
Compiler-Assisted Threshold Implementation
Against Power Analysis Attacks

Pei Luo∗, Konstantinos Athanasiou†, Liwei Zhang‡, Zhen Hang Jiang∗, Yunsi Fei∗, A. Adam Ding‡, Thomas Wahl†
{silenceluo@ece., konathan@ccs., zhang.liw@husky., zjiang@ece., yfei@ece., a.ding@, wahl@ccs.}neu.edu

∗Electrical & Computer Engineering Department, Northeastern University, Boston, MA 02115 USA
†College of Computer and Information Science, Northeastern University, Boston, MA 02115 USA

‡Department of Mathematics, Northeastern University, Boston, MA 02115 USA

Abstract—Side-channel attack utilizes side-channel leakages to
extract the secret in crypto systems. Various countermeasures for
different algorithms and platforms have been proposed to protect
crypto systems against such attacks. Manual countermeasure
design requires deep understanding of the target algorithm and
implementation, and oftentimes is platform-specific and error-
prone. In this paper, we propose the construction of Threshold
Implementation (TI), a provably secure countermeasure against
power attacks, as an automated compiler pass in the open LLVM
(Low Level Virtual Machine) framework. Attack results show that
the automatically generated TI designs are secure against power
attacks. As our proposed scheme implements the countermeasure
at the intermediate representation (IR) level, our method can be
applied to any cipher software in any programming language,
and the generated implementations can be ported to different
platforms and architectures.

I. INTRODUCTION

Side-channel attack has been a realistic threat to various
cryptographic systems [1], [2]. It utilizes side-channel leakage,
such as power consumption and electromagnetic emanation
(EMs), to extract the secret embedded in crypto systems [2].
Various countermeasures have been proposed to protect crypto-
graphic systems against power or EM analysis attacks, falling
into two categories: power balancing [3] and computation
masking [4], [5]. Existing manual implementations of coun-
termeasures require deep understanding of the cipher and
the target implementation, and expertise knowledge of side-
channel attacks. What’s more, the security evaluation is also
ad hoc for such manual implementation, as they are error-prone
and there lacks proof or guarantee of security [6]. To address
these issues, some efforts have been made towards automated
protection design against side-channel attacks [6]–[8].

To automatically implement countermeasures for ciphers
in different programming languages and platforms, we argue
that the compiler is the suitable stage and tool. We choose the
open LLVM (Low Level Virtual Machine) framework as the
platform, and implement the construction of protected software
as an automated pass at the Intermediate Representation (IR)
level [9]. Side-channel resilience is incorporated at the IR level.
It is thus language-agnostic, and the generated protected design
can be ported to different platforms directly using mature back-
ends.

We choose Threshold Implementation (TI), a provable
secure countermeasure against power/EM attacks, as the pro-
tection scheme. TI splits the original sensitive variables into
multiple shares such that the attacker cannot break the target
system unless he has control of all the shares [10], [11]. In this
work, we implement an LLVM middle-end pass to generate

TI design for a given cipher, and use mature available back-
end passes to generate binary code for the TI implementa-
tion for different hardware platforms. This Compiler Assisted
Threshold Implementation (CATI) pass does not require any
knowledge of the cipher or the target platform. We take AES
and SHA-3 as example ciphers, and automatically generate
TI designs for their widely used implementations [12]–[14].
We target a commercial ARM Cortex-M3 processor for the
generated TI implementation to evaluate the implementation
cost and side-channel resilience.

The rest of this paper is as follows. In Section II, we
introduce preliminaries of TI and the LLVM framework. In
Section III, details of the proposed CATI pass are presented.
In Section IV, we evaluate the generated TI implementations,
in terms of both resource overhead and the improvement of
side-channel resilience. We conclude this paper in Section V.

II. PRELIMINARIES

A. Threshold Implementation
TI is a kind of side-channel attack countermeasure based

on secret sharing and multi-party computation. In TI, a variable
x ∈ Fm

2 is split into s additive shares, xi, with x = ⊕s
i=1xi.

