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ABSTRACT
Programs with floating-point calculations tend to give rise
to hard-to-predict behavior. Such uncertainty cannot be
ignored: floating-point errors can have catastrophic conse-
quences, as it happened with the Patriot missile accident
in 1991. The likelihood of such incidents can be decreased
by using automated technology to reliably analyze numer-
ical code. We present a symbolic execution approach to
checking the accuracy of numerical programs, investigating
how much a floating-point computation deviates from the
“ideal” computation on real values. Our method is imple-
mented in the Symbolic PathFinder tool and leverages and
extends the floating-point decision procedure Realizer to
check symbolic path constraints and to perform the accu-
racy checks. We further illustrate the possibility of using
our tools to enhance abstract interpretation-based analyses
to obtain tighter bounds on the numerical error introduced
by floating-point computations. Initial experiments show
the promise of our approach.

1. INTRODUCTION
Binary floating-point arithmetic (FPA) is the most widely
used approximation of real arithmetic available on proces-
sors today. The necessity to round numerical results not
only introduces inaccuracies, but often also renders arith-
metic unintuitive, as witnessed by the loss of basic laws such
as associativity of addition. As a result, program errors due
to unfamiliarity with FPA are common, they are hard to
track down, and they can be catastrophic: the Patriot mis-
sile accident in 1991 left 26 people dead after inadvertently
hitting an Army installation [2]. The Ariane 5 rocket ex-
ploded during its first test flight in 1996 due to a floating-
point conversion error, destroying 7 billion dollars worth of
research and development.
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In this paper we report on automated analysis techniques
for floating point programs. Our techniques are based on
symbolic execution, a popular method that executes pro-
grams on symbolic, rather than concrete, inputs. Symbolic
execution results in a formula (path condition) such that
an assignment to the program inputs satisfying the formula
engenders a test case that forces control along the encoded
path and thus covers it.

Symbolic execution tools have proved very successful at find-
ing subtle errors in software. However, floating-point com-
putations have not been modeled accurately, due to the
lack (mostly) of background SMT solvers that can handle
FPA. Instead, current symbolic tools typically resort to con-
straint solving using real arithmetic, which is insufficient for
floating-point programs: code that is “correct” under real
semantics may well be buggy under floating-point seman-
tics, as the trivial example of loss of associativity mentioned
above already illustrates.

Towards closing this gap, we have extended the Symbolic
PathFinder (Spf) tool with capabilities for solving the con-
straints generated from flight software, which makes heavy
use of floating point computations. The floating-point con-
straints generated by Spf are passed to Realizer [7], a
decision procedure for precise floating-point reasoning. The
combination of Spf and Realizer thus enables the accurate
analysis of programs manipulating floating point numbers.
Furthermore, as part of this work, we have extended Re-
alizer to precisely compute the accuracy of the program
computations, i.e. to compute how much the floating-point
computation deviates from the “ideal” computation (using
real numbers). This involves a non-trivial extension of Re-
alizer with handling of a special kind of mixed floating-
point and real constraints, with integer constraints used for
specifying the desired numerical precision.

We have applied our tool chain successfully to checking whether
a floating-point result is within a specified distance from the
result of an ideal calculation over the reals. We have further
investigated the possibility of using our tools to enhance ab-
stract interpretation-based analyses to obtain tighter bounds
on the numerical error introduced by floating-point compu-
tations. We are currently investigating inductive reasoning
techniques for handling loops. Our preliminary experiments
show the promise of our proposed techniques.

The paper is organized as follows. Section 2 provides back-
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ground about the floating-point decision procedure Real-
izer and the IEEE-754 2008 format for binary floating-point
representation. In Section 3, we describe our extensions to
Realizer and present how we combined symbolic execu-
tion of Spf with the extended procedure to check accuracy
of floating-point computation. We describe our experience
with checking assertions in Java programs in Section 4 and
provide preliminary results of how bounds obtained from a
interval arithmetic-based tool can be improved for getting
better accuracy bounds. In Section 5, we describe our work
in progress, which is to extend accuracy checks of Section 3
to reasoning about computations in loops.

