
DISCRETE
APPLIED

Discrete Applied Mathematics 93 (1999) 89-108

MATHEMATICS

Relocalization - theory and practice

Oliver Karcha, *, Thomas Wahlb. ’

aDepurtment of’ Computer Science I, University qf Wiitzburg. Am Hublund, 97074 Wiir:burg. Grrrnw~~~

hATR Intwpreting Trlecommunicutions Research Luborutories. 2-2 Hikuri-dui, Seika-cho, Sorukuqun.

Kyoto 5/9-0288, &pun

Received 27 June 1997; revised 3 March 1998: accepted 22 October 1998

Abstract

We consider the following problem: a robot is at an unknown position in an indoor-environment
and has to do a complete relocalization, that is, it has to enumerate all positions that it might
be located at. This problem occurs when, for example, the robot “wakes up” after a breakdown
(e.g., a power failure or maintenance works) and the possibility exists that it has been moved
meanwhile. An idealized version of this problem, where the robot has a range sensor, a polygo-
nal map, and a compass, all of which are exact, that is, without any noise, was solved by Guibas
et al. [5]. In the context of their method, we first show that the preprocessing bounds can be
expressed slightly sharper. Then we describe an approach to modifying their scheme such that it
can be applied to more realistic scenarios (e.g., with uncertain sensors) as well. 0 1999 Elsevier
Science B.V. All rights reserved.

Keywords: Relocalization; Robotics; Sensor uncertainties; Polygon distances

1. The localization problem

We investigate the first stage of the robot localization problem [3,11]: an autonomous

robot is at an unknown position in an indoor environment, for example a factory build-

ing, and has to do a complete relocalization, that is, determine its position and orien-

tation. This is necessary when, for example, the robot “wakes up” after a breakdown

(e.g., a power failure or maintenance works) and has no knowledge about its initial

configuration or has possibly been moved meanwhile.

For this task, the robot has a polygonal map of its environment and a range sensor

(e.g., a laser radar), which provides the robot with an approximation of its visibility

polygon. The localization should be performed using only this minimal equipment. In

particular, the robot is not allowed to use landmarks (e.g., marks on the walls or on

the floor). This should make it possible to use autonomous robots also in fields of

application where it is not allowed or too expensive to change the environment.

* Corresponding author. E-mail: karch@informatik.uni-wuerzburg.de.

’ E-mail: twahl@itl.atr.co.jp.

0166-218X/99/$-see front matter 0 1999 Elsevier Science B.V. All rights reserved.
PII: SO1 66-2 18X(99)00008-6

90 0. Kurch, T. WuhllDiscrecr Applied Muthemaaics 93 (1999) 89-108

Fig. I. Polygonal map and its decomposition into visibility cells.

The localization process usually consists of two stages. First, the non-moving robot

enumerates all hypothetical positions that are consistent with its sensor data, i.e., that

yield the same visibility polygon. There can very well be several such positions if

the map contains identical parts at different places (e.g., buildings with many identical

corridors, like hospitals or libraries). All those positions cannot be distinguished by a

non-moving robot. Fig. I shows an example: the marked positions at the bottom of

the two outermost niches cannot be distinguished using only their visibility polygons.

If there is more than one hypothetical position, the robot eliminates the wrong hy-

potheses in the second stage and determines exactly where it is by travelling around in

its environment. This is a typical on-line problem, because the robot has to consider

the new information that arrives while the robot is exploring its environment to find a

path as efficient (i.e., short) as possible for eliminating the wrong hypotheses. Dudek

et al. [4] have already shown that finding an optimal localization strategy is NP-hard,

and described a competitive greedy strategy, the running time of which was recently

improved by Schuierer [9].

This paper concentrates on the first stage of the localization process, that is, on

generating the possible robot configurations (i.e., positions and orientations). With the

additional assumption that the robot already knows its orientation (i.e., the robot has a

compass) and all sensors and the map are exuct (i.e., without any noise), this problem

turns into a pure geometric one, stated as follows: for a given map polygon 9 and a

star-shaped polygon V“ (the visibility polygon of the robot), find all points p E 9 that

have Y as their visibility polygon.

Guibas et al. [5] described a scheme for solving this idealized version of the lo-

calization problem efficiently. We will briefly sketch their method in the following

section. For some of the occurring complexities we will then give sharper bounds in

Section 3.

As this more theoretical method requires exact sensors and an exact map, it is not

directly applicable in practice, where the data normally is noisy. In Section 4 we

consider these problems and show in Sections 5 and 6 an approach to avoiding them,

which uses distance functions to model the resemblance between the noisy range scans

(from the sensor) and the preprocessed skeletons (extracted from the possibly inexact

map).

