
IJIT: An API for Boolean Program Analysis
with Just-in-Time Translation

Peizun Liu(B) and Thomas Wahl

Northeastern University, Boston, USA
lpzun@ccs.neu.edu

Abstract. Exploration algorithms for explicit-state transition systems
are a core back-end technology in program verification. They can be
applied to programs by generating the transition system on the fly, avoid-
ing an expensive up-front translation. An on-the-fly strategy requires
significant modifications to the implementation, into a form that stores
states directly as valuations of program variables. Performed manually on
a per-algorithm basis, such modifications are laborious and error-prone.

In this paper we present the Ijit Application Programming Interface
(API), which allows users to automatically transform a given transition
system exploration algorithm to one that operates on Boolean programs.
The API converts system states temporarily to program states just in
time for expansion via image computations, forward or backward. Using
our API, we have effortlessly extended various non-trivial (e.g. infinite-
state) model checking algorithms to operate on multi-threaded Boolean
programs. We demonstrate the ease of use of the API, and present a case
study on the impact of the just-in-time translation on these algorithms.

1 Introduction

Boolean programs [4], a finite-data abstraction of general-purpose software
obtained by predicate abstraction [13], have proved to be an intermediate nota-
tion very useful for verification that factors out the data complexity from pro-
grams. State exploration algorithms, however, are typically designed to operate
on forms of transition systems. To apply these algorithms to Boolean programs,
one can in principle translate the input program into a transition system, before
starting the exploration. This input translation incurs, however, a blow-up that
is exponential in the number of program variables.

This classic problem in program verification has led to sophisticated algo-
rithms that translate the program into a transition system on the fly, as the
state space is explored. This idea was pioneered for model checking algorithms
by the Spin tool [14]. In general, to convert an exploration algorithm into an
on-the-fly version, the state representation data structure needs to be changed
everywhere in the implementation to a tuple over program variable valuations.
Consequently, operations on the state representation, notably image computa-
tions, need to be re-implemented as well, to reflect the program semantics.
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Such an algorithm re-implementation avoids the exponential program-to-
transition-system translation, but comes with its own cost: due to its low-level
nature, it is laborious and error-prone, especially for sophisticated algorithms.
In the rest of this paper we describe a way to automatically construct on-
the-fly program state explorers from implementations operating on transition
systems. We leave the system state data structure intact (hence no algorithm
re-implementation), and pass the Boolean program as input (hence no input
program translation). Our strategy is then as follows: whenever predecessor or
successor images need to be computed, the current system state is converted
temporarily and just in time for the image computation into a Boolean program
state. The image is then computed using the program execution semantics, e.g.
via pre- or post-conditions. The resulting image states are converted back to, and
stored as, system states. This process is repeated for each image computation.

This simple strategy has one crucial advantage: it requires very little change
on a per-algorithm basis: once we have provided image operations for Boolean
programs (a one-time effort), all we need to do is replace the calls to image
functions in the original implementation by new functions that take a system
state and (i) convert it to a Boolean program state, (ii) apply the image, and (iii)
convert the result back. These steps can be encapsulated into a single operation.

Being largely independent of the underlying algorithm, this strategy can be
automated. To this end, we present an Application Programming Interface (API)
that provides conversion functions between system and Boolean program states.
It further offers implementations of common image operations on Boolean pro-
grams, including standard pre- and post-images, as well as more complex image
operations for infinite-state system exploration. Our API permits users to trans-
form a wide range of transition system exploration algorithms into Boolean pro-
gram versions automatically—with little effort and a high degree of reliability—,
including sophisticated reachability and coverability algorithms for infinite-state
systems such as Petri nets.

For an experimental case study, we have implemented several exploration
algorithms in three versions: (a) one that uses the naive input translate option,
(b) one that implements the manual algorithm re-implement option, and
(c) one that uses our API to perform just-in-time translation. The compar-
ison (c) against (b) demonstrates that the repeated state representation con-
version is not harmful: using our API we achieve almost the same efficiency as
the gold standard of re-implementation by hand. The comparison (c) against
(a) demonstrates that the just-in-time version is vastly more efficient than the
version employing up-front input translation.