Related Work
We present a few pointers to most relevant related work.
Abstract Interpretation (AI) tools like Fluctuat [4] and
Astree use abstract numerical domains to reason about
floating-point computations. Such reasoning tends to be ef-
ficient but “conservative”, in that it often produces rather
crude bounds for the deviation of the computation from
real arithmetic. In contrast, we combine symbolic execu-
tion with an exact decision procedure to check exactly if the
floating-point deviation from the ideal value is within the
bound provided for the check.

Symbolic execution (e.g. in Spf) has been previously com-
bined with interval solving and meta-heuristic search strate-
gies to enhance numerical constraint solving. Although these
strategies can solve constraints over complex mathematical
functions, they reason about floating-point types in an in-
exact manner [9].

2. BACKGROUND
2.1 Symbolic Execution
Symbolic execution is a well-known program analysis tech-
nique that executes programs on unspecified inputs, by using
symbolic instead of concrete input data. For each executed
program path, the analysis builds a path condition PC, en-
coding the conditions characterizing the inputs that follow
that path. This PC is checked for satisfiability using off-the-
shelf solvers. If a PC becomes unsatisfiable then the corre-
sponding path is not feasible and the analysis backtracks.
Traditional applications of symbolic execution include test
case generation and error detection, with many tools avail-
able [8]. Symbolic execution of looping programs may result
in an infinite symbolic execution tree. For this reason, sym-
bolic execution is typically run with a (user-specified) bound
on the search depth.

In this work we use Symbolic Pathfinder (Spf) [8], a sym-
bolic execution tool for Java bytecode. Spf has an interface
to plug in different solvers, that handle different types of
constraints, e.g. integers, strings, floating-point abstracted
as reals, etc. However until now exact floating-point reason-
ing was unsupported. We have used this interface to plug in
Realizer for the work here.

2.2 Floating-point arithmetic
Floating-point is somewhat formalized in the 2008 binary
IEEE-754 standard (referred to as the “Standard” in the se-
quel). Floating-point numbers are represented as bit-strings

of three components, as shown in Figure 1 for single-precision
and double-precision numbers (known as floats and doubles
in C/Java-like programming languages). The semantics of
this number representation is given by the numerical value
of the floating-point number f represented in this format:

value(f) = (−1)s × 1.m× 2e (1)

where 1.m stands for the rational number whose integral
part is 1 and whose fractional part is the sequence of digits
m.1 Some bit-string patterns are reserved for certain special
values, most notably NaN (denoting non-numerical compu-
tational results such as 0/0) and ±∞ (denoting overflown
computational results, i.e. beyond the range permitted by
the format).

Realizer
Realizer is a floating-point decision procedure that trans-
lates formulas in FPA into equivalent formulas (i.e. without
approximations) over the theory of real and integer arith-
metic [7]. In conformance with the Standard, it does so
by replacing floating-point expressions with “infinitely pre-
cise” real-arithmetic expressions, followed by rounding the
result. More precisely, let � denote binary FPA operator,
? ∈ {+,−, ∗, /} the corresponding real operator, and p be
the floating-point precision. Then we have

x � y =
rd( (x ? y) / 2e · 2p)

2p
· 2e (2)

where e is the (unbiased) exponent of the (precise) real re-
sult x ? y. The function rd depends on the rounding mode,
but generally involves digit truncation. For example, for
the IEEE round-to-negative mode, we have rd = b·c, denot-
ing the floor function, which returns the largest integer not
larger than its real-valued argument. Rounding thus results
in a combination of real and integer arithmetic (RIA). The
translated expressions can then be reasoned about using an
RIA-capable solver such as Z3 [3], which is used in Real-
izer. An advantage of using Realizer over other bit-precise
solvers like Mathsat [5] is that Realizer can be extended
to combine floating-point and real theories together.

3. CHECKING ACCURACY OF FLOATING-
POINT COMPUTATIONS

To check programs manipulating floating point numbers we
have incorporated Realizer in the symbolic execution tool
Symbolic PathFinder (Spf) to provide exact checks for the
satisfiability of path conditions and to generate test values
for floating point inputs.

