FE−,E+,〈sbits〉

[[(_ asFloat 〈ebits〉 〈sbits〉)]](d,r) = roundE−,E+,〈sbits〉(d,r)

where E− = 1−2〈ebits〉−1−〈sbits〉 and E+ = 2〈ebits〉−1−〈sbits〉 as in Sect. 3.1.

4 Conclusion

The lack of reliable and scalable floating-point arithmetic decision procedures is a serious handicap for
the automatic verification of embedded software. In order to encourage and support the development
of such procedures, we have proposed an SMT-LIB format for encoding floating-point numbers and
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operations on them. The encoding largely emulates the stipulations of the IEEE floating-point standard
754 and is thus very close to what is implemented on most computers today. We have mentioned and
motivated deviations from this standard where applicable.

There are certain operators that have not been added to the FPA theory yet, such as transcendental
operations and casts between the various FP and other datatypes. In addition to filling these gaps, imme-
diate future work includes the generation and assembly of a benchmark suite for floating-point arithmetic
decision problems, such as extracted from pertinent embedded software. The long-term goal is a FPA
testbench that helps improve verification tools for programs with floating-point arithmetic, an essential
endeavour given the wide-spread use of floating-point calculations in safety-critical embedded systems.
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A Complete Syntax of FPA

;; Rounding modes

:sorts ((RoundingMode 0))

:funs ((roundNearestTiesToEven RoundingMode)
(roundNearestTiesToAway RoundingMode)
(roundTowardPositive RoundingMode)
(roundTowardNegative RoundingMode)
(roundTowardZero RoundingMode)
)

;; The actual floating-point arithmetic

:sorts_description
"All nullary sort symbols of the form (_ FP ebits sbits),
where ebits and sbits are numerals > 0."

;; ebits defines the number of bits in the exponent,
;; sbits the number of bits in the significand

:funs_description
"All function symbols with declaration of the form

(plusInfinity (_ FP ebits sbits))
(minusInfinity (_ FP ebits sbits))

where ebits and sbits are numerals > 0."

;; Given ebits and sbits, there are exactly one FP representing +infty
;; and exactly one FP representing -infty, in agreement with IEEE.

:funs_description
"All function symbols with declaration of the form

(NaN (_ FP ebits sbits))
where ebits and sbits are numerals > 0."

;; Given ebits and sbits, there is exactly one NaN (not-a-number).
;; This deviates from (simplifies) the IEEE.

:funs_description
"All function symbols with declarations of the form

; absolute value
(abs (_ FP ebits sbits) (_ FP ebits sbits)

; unary minus (no rounding)
(- (_ FP ebits sbits) (_ FP ebits sbits))

(+ RoundingMode (_ FP ebits sbits) (_ FP ebits sbits) (_ FP ebits sbits))
; binary minus
(- RoundingMode (_ FP ebits sbits) (_ FP ebits sbits) (_ FP ebits sbits))
(* RoundingMode (_ FP ebits sbits) (_ FP ebits sbits) (_ FP ebits sbits))
(/ RoundingMode (_ FP ebits sbits) (_ FP ebits sbits) (_ FP ebits sbits))
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; fused multiply-add: (x * y) + z
(fusedMA RoundingMode (_ FP ebits sbits) (_ FP ebits sbits)

(_ FP ebits sbits) (_ FP ebits sbits))

; square root
(squareRoot RoundingMode (_ FP ebits sbits) (_ FP ebits sbits))

; round to nearest integral FP
(roundToIntegral RoundingMode (_ FP ebits sbits) (_ FP ebits sbits))

; x - y * n, where n in Z is nearest to x/y
(remainder (_ FP ebits sbits) (_ FP ebits sbits) (_ FP ebits sbits))

(== (_ FP ebits sbits) (_ FP ebits sbits) Bool :chainable)
(<= (_ FP ebits sbits) (_ FP ebits sbits) Bool :chainable)
(< (_ FP ebits sbits) (_ FP ebits sbits) Bool :chainable)
(>= (_ FP ebits sbits) (_ FP ebits sbits) Bool :chainable)
(> (_ FP ebits sbits) (_ FP ebits sbits) Bool :chainable)

(isZero (_ FP ebits sbits) Bool) ; test for +0 or -0
(isSignMinus (_ FP ebits sbits) Bool) ; test for <0
(isNZero (_ FP ebits sbits) Bool) ; test for -0
(isPZero (_ FP ebits sbits) Bool) ; test for +0

; minimum
(min (_ FP ebits sbits) (_ FP ebits sbits) (_ FP ebits sbits))

; maximum
(max (_ FP ebits sbits) (_ FP ebits sbits) (_ FP ebits sbits))

where ebits and sbits are numerals > 0."

;; Literals, using the syntactic category DECIMAL

:sorts ((Rational 0))
:funs ((DECIMAL Rational))

:funs_description
"All function symbols with declaration of the form

((_ asFloat ebits sbits) RoundingMode Rational (_ FP ebits sbits))
where ebits and sbits are numerals > 0."
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