2 Boolean Programs and Thread-Transition Systems

Our API allows exploration algorithms that operate on transition systems-
derived from Boolean programs (BP) [4] to be applied directly to such programs,
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circumventing the blow-up incurred by the input translation. In this section we
formalize the language of (possibly threaded) BPs and the transition system
model of thread transition systems. The latter serve as the input language of
exploration algorithms that we later wish to apply directly to BPs.

2.1 Boolean Programs

Boolean programs typically arise from predicate abstractions of application code
in system-level languages. All variables are of type bool. Control flow constructs
are optimized for synthesizability and therefore include “spaghetti statements”
like skip and goto. An overview of the syntax of BPs is given in Fig. 1. A pro-
gram consists of a declaration of global Boolean variables, followed by a list
of functions. A function consists of a declaration of local Boolean variables,
followed by a list of labeled statements.

We illustrate the intuition behind individual statements of BPs. Among the
sequential statements (seqstmt), skip advances the program counter (pc); goto
labellist nondeterministically chooses one of the given labels as the next pc;
assume terminates executions that do not satisfy the given expression. State-
ment := assigns, in parallel, each value in the given exprlist to the respective
variable in the same-length varlist, but terminates the execution if the result
does not satisfy the constrain expression, if any. Statement assert indicates
assertions for verification and otherwise acts like skip. The meaning of func-
tion calls (possibly recursive) and return statements is standard and omitted. In
all cases, expr is a Boolean expression over global and local program variables,
the constants 0 and 1, and the choice symbol �; the latter nondeterministically
evaluates to 0 or 1.

In the presence of multiple threads, the global variables are shared (both
read and write) between the threads. The executing thread is called active, the
others passive. All sequential statements have asynchronous semantics, i.e. they
change the local variables of only the active thread. The other statements in
Fig. 1 intuitively behave as follows:

prog ::= decl varlist; func∗

stmt ::= seqstmt
| start thread label
| end thread
| atomic { [stmt;]∗ }
| wait
| signal
| broadcast

func ::= void name (varlist) begin
decl varlist;
[label : stmt;]∗

end

seqstmt ::= skip
| goto labellist
| assume (expr)
| varlist := exprlist [constrain expr ]
| assert (expr)

Fig. 1. Boolean program syntax (partial)
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start thread label (i) advances the program counter of the executing thread,
and (ii) creates a new thread whose local variables are copied from the exe-
cuting thread and whose pc is given by label ;

end thread terminates the executing thread;
atomic {stmt∗} denotes atomic execution: a thread executing inside an atomic

section cannot be preempted;
wait blocks the execution of a thread (see next);
signal advances the pc of the executing thread and nondeterministically wakes

up one thread blocked at a wait statement, if any, i.e. it advances its pc;
broadcast advances the pc of the executing thread and wakes up all threads

currently blocked at a wait.

Wait and release via signal or broadcast are powerful synchronization
mechanisms, allowing many threads to change state at the same time. None
of the above six statements change global variables; only start thread and
end thread change the number of threads. Fig. 2 (left) shows an example of
a BP with an assertion. A precise small-step operational semantics for multi-
threaded BPs is given in App. A of [20].

2.2 From Boolean Programs to Thread Transition Systems

Transition systems are the input formalism for many exploration algorithms,
such as breadth-first search for reachability analysis, or the Karp-Miller algo-
rithm for deciding coverability in infinite-state systems [16]. To apply these to
BPs (and thus connect them, via predicate abstraction, to software verification),
the programs are typically translated into transition systems.

Let Boolean program B be defined over sets of global and local variables VG

and VL, respectively, and let {1..pcmax} be the set of program locations.1 We
translate B into a finite-state thread transition system (TTS) M = (S,R), over
the state space S = {0, 1}|VG| × {1..pcmax} × {0, 1}|VL| and edges R.