The vector of s shares of x is denoted as: x = (x1, x2, · · · , xs).
Thus, the knowledge of up to s− 1 shares is incomplete and
does not reveal information of x. In order to implement a TI
for a function, o = F (x, y, z, · · ·), in which o ∈ Fn

2 , a set
of shared functions Fi are required, which each produces an
output share oi and together compute the output of F . There
are three properties each shared function should satisfy:

1) Correctness: F (x, y, z) = ⊕iFi(x, y, z) for all (x, y, z)
and (x, y, z) if ⊕s

i=1xi = x, ⊕s
i=1yi = y, ⊕s

i=1zi = z.
2) Non-completeness: every function Fi is independent of
at least one share of each variable (x, y, z), such that even
if the attacker has full control of this Fi, he cannot get
any information about the sensitive variables.

3) Uniformity: for all o = (o1, o2, · · · , os) satisfying
⊕s

i=1oi = o, the number of tuples (x, y, z, · · ·) ∈ Fms

for which Fj(x, y, z, · · ·) = oj , 1 ≤ j ≤ s, is equal
to 2(s−1)(m−n) times the number of (x, y, z) ∈ Fm for
which o = F (x, y, z, · · ·).
It has been formally proved that if the above properties are

preserved for each shared function, the generated implemen-
tation is secure against power analysis attacks [10], [11].

B. LLVM
The LLVM framework is a collection of modular and

reusable compiler and toolchain technologies. LLVM is com-

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.94

541

posed of three parts: the front-end translates software imple-
mentations in different programming languages into LLVM
IRs, the mid-level passes optimize and improve the IRs, and
the back-end code generators transfer IRs into binary files for
different architectures [9].

LLVM IR is similar to assembly language but target-
independent. Various middle-end optimization passes can be
designed to modify/optimize the given IR, as does our TI
scheme. In this work, we design a middle-end CATI pass
in LLVM to transfer the original program IR into its TI
implementation. We are using LLVM version 4.0.0 together
with Z3 V4.5.0 running on Ubuntu version 12.04.5.

III. CATI - COMPILER ASSISTED THRESHOLD
IMPLEMENTATION PASS

We propose to obtain threshold implementations for a given
software cipher at the LLVM IR level. First, we present the
method to find semi-TI solutions (without uniformity guaran-
tee) for a given small operation automatically in Sec. III-A.
In Sec. III-B, we give details of achieving uniformity for non-
uniform solutions. In Sec. III-C, we show the modifications
of a given design to make it suitable for automatic TI con-
struction. Then we show how to use the divide and conquer
method to obtain the TI solution for a given cipher efficiently
in Sec. III-D.

A. Automated Semi-TI Solutions
Boolean operations can be separated into two categories,

linear and nonlinear operations. For each linear operation like
Shift and XOR, the TI implementation is straightforward, with
the randomness, non-completeness and uniformity of the inputs
propagating to their outputs directly. For nonlinear operations,
automatic TI generation is less straightforward. In this work,
we formulate the automatic TI design problem for nonlinear
operations as a Boolean Satisfiability (SAT) problem, and use
SAT or SMT (Satisfiability Modulo Theories) solvers to solve
the problem.

We denote the original program by P and its TI version
by P ′. The first step in computing P ′ from P is to create
a parameterized abstract syntax tree (AST) that captures all
possible Boolean programs satisfying the TI rules up to a
bounded size. We call this parameterized AST a skeleton,
following the notations in [8]. We use AND operation c = a&b
with three shares (a=a1⊕a2⊕a3, b=b1⊕b2⊕b3, c=c1⊕c2⊕c3)
as an example here. A candidate skeleton is shown in Fig. 1.

Root Node

Internal Nodes

Leaf Nodes

Fig. 1: The structure of candidate tree

The constraints for the ASTs are as follows:

• Each root node is one share of c. For example, three ASTs
are used to represent the three shares of c, and the three
root nodes are c1, c2 and c3 respectively.

• The internal nodes are instantiated to any bit-level logic
operation such as OR, XOR, AND and NOT.

• The leaf nodes are instantiated to shares of the original
input variables.

There are several constraints to represent correctness and
non-completeness (we ignore uniformity for now):

• The XOR of three root nodes should be equal to c (c=c1⊕
c2 ⊕ c3) for any (a, b) and (a, b).

• Each share skeleton cannot include all the shares for one
variable in the leaf nodes. For example, the leaf nodes
of c1 skeleton should exclude a1 and b1, and similar
constraints for c2 and c3.

We transfer the above rules into constraints in SMT solvers,
and then use SMT solvers to find the TI solutions that satisfy
correctness and non-completeness. Initially, there may be no TI
solution for an operation with the given skeleton, for example,
when the size of skeleton (the depth of the binary tree) is
small. We iteratively increase the skeleton size until we find a
solution that satisfies the above rules.