Furthermore we designed and added a function
checkAccuracy(var,δ,type) in the Debug class of Spf to check
if under the given path condition, the floating-point value of
the symbolic expression stored in var can deviate from its
ideal real arithmetic value by more than a bound δ that is
supplied externally: either by a user with domain knowledge
or by an external analyzer like an abstract interpreter. As
the underlying decision procedure, Realizer, is exact, the
result of this check is also exact. If the value can deviate, it

1According to the Standard, the exponent is actually biased
(shifted) so that it ranges over non-negative integers. We
omit this detail in this description. Also excluded are sub-
normal numbers and special values like NaN, ±∞.
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Figure 1: Single (32bit) and double precision (64bit) number representations (simplified). Components s, e,
m are sign bit, exponent, mantissa, resp.

Figure 2: System architecture

provides an assignment to every input variable in the path
condition or in the symbolic expression for the variable var.
The parameter type can be absolute (“a”) or relative (“r”),
and is used to perform, respectively, an absolute or relative
deviation check.

Adding this capability to Spf required an extension to Re-
alizer, which is described next. A new variable to repre-
sent the Real arithmetic value of the symbolic variable being
checked (var in this case) was defined and a constraint that
assigns the symbolic expression for it, that is interpreted
with Real semantics, was introduced. Another variable was
introduced to represent the magnitude of the difference be-
tween the Real and the floating-point values, which is then
compared with the absolute or relative bound, as required.

The set of additional constraints generated using the abso-
lute accuracy-check mode added to Realizer is summarized
in Figure 3. Here, real-result is the result obtained when
operation op is performed on operands x and y, which are
representable in the given Floating-Point format. fp-result
denotes the rounded floating-point value obtained by round-
ing as described in Section 2. The final three constraints de-
fine the magnitude of the difference diff between real-result
and fp-result. Note that there is a variable representing the
real arithmetic result of every intermediate expression, and
consequently also of the expression we want to check.

3.1 Integration in Symbolic PathFinder
We have used Spf’s interface to plug in Realizer, an exact
decision procedure for floating-point arithmetic, to reason
about floating-point programs (figure 2). Whenever a new

path condition is generated during symbolic execution, a
query to check the satisfiability of that path is constructed
and sent to the underlying constraint solver. Spf has a well-
defined solver interface to enable addition of constraints to
the path condition. In addition to the path condition to be
checked for satisfiability, the expression to be checked for
accuracy is passed on to Realizer. A configuration file is
also written for Realizer to communicate parameters rel-
evant in the context of floating-point computations. These
include the floating-point type (e.g. float or double that
determines the range and precision of numbers considered),
the rounding mode (one of the 5 modes specified in IEEE-
754), the type of accuracy check (absolute/relative) and the
actual bound for the accuracy check. There exist other tools
that can check floating-point assertions in programs, but to
the best of our knowledge, this is the first instance where an
exact check for accuracy is being performed using an exact
floating-point reasoning engine.

3.2 Combining with Abstract Interpretation
Tools

The checkAccuracy() function requires a bound to be speci-
fied as input, which is typically provided by a human expert.
This may not be easy given the intricacies of floating-point
arithmetic. AI tools have been used in the past to estimate
deviation of floating-point computations from their ideal real
arithmetic values, and this process is fully automated. We
propose here to use an initial coarse bound obtained from an
AI tool and tighten it further using checkAccuracy(). The
motivation is to leverage the strengths of the respective tech-
niques: precision of symbolic execution combined with a de-
cision procedure, and efficiency of AI tools, to obtain tighter
bounds on accuracies of numerical computations.