2. Solving the geometric problem

In the following we sketch the method of Guibas et al., for which we will give a

sharper preprocessing bound in the next section and which also is the basis for our

approach described in Sections 5 and 6. We assume that the robot navigates on a

plain surface with mostly vertical walls and obstacles such that the environment can

be described by a polygon 9, called the map polygon. Additionally, we assume that

9 has no holes (i.e., there are no free-standing obstacles in the environment), although

the algorithm remains the same for map polygons with holes; the preprocessing costs,

however, may be higher in that case.

The (exact) range sensor generates the star-shaped visibility polygon -1/’ of the robot.

As the range sensor is only able to measure the distances relative to its own position,

we assume the origin of the coordinate system of Y‘ to be the position of the robot.

Using the assumption that we have a compass, the geometric problem is then to find

all points p E .Y such that their visibility polygon f ‘p is identical with the visibility

polygon ‘I” of the robot, that is, the equality 5 + p = f I, holds.

The main idea of Guibas et al. [5] to solving this problem is to divide the map into

finitely many visibility cells such that a certain structure (the visibility skeleton, which

is closely related to the visibility polygon) does not change inside a cell.

For a localization query we then do not search for points where the visibility polygon

fits into the map, but instead for points where the corresponding skeleton does. That

is, the continuous problem* of fitting a visibility polygon into the map is discretized

in a natural way by decomposing the map into visibility cells.

2.1. Decomposing the map into cells

At preprocessing time the map 9 is divided into convex visibility cells by introducing

straight lines forming the boundary of the cells such that the following property holds:

The set of visible map vertices does not change when we travel around within

a cell.

As the visibility of a vertex only changes if we cross a straight line induced by

that vertex and an occluding r@ex vertex (i.e., having an internal angle >, n), the

’ “Continuous” in the sense that we cannot find an i: P 0 such that the visibility polygon f ,’ of a point p

moving by at most s: does not change.

92 0. Karch, T. WahllDiscrete Applied Mathematics 93 (1999) 89-108

Fig. 2. Decomposition of a map polygon into visibility cells (left), hvo visibility polygons (middle), and the

corresponding skeleton (right).

subdivision into visibility cells can be constructed in the following way: we consider

all pairs consisting of a vertex v and a reflex vertex u, that are visible from each other;

for each such pair (u, u,) we introduce the ray into the map that goes along the line

through v and v,, starts at vr, and is oriented as to move away from v. An example

of such a decomposition is depicted in the left part of Fig. 2. The introduced rays are

drawn as dashed lines. The points p and q from cell w see the same set of five map

vertices (marked gray in the corresponding visibility polygons in the middle). Fig. 1

shows a decomposition for a more complex map with three obstacles (gray), generated

with our software ROLOPRO described in Section 7.

If the map consists of a total number of it vertices, of which Y are reflex, the number

of introduced rays is in Co(nr) and therefore the complexity of the decomposition is

in 0(n2r2). For map polygons without holes it can be shown that this complexity is

actually in B(n2r). Moreover, it is easy to give worst-case examples that show that

these bounds are tight.

2.2. The visibility skeleton

When we compare two visibility polygons of points from the same cell (see

Fig. 2) we see that they are very similar and differ only in certain aspects, namely

in the spurious edges that are caused by the reflex vertices and are collinear with the

viewpoint, and in those map edges that are only partially visible. The remaining fill

edges (which are completely visible) are the same in both polygons. This observa-

tion can be used to define a structure that does not change inside a visibility cell, the

visibility skeleton.

For a visibility polygon VP with viewpoint p, the corresponding visibility skeleton

Vi is constructed by removing the spurious edges, and by substituting the partially vis-

ible edges (they lie between two spurious vertices or between a spurious and a full ver-

tex) with an artljicial edge ai together with the corresponding line gi on which the orig-

inal (partially visible) edge of VP lies. Thus, we simply ignore the spurios edges and

the spurios vertices, as this information continuously depends on the exact position p.

As the skeleton does not change inside a cell, we can define the cell skeleton VG as

the common skeleton of all visibility polygons of points from cell 9?. Fig. 2 shows an

example of the common skeleton V$ of two visibility polygons VP and Yq for points

p and q from the same cell %‘.

A A \
el c2 e.3

0. Karch. T WuhlI Discrete Applied Mathrmatic~.s 93 11999) X9-108

h,(V*) h,(V*) j h@*)

Fig. 3. Three embeddings of the skeleton V’

2.3. Embeddings of a skeleton

93

Just as a star-shaped polygon V can fit into the map 9 at several positions, the

same holds for the skeleton V” defined above. A mapping h(V), which fits V’ into

the map 9, is called an embedding of the skeleton V*. It can be shown that for every

skeleton only 8(r) different embeddings exist (Y being the number of reflex vertices).

Therefore, for a localization query the maximum number of possible robot locations is

also bounded by L?(r).