Individual BP statements are translated into edges, as follows. A given state
s ∈ S determines a (single-threaded) program state sB of B in a straightforward
way: s encodes a valuation of all global variables (the {0, 1}|VG| part, the global
state), a program counter, and a valuation of all local variables (the {0, 1}|VL|

part, the local state). Executing B on sB has several effects: first, it generally
changes both the global variables, and the local variables of the active thread
(including the pc). These changes result in a new state t ∈ S again in a straight-
forward way, defining an edge (s, t) ∈ R.

Second, thread creation and termination, as well as signals and broadcasts,
typically have “side effects” that alter the thread count, or local variables of
passive threads. To capture such effects in the (single-thread) data structure M ,
each edge comes with a type. It is then left to the exploration algorithm, which
has access to the current system state, to fully implement transition semantics.
As an example, Fig. 2 shows a BP and a translation into a TTS. Symbol �

1 We write {l..r} compactly for {n ∈ N : l ≤ n ≤ r}.
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Fig. 2. A Boolean program (left) and a possible translation into a TTS (right). Global
variable valuation (g1, g2) is encoded as state g = 2 × g2 + g1 ∈ {0..3}. Similarly,
local variable valuation (pc, l) is encoded as state � = 10 × l + pc ∈ {0..19}. With
this encoding, the four initial program states are shown as �, the two assertion failure
states (satisfying pc = 9 ∧ g2 = l = 1) as ⊗.

marks edge (0, 1) � (0, 3) as a thread creation edge. The semantics of thread
creation (App. A of [20]) prescribes that the active (creating) thread moves on
(to pc = 2); this is reflected by an ordinary edge (0, 1) → (0, 2) in the TTS.
The created thread needs a start location, which is the pc value of the BP state
(g1, g2, pc, l) = (0, 0, 3, 0) encoded by the target TTS state (0, 3) of the edge.
Other than above two types of edges shown in Fig. 2, there is one more type,
denoted by �, used in the TTS to characterize broadcasts.

The problem with such a translation from B to M is of course the potential
blow-up: the nominal state space S of M is exponential in the number of global
and local variables. This problem has long been known and has led to sophis-
ticated on-the-fly temporal-logic model checkers such as Spin [14], but also to
ad-hoc re-implementations of specific exploration algorithms [7,19]. In the rest
of this paper we describe an API that automates the construction of on-the-fly
program state explorers.

3 BP Analysis with JIT Translation: Overview

We target exploration algorithms, i.e. algorithms that operate on a transition sys-
tem representation of the given program and involve image computations: given a
system state, they repeatedly compute some notion of successors or predecessors
of the state. Figure 3 (left; ignore the boxes for now) shows a schematic version
of such algorithms. Input is a transition system M and some target state set T ,
such as a bad system state whose discovery would indicate a reachable error in
the system. The algorithm maintains a worklist W of states to be explored, typ-
ically initialized to the initial or bad states of the system, depending on whether
the search proceeds forward or backward. It also maintains a set X of explored
states, initially empty. The exploration proceeds by extracting an unexplored
state w from W and iterating through the set of states w′ in w’s image, com-
puted by image. If w′ is new, we test whether it belongs to the target states T .
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Fig. 3. State exploration over a transition system (left) and a Boolean program (right).
Lines 5 and 6 test whether w′ has not been explored and w′ is a target state, respec-
tively. In a concrete algorithm these tests may involve more than set membership.

If so, we report the success of the search. The search terminates when no more
unexplored states exist (in W ).

Now suppose the transition system M is actually a translation of a Boolean
program B, which we want to explore directly, using the same algorithm scheme.
One way to achieve that is to change the data structure that Scheme 1 relies on:
instead of storing states to be explored as states of M , we store them as Boolean
program states, one entry per program variable. Images are then computed by
“executing” B in accordance with B’s execution model.

However, like with any data structure change in any non-trivial program,
the required effort is significant: all of T , W , X must be changed, and therefore
virtually every line in a program that implements Scheme 1. Re-implementing
image to operate on a Boolean program B is also involved. The whole change
process is not only error-prone; it also creates an entirely new implementation
that needs to be maintained independently of the one operating on M .