The initial over-approximate deviation value δ0 obtained
from an Abstract Interpretation tool can be further im-
proved iteratively using Debug.checkAccuracy() to obtain a
better bound for the deviation by using an iterative tech-
nique. We initialize δ, the deviation bound to be checked,
with δ0. At each iteration, Debug.checkAccuracy() checks if
the floating-point value of the symbolic variable can devi-
ate from its actual value by more than current δ. If this is
the case, the obtained satisfying assignment is used for fur-
ther inspection and analysis of the program. Otherwise, we
decrease current δ further and use Debug.checkAccuracy()
again. In practice, we can do a binary search in the interval
[0,δ] until we have checked for the desired level of accuracy.
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real-result = (x op y) ; op = real-arithmetic operator

diff = (real-result - fp-result) ; fp-result = rounded FP value

(diff < 0.0) => (abs-diff = (- diff))

(diff >= 0.0) => (abs-diff = diff)

(abs-diff > delta)

Figure 3: Absolute accuracy check: real vs. floating-point

void test(int N,float[] x){

float sum = x[0];

for (int i = 1; i < N; i++){

sum = sum + x[i];

assert(Debug.checkAccuracy(sum,0.01f,"a"));

}

}

Figure 4: Regular summation

void test(int N,float[] x){

float c=0.0f, sum=0.0f, y=0.0f, t=0.0f;

y=x[0]; t=y; c=t-y; sum=t;

for (int i = 1; i < N; i++){

y = x[i] - c; t = sum + y;

c = (t - sum) - y; sum = t;

assert(Debug.checkAccuracy(sum,0.01f,"a"));

}

}

Figure 5: Kahan summation

4. EXPERIENCE
We have evaluated our approach on several examples, de-
scribed below.

4.1 Summation
Figure 4 shows an example program which computes the
sum of an array of floating-point elements. Using Spf with
checkAccuracy() check within the loop results in a violation
after 2 additions, and an assignment
x[0] = −(8388607.0/128.0), x[1] = −(8589935.0/8589934592.0),
x[2] = −(8388609.0/2147483648.0) was obtained when the
range was set to between 10−3 and 105, and using round-
to-negative mode. This also indicates that the value of sum
could deviate further after more additions. Note that the
check would not have failed over integers, over the reals or if
the addition had been done using infinite-precision rational
arithmetic.

Also, the counterexample is specific to this precision and
rounding mode. In general, for a formula that is to be
checked for satisfiability, the result (SAT/UNSAT) and the
satisfying assignment, whenever one exists, is specific to
the precision and rounding mode, that is, a satisfying as-
signment obtained for a given precision or rounding mode
might not satisfy the same formula for a different precision
or rounding mode.

We have also analyzed a modified summation algorithm,
called Kahan summation [6], to perform a similar accuracy

Expression Gappa Improved Improvement
bound (w/o hint) bound time(s)

x3 0000.0610962 0.00100 7

x4 0061.0963 0.06000 35

x5 2000.0 0.00100 293

Table 1: Gappa bounds improved by our approach

check. This summation algorithm, shown in Figure 5 was
specifically designed to compensate the loss of accuracy for
floating-point addition by using an extra variable that can-
cels out some of the loss across adjacent loop iterations. Us-
ing checkAccuracy() within the loop shows that indeed the
intermediate and the final summation values are each within
the deviation bound of 0.01 being checked (for N = 15).

4.2 Linear Controller
We have also analyzed a series of linear controllers (originally
written in Lustre); Figure 6 shows the Java code corre-
sponding to such a controller. Method test is invoked inside
an infinite loop to mimic controller usage; Verify.randomBool()
implements non-deterministic choice in Spf. The function
checkAccuracy() was used to check that the floating-point
deviation remained within the bound of 0.01 that we had
specified for 2 iterations. With the symbolic expressions
getting larger, certain calls to checkAccuracy() timed out
(with timeout = 120s) for larger number of iterations, e.g.
where the expression to be checked had more than 30 linear
floating-point operators (including multiplications with con-
stants that needed to be rounded). Our experiments with
linear controllers showed the usefulness of our approach but
also revealed scalability issues that we plan to address in
future work.