As we have ignored uniformity so far in our constraints, the
solution returned by the SMT solver will generally not satisfy
this requirement, which may incur some weak leakage [10],
[11]. To get uniform TI designs, we can either increase the
skeleton size or use the strategy of re-masking. Re-masking
introduces randomness to add onto the non-uniform outputs.

We use Z3 version 4.5.0 as the SMT solver [15]. An
example solution for c = a&b is given in Fig. 2. In this
example, Z3 needs less than one second to find the first non-
uniform solution for the given operation. Note that the skele-
tons of the three shares of c have the same structure, which
makes the solving process much more efficient. Skeletons for
different shares can have different structures, which gives more
possibilities for the TI solutions.

B. Achieving Uniformity with Limited Randomness
For the algorithm in Section III-A, there may be no uniform

solution for the given operation with limited skeleton size
and number of shares. To achieve uniformity for non-uniform
solutions, we can either increase the number of shares or
introduce random numbers to re-mask the generated solutions.
In this work, we keep the number of shares the same for
all operations, and use re-masking to achieve uniformity for
certain operations.

It has been shown that outputs of previous cryptographic
runs can be re-used as random numbers for re-masking. This
will save random number generators (RNGs) in embedded
systems [10]. In this work, we use this strategy to save
randomness. We check the uniformity of the TI solution,
and call corresponding functions to return random numbers
stored in memory to re-mask the generated semi-TI if it is not
uniform.

C. Minimum Modification of Given Implementation
As stated before, one advantage of the proposed scheme

is that it does not require knowing the crypto algorithm and
implementation. However, there are two requirements that the
program has to conform to so as to ensure the TI properties.

First, in TI, each sensitive variable is split into multiple
shares, which must not be recombined in the middle: this
violates the rules of non-completeness and will incur leakage.
However, some cryptographic implementations may contain
secret-dependent control flows. Some modifications are neces-
sary to resolve such branches. Note that, in general, the ab-
sence of branch conditions depending on sensitive information
is a basic requirement for embedded crypto implementations
to avoid timing attacks utilizing imbalanced branches. Thus

542

+

+

~
b1b2a2

I
&~
a1b2a1

+
+

+

~
b2b3a3

I
&~

a2b3a2

+

c2

+

+

~
b3b1a1

I
&~

a3b1a3

+

c3

+
c

c1

Fig. 2: Example TI solution for the AND operation

the first requirement should be fulfilled even without the
consideration of TI design.

Second, for functions in TI, the returned sensitive param-
eter will also be split into multiple shares. Therefore, the
original function should be in void type and the sensitive
parameter should be passed in and out of the function in a
pointer type. To achieve this, designers should modify the
target implementation before TI generation.

D. Modular Design
TI implementation is very expensive, and it is beyond the

current computation power to find TI solutions for an entire
cipher. Instead we rely on the divide-and-conquer method for
practical TI construction. We will take modular design, as
shown in Fig. 3, and the interfaces between different modules
will be important.

G’ F’

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

(a1, b1, c1)

(a2, b2, c2)

(a3, b3, c3)

(d1, e1, f1)

(d2, e2, f2)

(d3, e3, f3)

Fig. 3: Divide-and-conquer strategy

We denote the TIs of G and F by G′ and F′ respectively,
and the input of G′ by (x, y, z), the output of F′ by (d, e, f).
The output of G′, which is also the input of F′, is denoted by
(a, b, c). Then the combination of F′ and G′ is the TI of the
whole program. This TI design fulfills all the requirements if
G′ and F′ fulfill the requirements, respectively.

• Correctness: for all possible (x, y, z) and (x, y, z),
F′(G′(x, y, z)) = F (G(x, y, z)).

• Uniformity: if G′ and F′ are uniform respectively, the
whole TI module should be uniform.

• Non-completeness: in software implementations, there is
a synchronization layer (registers) between G′ and F′ to
store the intermediate variables (a, b, c). For hardware im-
plementations, a synchronization layer of registers should
be added to avoid glitches in the output of G′ [16]. Thus
non-completeness is ensured.

In this way we separate the original problem into smaller
sub-problems and obtain their TIs. In LLVM, we can iteratively
scan the IR and combine α LLVM IR instructions together
and try to find its TI solution. The size of α will affect the
efficiency and resource overhead directly. For larger α, the size
of the SAT problem passed to the SMT solver will increase;
the solving time for each group of instructions will increase
dramatically. For smaller α, a larger number of sub-problems
will be generated, which incurs larger resource overhead in the
end. Thus there is a balance between the solution speed and
area overhead for the proposed method in this work.