An alternative to this strategy is shown in Scheme 2 on the right, which is
almost identical to that on the left. States are stored as transition system states
of M as before, but the input is now the Boolean program B. Since M is no longer
available, we cannot apply M ’s transition relation to compute images. However,
since there is a one-to-one correspondence between states of B and of M , we
can compute images by converting, using function f , to B’s state representation
just in time for the image computation, and reverting the resulting image states
back to the system state format of M (Line 4). Note that f−1 needs to operate
on (and return) sets of states.

Operation imageB computes images of an intermediate program state p :=
f(w). Its implementation depends on the kind of image computation performed
by the algorithm: For standard forward exploration, it can be computed by execut-
ing, from p, the statement of B pointed to by the pc encoded in p. For a backward
exploration algorithm, imageB is more complicated: we need to identify statements
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leading to the current pc via B’s control flow graph, and then symbolically execute
such statements backwards, e.g. via weakest preconditions [19].

The API presented in this paper supplies an implementation of the B ↔ M
conversion functions (f, f−1) and of various common image operations applied
to (multi-threaded) Boolean program states, including backward statement exe-
cution for backward search algorithms. In many cases, all the user needs to do
is to replace the image operation in their algorithm, as shown in Fig. 3 (boxes).

A minor runtime cost of using an algorithm according to Scheme 2 is that
the repeated conversion will take some time. This time is linear in the number
of Boolean program variables (and the number of threads of the current system
state, if multi-threaded). The state conversion in either direction is a simple
operation that can be highly optimized. We will demonstrate in Sect. 5 that
the benefit of avoiding the explicit construction of M often far outweighs the
conversion overhead.

We end this section by discussing desirable characteristics of algorithms that
will benefit from using our API. We target exploration (search, model checking)
algorithms for state transition systems (e.g. TTS) of Boolean programs. The term
“exploration” here refers to the reliance of such algorithms on the computation
of standard pre- and postimages of (sets of) states. The transition systems must
relate to the Boolean programs in a way that there is a one-to-one correspondence
between program states and system states. In particular, the systems cannot be
(lossy) abstractions of the Boolean programs; otherwise, a system state may not
map to a unique program state, or vice versa.

4 The IJIT Application Programming Interface

In this section we sketch usage and design of our API, named Ijit: Interface for
Just-In-Time translation. A detailed tutorial and documentation can be found
in [18].

4.1 API Usage

We use a fictitious procedure explore to illustrate the use of our API; see Fig. 4
(left). The procedure explores the state space of some transition system given as
a TTS. It begins by reading the TTS into a data structure called R (Line 5) and
extracts from R sets of initial and final states, respectively (Lines 7 and 8). The
procedure then enters some kind of loop to explore the state space represented
by R, perhaps until no more unexplored states are available (this is immaterial
for our API). Crucial is that the loop body will invoke an image operation on
a state tau (Line 12), likely at least once in each iteration. We assume R is
nondeterministic, so that the call returns a set of states, Tau.

Figure 4 (right) highlights (in gray) the changes the programmer needs to
make to have procedure explore operate on a Boolean program; we call the
resulting procedure explore jit. We explain these changes in the following.
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Fig. 4. An example illustrating the usage of Ijit. Left: a fictitious state space explo-
ration procedure. Right: the just-in-time version obtained using Ijit. Line numbers in
the middle; highlighted code shows places that have changed from the original version.

• Instead of reading a TTS, we now read a Boolean program as input (Line 5).
This is done using a parser supplied by Ijit. Procedure parse has two argu-
ments: the name of input file, and the parser’s direction mode: POST will
cause the parser to generate code for subsequent forward-directed analysis
(via postimages). Mode PREV does the analogous for backward analysis; a
mode of BOTH will generate code for both. The parser also offers functionality
to return sets I and F of initial and final program states, extracted from the
initial variable declarations and assertions in the BP, respectively.

• The conversion between different state representation formats, explained
below, is done via methods of a class converter. The user needs to instantiate
this class before any conversion methods of the API can be called (Line 6).