4.3 Combining with Gappa
Table 1 shows the results of using Realizer to improve upon
the floating-point deviation bounds computed by Gappa [1],
a recent interval-based abstract interpretation tool, for some
non-linear floating-point expressions. Column 1 gives the ex-
pression for which we are computing the deviation bound.
The input variable x and all expressions are in the interval
[-1000.0,1000.0]. Column 2 gives the bound computed by
Gappa without giving it any hints, and these results were
obtained within a fraction of a second. Column 3 gives the
bound obtained with the extension to Realizer and Col-
umn 4 indicates the time taken for checkAccuracy() for that
bound.

Although Realizer needs to spend additional time to tighten
the bound it has been provided, this can be useful, especially
for critical software where this technique can be used to pro-
vide an improved assurance guarantee.

ACM SIGSOFT Software Engineering Notes Page 4 January 2015 Volume 40 Number 1

DOI:10.1145/2693208.2693242 http://doi.acm.org/2693208.2693242



public void test(boolean r, float in0){

if((in0 >= -1.0f) && (in0 <= 1.0f)){

if(Verify.randomBool()){

x0=1.0f; x1=1.0f; x2=1.0f; x3=1.0f; x4=1.0f;

} else{

x0=0.4250f * x0 + 0.8131f * in0;

assert(Debug.checkAccuracy(x0,0.01f,"a"));

x1=0.3167f * x0 + 0.1016f * x1 - 0.4444f *x2 + 0.1807f * in0;

assert(Debug.checkAccuracy(x1,0.01f,"a"));

x2=0.1278f * x0 + 0.4444f * x1 + 0.8207f * x2 + 0.0729f * in0;

assert(Debug.checkAccuracy(x2,0.01f,"a"));

x3 = 0.0365f * x0 + 0.1270f * x1 + 0.5202f * x2 + 0.4163f * x3 - 0.5714f * x4 + 0.0208f * in0;

assert(Debug.checkAccuracy(x3,0.01f,"a"));

x4 = 0.0147f * x0 + 0.0512f * x1 + 0.2099f * x2 + 0.57104f * x3 + 0.7694f * x4 + 0.0084f * in0;

assert(Debug.checkAccuracy(x4,0.01f,"a"));

}}} Figure 6: Linear Controller

5. HANDLING LOOPS
So far we have assumed that we analyze looping programs
up to a given depth, as typical with symbolic execution
approaches. Initial results are encouraging, and expected
to scale to larger programs as our tool-chain matures. We
are also working on reasoning about numerical deviation for
computations within loops (e.g. that in Figure 6), by using
the decision procedure to discharge inductive proof obliga-
tions constructed from symbolic execution as follows.

Let expr be the symbolic expression that is being modi-
fied within the loop. Let expri

F and expri
R denote the

Floating-point and Real arithmetic symbolic expressions, re-
spectively, of expr at the beginning of iteration i. Let δi be
the symbolic expression representing the magnitude of the
deviation of the expri

F from expri
R at the beginning of it-

eration i. We intend to prove the following using Realizer

(|expriR − expri
F | < δi)⇒ (|exprRi+1 − exprFi+1| < δi+1)

Then we can bound the magnitude of the maximum devia-
tion of exprF from exprR by limi→+∞ δi Also, in the above
check, we can unroll loop body k times, for an appropriate
k, instead of just once, like in k-induction.

The key challenge is to use an induction hypothesis that
the underlying decision procedure is able to discharge. This
requires coming with an appropriate value of δi, which cap-
tures the pattern of loss of accuracy just well enough for
proving the bound.

6. CONCLUSION
We described a symbolic execution approach to checking the
accuracy of numerical programs, investigating how much a
floating-point computation deviates from the “ideal” com-
putation on real values. Our method was implemented in
the Symbolic PathFinder tool and leverages and extends the
floating-point decision procedure Realizer to check sym-
bolic path constraints and to perform the accuracy checks.
We also illustrated the combination of our proposed tool ab-
stract interpretation-based analyses to obtain tighter bounds
on the numerical error introduced by floating-point com-
putations. Initial experiments showed the promise of our
approach. In the future we plan to further investigate the

handling of looping programs using invariants and to work
on optimizing our implementation.
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