We demonstrate the modular TI construction proposed in
this work with an example of three instructions. First we
modify the function interface according to the description in
Sec. III-C, and the shares of %x are (%x.0,%x.1,%x.2). We
process each IR instruction individually, and the TI construc-
tion process is shown in Fig. 4.

L1: %1 = lshr i8 %x, 1
.
.
.

L2: %5 = xor i8 %1, %x
.
.
.

L3: %7 = and i8 %6, %5
.
.
.

%0 = lshr i8 %x.0, 1
%1 = lshr i8 %x.1, 1
%2 = lshr i8 %x.2, 1

...
%60 = xor i8 %0, %x.0
%61 = xor i8 %1, %x.1
%62 = xor i8 %2, %x.2

…
%66 = call i8 @RetRand()
%67 = call i8 @RetRand()
%68 = xor i8 %66, %67
%69 = xor i8 %62, %62
%70 = and i8 %62, %65
%71 = xor i8 %69, %70
%72 = or i8 %64, %62
%73 = or i8 %65, %61
%74 = xor i8 %72, %73
%75 = or i8 %71, %74
%76 = xor i8 %75, %66

...

Fig. 4: IR representation of the CATI process

As operations lshr (linear shift right) and XOR are linear,
the TI construction of L1 and L2 are straightforward, and
the variable of %1 in the original code becomes three shares
(%0,%1,%2) in the generated TI design, while the variable of
%5 becomes (%60,%61,%62). For AND operation, the input
variables %5 and %6 become multi-share (%60,%61,%62)
and (%63,%64,%65), respectively. The computation to gen-
erate one share of the output %7 is shown in blue color,
with computations for generating other two shares of the
output omitted considering the space. As AND operation in
L3 is non-linear, we use (pseudo) random numbers to re-
mask the generated shares, and the re-masking operations are
shown in red color. For 3-share AND operation, we use two
random numbers %66 and %67 to re-mask the three shares.
For example, the first share of %7 is %75 and it is masked
with %66 here.

As shown in Fig. 4, the generated TI of AND operation
has some redundancies, and this is caused by the structure
of skeleton. We can use the optimization passes of LLVM to
improve the efficiency, which will be shown in Sec. IV-A.

IV. RESULT

We automatically generate the 1st-order TI designs for
SHA-3 and AES using the proposed scheme. We present
the resource overhead and experimental side-channel attack
results.

543

A. Resource Overhead of the Generated TI Implementation
In this paper, we use standard 32-bit implementation of

SHA-3 [14] and 8-bit AES implementation based on Can-
right’s S-box [12], [13] as the benchmarks. We make a few
modifications to the code according to Section III-C.

We generate the 1st-order TI implementations of both AES
and SHA-3 using our algorithm. We also turn on the option
‘-O3’ of LLVM to optimize the generated IR code. Since
the pass is at IR level, we use the number of LLVM IR
variables to evaluate the overhead in this work. We compare the
number of variables for three designs: the original unmasked
version, the generated TI design, and the TI design after ‘-O3’
optimization, respectively, and results are presented in Table I.

TABLE I: LLVM IR variables overhead with RNG off

Original TI opt-O3
SHA-3 KeccakF 996 7000 4179

S-box

G4 mul 13 146 100
G4 sq 5 68 40
G16 mul 18 152 131
G256 inv 12 86 69

Table I shows the results for KeccakF function in SHA-3
and four functions in AES S-box. The increase in the number
of variables for the TI KeccakF function is about eight times
the original implementation; the ‘-O3’ optimization can reduce
40% variables of the TI implementation. Similarly, for the
four S-box functions, the increase for the variables of the TI
implementation is about one order of magnitude, and the ‘-O3’
optimization reduces about 30% of the TI implementation.

B. Side-Channel Attacks Results
We implement the original and the generated 1st-order TI

designs of AES and SHA-3 on a commercial ARM Cortex-
M3 (STM32F103C8T6) development board. We sample the
EM traces using a Teledyne LeCroy WaveRunner 640zi oscil-
loscope with the sampling rate of 5G samples/second.