• Conversion between state representation formats happens in several places:
to convert the initial and final Boolean program state sets into TTS state sets
(Lines 7 and 8), and in the image computations. If the algorithm implemented
by procedure explore operates on TTS as defined in Sect. 2, the JIT version
of the procedure can be implemented using conversion functions supplied by
the API (Line 12): the current (unexplored) TTS state tau is converted into a
BP state, followed by a Boolean program image computation using the given
direction mode, followed by a back-conversion into a set of TTS states.
If the API’s conversion functions cannot be used, users must supply their own
functions. To reduce the programming burden, the API provides an inheri-
tance interface that allows defining conversion functions via specialization.
Users are free to define stand-alone conversions.

4.2 API Design

API Ijit is implemented in C++. A schematic overview is shown in Fig. 5.

Parser. The main purpose of the parser is to process the input BP and populate
the data structures to be used in image computations. These include the pro-
gram’s control flow graph, and pre- and postcondition expressions for pre- and
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User Applications

ConverterParser Interface Image Engine Interface

Forward-based
Parser

Backward-based
Parser

Preimage 
Engine 

Postimage 
Engine

All SAT SolverCFG WP I&FCFG SP I&F

Preprocessor

Fig. 5. Schematic overview of Ijit. The preprocessor part is usually called only once.
CFG: control flow graph; SP/WP: strongest postcondition/weakest precondition; I/F:
the set of initial/final states

postimage computations, respectively. The parser also extracts initial and final
state information, the latter by collecting all states violating any of assertions
in the Boolean program.

Converter. The converter provides an adapter between system states and pro-
gram states. In our design, the converter is an abstract C++ class with default
implementations of conversion functions. If desired or necessary, users can either
inherit the abstract class and override the default implementation, or write a
stand-alone converter from scratch.

Image Engine. At the core of our API are the engines to compute the preimage
or postimage of a given Boolean program state. These routines make use of the
control flow graph obtained by the parser, especially for preimages, in order to
determine the set of statements that can lead to the current pc. Once the state-
ment to be executed forward or backward has been determined, the statement’s
semantics determines the effect on the program data. The semantics is given as a
set of first-order predicates expressing strongest post- or weakest preconditions.
To perform image computations, the engine instantiates these formulas with the
current-state valuations of the program variables. It then invokes an All-SAT
solver to obtain the pre- or postimages as satisfiable assignments.

All-SAT Solver. The All-SAT solver used in image computations is not based
upon a state-of-the-art SAT solver, which would require CNF conversion. Instead
we found it to be more efficient to simply build a custom SAT solver that enumer-
ates solutions. Note that input formulas to the solver formalize Boolean program
statements and thus tend to be very short.
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5 Case Study: Performance Benefits of IJIT

We evaluate the benefit of our API on a number of diverse benchmark algorithms.
All are designed to operate on thread-transition systems (TTS) for either a fixed
or an unbounded number of threads; we wish to apply them to multi-threaded
Boolean programs directly. For each algorithm, we compare the performance of
three versions: (i) the TTS version, which is the original version, but prefixed by
an input translation from BPs into TTS; (ii) the BP version, which is a manual
and optimized re-implementation where the internal state data structure has
been changed to BP states; and finally (iii) the JIT version, which employs our
API. We expect a performance ranking of the form

BPversion < JITversion � TTSversion

where “<” (“�”) means “(much) faster”. In particular, the hand-crafted BP
version makes repeated conversion between state representations unnecessary
and can therefore be considered the gold standard for efficiency. We hope the
automated JIT version of the algorithm to perform nearly as well.

5.1 Benchmark Algorithms

We sketch the purpose and basic concepts of four diverse algorithms used in our
case study; more details are provided in App. B of [20]. The algorithms cover
the spectrum of finite- and infinite-state searches, and of forward and backward
explorations.

Cutoff Detection via Finite-State Search (Ecut) [15]. Ecut implements
dynamic cutoff detection for parameterized thread transition systems. A cutoff
point is a number n0 of threads that are sufficient to reach all reachable thread
states. The core procedure of Ecut is a (multi-threaded but) finite-state search,
BFS style. The TTS version of Ecut can be transformed into the JIT version
without any programming beyond the few changes discussed in Sect. 4.

Karp-Miller Procedure [16]. We experiment with two variants of this classic
procedure; both are in use in unbounded-thread program verification:

(1) Km decides the reachability of a specific target state t: it stops when a state
covering t has been encountered;

(2) Akm (“All-Km”) builds the complete coverability tree, i.e. it runsKmuntil
a fixpoint is reached.

WQOS Backward Search (BWS) [1,2]. This technique is a sound and com-
plete algorithm to decide coverability for well quasi-ordered systems (WQOS),
a broad family of transition systems that subsumes replicated Boolean programs,
Petri nets, VASS, and many more. Note that BWS is a backward exploration.
In contrast, the previous three algorithms explore forward.
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5.2 Case Study

Experimental Setup. We compare the impact of our API on the efficiency
of the four algorithms described in Sect. 5.1. For each algorithm A ∈
{Ecut,Km,Akm,Bws}, we compare three different versions: (1) the TTS ver-
sion — named A(tts); (2) the jit version obtained using our API — named
A(jit); and (3) the hand-implemented Boolean program version — named
version A (bp).

We perform the comparison using a collection of Boolean programs obtained
via predicate abstraction from 30 concurrent C programs. The C programs are
detailed in Table 1. We use SatAbs [8] to construct the BPs from these programs.
The BPs are also concurrent; threads execute the same Boolean procedure. In
most cases, the same C source program generates several BPs (since SatAbs
goes through several abstract-verify-refine iterations). In the end we obtained
155 BPs for the 30 C programs. For the TTS version of each algorithm, we use
SatAbs to generate the TTS from the Boolean program (option --build-tts;
this is where the input format explosion inevitably happens).

For each benchmark, we consider verification of a safety property, speci-
fied via an assertion that is pushed, during predicate abstraction, from C to
the Boolean program. All experiments are performed on a 2.3 GHz Intel Xeon
machine with 64 GB memory, running 64-bit Linux. The timeout is set to
30 min; the memory limit to 4 GB. All benchmarks and implementations are
available at [18].

Table 1. Benchmark statistics: GV /LV /LOC = # of global/local C program vari-
ables/lines of code; |VG|/|VL|/|PC |/Its. = # of global/local Boolean variables/program
counters/CEGAR iterations; |G|/|L|/|R| = # of global/local states/transitions in TTS;
Safe? = ✓: program safe; | · | represents the median of the feature across different
BP/TTS resulting from the same C program. Note that often |G| > 2|VG|, due to
auxiliary states used by SatAbs in the BP → TTS translation
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Fig. 6. Performance impact of our API (TO: timeout, MO: memory out). For
A ∈ {Ecut,Km,Akm,Bws}: � runtime comparison: left column: A(tts) against
A(jit); center: A(bp) against A(jit). Each dot = execution time on one example.
Square in the lower left corner of each chart: runtime of less than 1 second for both
algorithms, hence unreliable. � memory usage comparison: right column: com-
paring memory usage across the three different versions. The plots are sorted by the
memory usage of the TTS version of A. The shadowed areas show the difference. (Color
figure online)
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Results. The results of our case study are shown in Fig. 6. The first column
shows, for the four algorithms, the runtime comparison of the jit version (lower
right in each chart) against the original TTS version of the algorithm (upper
left). The log-scale charts clearly demonstrate the performance advantage —
sometimes several orders of magnitude – of not pre-translating the input BP
into a potentially large TTS. In many cases, runs that timed out in the TTS
version can now be completed within the 30mins limit. We point out that, while
the conversion time BP → TTS is included in the runtime for the TTS version,
it is not even to blame for the weaker TTS version performance: the conversion
usually takes a few seconds. What makes the TTS version slow is the relatively
large input TTS to the TTS-based algorithm.

The second column shows the runtime comparison of the jit version (lower
right in each chart) against the hand-implemented bp version of the algorithm
(upper left). Here the expectation is the opposite: we would like to get as close to
the diagonal as possible. This is achieved in all four cases to a satisfactory degree.
For the backward search algorithm, the comparison is more favorable for jit than
for the two KM-based algorithms, with a performance nearly indistinguishable
from that of the bp version. This can be attributed to the fact that Bws overall
takes more time than the forward search implemented in Km, since backward
exploration faces more nondeterminism and in general visits a larger number of
configurations. The relative overhead of state representation conversion is thus
smaller.