We launched Correlation Power Analysis (CPA) for leakage
detection on all the three implementations. For the unprotected
AES implementation, the correlation profile for the correct
key using 3 × 103 traces is shown in Fig. 5a, where there
is strong leakage with the correlation reaching −0.25. The
key distinguishing result is shown in Fig. 5b, where the black
curve is for the correct key and gray curves are for other wrong
key guesses. The correct key stands out clearly among all key
guesses with only a few hundred traces.

For the generated TI of AES, the leakage detection results
with 8 × 105 traces are shown in Fig. 5c. It shows that the
protected AES is secure against first-order attacks. The key
guess results are shown in Fig. 5d, in which black curve cannot
be distinguished from all the curves (the maximum and the
minimum curves are outlined).

V. CONCLUSION

We presented an automated TI design based on LLVM.
The proposed scheme is independent of both the programming
language and the hardware architecture, and does not require
knowledge of the algorithm either. Our proposed method
can generate secure TI solutions for a given software im-
plementation automatically. Results show that the generated
TI implementations are secure against power (EM) analysis
attacks.

0.5 1 1.5 2 2.5 3
x 104

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time points

C
or

re
la

tio
n

Leakage detection of original AES

(a)

100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Correlation resutls for the key guesses

C
or

re
la

tio
n

Number of traces

(b)

0 0.5 1 1.5 2 2.5
x 10

5

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time points

C
or

re
la

tio
n

Leakage detection of generated TI AES using 8×105 traces

(c)

1 2 3 4 5 6 7 8
x 10

5

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Number of traces

C
or

re
la

tio
n

Correlation results for key guesses

(d)

Fig. 5: Side-channel attacks results for original and TI AES

Acknowledgment: This work was supported in part by the
National Science Foundation under grants SaTC-1314655,
MRI-1337854, and SaTC-1563697.

REFERENCES

[1] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis
attacks of modular exponentiation in smartcards,” in Cryptographic
Hardware and Embedded Systems, 1999, pp. 144–157.

[2] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology — CRYPTO, 1999, pp. 388–397.

[3] K. Tiri, M. Akmal, and I. Verbauwhede, “A dynamic and differential
CMOS logic with signal independent power consumption to withstand
differential power analysis on smart cards,” in Prof. European Solid-
State Circuits Conf., 2002, pp. 403–406.

[4] A. J. Leiserson, M. E. Marson, and M. A. Wachs, “Gate-level masking
under a path-based leakage metric,” in Cryptographic Hardware and
Embedded Systems, 2014, pp. 580–597.

[5] M.-L. Akkar and C. Giraud, “An implementation of DES and AES, se-
cure against some attacks,” in Cryptographic Hardware and Embedded
Systems, 2001, vol. 2162, pp. 309–318.

[6] A. G. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne, “A
first step towards automatic application of power analysis countermea-
sures,” in Proc. Design Automation Conf., 2011, pp. 230–235.

[7] G. Agosta, A. Barenghi, and G. Pelosi, “A code morphing method-
ology to automate power analysis countermeasures,” in Proc. Design
Automation Conf., 2012, pp. 77–82.

[8] H. Eldib and C. Wang, “Synthesis of masking countermeasures against
side channel attacks,” in Proc. Int. Conf. on Computer Aided Verifica-
tion, 2014, pp. 114–130.

[9] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. Int. Symp.on Code Gener-
ation and Optimization: Feedback-directed and Runtime Optimization,
2004.

[10] B. Bilgin, “Threshold implementations : as countermeasure against
higher-order differential power analysis,” Ph.D. dissertation, University
of Twente, Enschede, May 2015.

[11] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold implementations
against side-channel attacks and glitches,” in Int. Conf. Information &
Communications Security, 2006, pp. 529–545.

[12] D. Canright, “A very compact S-Box for AES,” Lecture Notes in
Computer Science, vol. 3659, pp. 441–455, 2005.

[13] “A very compact Rijndael S-box,”
http://faculty.nps.edu/drcanrig/pub/sboxalg.c.

[14] “Reference and optimized code in C,”
http://keccak.noekeon.org/KeccakReferenceAndOptimized-3.2.zip.

[15] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Int.
Conf. on Tools and Algorithms for the Construction and Analysis of
Systems, 2008, pp. 337–340.

[16] T. De Cnudde, O. Reparaz, B. Bilgin, S. Nikova, V. Nikov, and
V. Rijmen, “Masking AES with d+1 shares in hardware,” in ACM Proc.
Workshop on Theory of Implementation Security, 2016.

544