The third column shows that the memory consumption of the jit and bp
versions of each algorithm are very similar, and both are vastly below that of
the tts version. This reflects in part the fact that the tts version needs to store
the (relatively large) generated TTS in memory. More relevant, however, is the
fact that the TTS contains many redundant (since unreachable) transitions —
their absence is the very advantage of on-the-fly exploration techniques. Such
redundant transitions translate into a large number of redundant configurations
explored by the TTS version of the algorithm.

6 Related Work

Promoted by the success of predicate-abstraction based tools such as Slam [6]
and SatAbs [8], Boolean programs are widely used in verification. Accordingly,
extensive research has been done on their analysis, leading to a series of effi-
cient algorithms, e.g., recursive state machines [3], and the symbolic verifiers
Bebop [5], Moped [11,12], Boppo [9], and Getafix [17]. Most of the above
approaches use BDDs as symbolic representation, which do not lend themselves
to an efficient on-the-fly model construction.

In contrast, explicit-state model checking techniques often construct the state
space of the program they are exploring on the fly. A prominent tool that
pioneered this strategy is the explicit-state model checker Spin [14]. Another
notable explicit-state on-the-fly model checker is Java PathFinder [21], which
takes JavaTM bytecode and analyses all possible paths through the program,
checking for deadlocks, assertion violations, etc.
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Solutions addressing the translation blow-up in connection with (more com-
plex) unbounded-thread verification techniques are rare. While these techniques
have been applied to program analysis, the application is typically preceded by an
up-front translation of the program into an explicit transition system [10,15]. For
Boolean programs generated via predicate abstraction, this only works for small
local state spaces, for example when the number of predicates is small. When
going through several iterations of the predicate abstraction CEGAR loop, in
contrast, the number of Boolean program variables quickly becomes large.

On-the-fly techniques for unbounded-thread algorithms applied to Boolean
programs are given in tools by Basler et al. [7], and by Liu et al. [19]. Both are re-
implementations of the algorithms they are targeting, which is the Karp-Miller
procedure for VASS in the former case, and the backward search algorithm for
broadcast Petri nets in the latter. Both demonstrate the benefits of exploring
BPs directly, but they do not come for free: the re-implementation is low-level
work involving tricky data structure changes, affecting the very foundation of
the implementation. In fact, the Karp-Miller implementation in [7] generated
runtime errors on some of our benchmarks, so we excluded it from our case
study.

7 Summary

The problem of the blow-up between programs and transition systems that
describe the programs’ semantics and are often used in exploration algorithms is
well known. Translating a program into an explicit transition system undermines
the practical runtime performance of these algorithms, and thus diminishes their
value. This problem has been addressed in an ad-hoc way, by re-implementing
these algorithms into ones operating on programs. This process is painful and
prone to programming errors, to which we attribute the fact the input translation
cost is often grudgingly accepted.

In this paper we have introduced an API that largely automates the required
transformations. In the best case, programmers mostly need to add calls to an
API-provided convert method to (usually few) places in the code where images
are computed. In the worst case, programmers have to supply this conversion
method. We have demonstrated the huge impact of the use of the API on various
algorithms that rely on an up-front BP → TTS translation. We have also com-
pared the performance of the jit version to the version re-implemented by hand
that operates entirely on Boolean programs, and found nearly no performance
difference to this gold-standard implementation.

We have presented our API with dedicated support for algorithms that oper-
ate on Boolean programs and thread-transition systems, due to their popular-
ity in, and significance for, software verification. Given proper state represen-
tation conversion functions, we believe our API to be able to bridge the gap
between other types of modeling languages, such as Boolean programs and Petri
nets. We leave implementing, and experimenting with, such extensions for the
future. Extending the API to support algorithms like partial order reduction
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that need to perform a nonstandard image computation is another promising
research direction and we leave it for the future work too.
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