The connection between a skeleton and its embeddings is illustrated in Fig. 3. The

skeleton V*, which has one artificial edge at, has three embeddings hl,. . . , h3 into the

map 9. In each embedding, each full edge of V* matches an edge of 9. Furthermore.

for the artificial edge at there exists at least one map edge that lies on the corresponding

embedded line hj(gr), for 1 <j63. Such edges are called candidate edges.

For a fixed skeleton V* with an artificial edge ai, which is embedded into the map

by h,j, we denote by C’;.j the set of all candidate edges for a; in embedding h,(V”) and

by c;.i the cardinahty of C2.j. Note that one edge may serve as a candidate edge in

several embeddings of the same skeleton. For example, in Fig. 3 the sets of candidate

edges for the embeddings of the skeleton V” are Ct., = Cl,1 = Cl,3 = {el,e2.e3}. The

visibility cells with skeleton V* are drawn in dark-gray in the figure. Note that from

each of these cells exactly one of the candidate edges er,. ,e3 for the (embedded)

artificial edge h,(ur) is visible “through” ~11.

When we construct the skeleton VP* from the visibility polygon ^I’;, we “throw

away” some information about the spurious edges and the partially visible edges. But

this information can be reconstructed using the position of the viewpoint p relative to

the skeleton. This relationship between a visibility polygon and the embeddings of its

corresponding skeleton is described in the following theorem.

Theorem 1 (Guibas et al. [5]). Let ?p be u visibility poIyyon, V/T the corresponding

skeleton, h(V;) an embedding of this skeleton into the mup, and h(p) the corre-

sponding viewpoint in the embedding. Then, %‘i(,l) = Y I, if and only if Vh; P, = Vd.

94 0. Karch, T. WuhllDiscrete Applied Mathematics 93 (1999) 89-108

The consequence of this theorem is that in order to determine all points in the map

that have VP as their visibility polygon it is sufficient to consider all embeddings h(VP)

of the skeleton Vi and then to check whether the corresponding embedded viewpoint

h(p) induces the same skeleton VJ, that is, the point h(p) must lie in a cell W with

v; = vp.

That means, the reduction of the visibility polygon to the corresponding skeleton and

the decomposition of the map into visibility cells discretizes our problem in a natural

way: instead of testing infinitely many visibility polygons we have to test only a finite

number of skeletons to determine all possible robot locations.

2.4. Costs of the localization query and the preprocessing

As already stated above, the decomposition into visibility cells has a complexity of

0(n2r) for map polygons without holes. At preprocessing time this decomposition is

computed and the cells are divided into equivalence classes according to their skele-

tons, that is, two cells Wi and W2 are said to be equivalent if V$, equals V& up to a

translation. For the resulting set of equivalence classes a search structure (e.g., a mul-

tidimensional search tree) is constructed that allows for a given skeleton the retrieval

of the corresponding class in an efficient way (i.e., in time logarithmic in the number

of classes).

For the localization query, the skeleton Vi of the given visibility polygon VP is

computed and the corresponding equivalence class is determined. As we know the

position of the point p relative to the skeleton Vi and as we also know the position

of each cell V relative to its cell skeleton VG, we can easily determine for each cell

in the equivalence class the embedded point h(p) and check whether it lies in %‘. If

the point h(p) is in $7, then h(p) is a valid robot position by Theorem 1. The test

whether h(p) is in % or not can be performed very efficiently by using a point location

structure; in fact, only a single point location query is necessary.

This way we get a query time of O(m+logn+A) where m is the number of vertices

of VP and A denotes the size of the output, that is, the number of all reported robot

locations.

The total preprocessing time and space is in B(n2r. l&f?/) for map polygons without

holes. Here,]B%?] denotes the worst-case complexity of an equivalence class, where

for a given skeleton V* the complexity of the corresponding equivalence class 8%‘~.

is the total number of vertices and edges of all visibility cells with skeleton V*. In [5]

it was already shown that lb%? is in Co(n’).

3. A sharper bound for 1 b%‘[

In this section we establish a tighter upper bound of O(n + I-*) for the complexity

of an equivalence class, such that the dependence on the number of reflex vertices

becomes clearer; we also show that this bound is worst-case optimal. Due to lack of

space the proofs will only be sketched. The complete proofs are given in [6].

The main idea of the proof is to concentrate on a single skeleton V* and to determine

the complexity of &‘GV* by counting the edges of all visibility cells whose skeleton

equals V*. Therefore, we first study the structure of the visibility cells and classify

their bounding edges into two groups. It turns out that only the edges of the second

type, which are determined by the candidate edges, are difficult to count, and we will

first give an upper bound for their number in a single embedding of V”.

Unfortunately, summing up these numbers for all embeddings of the skeleton I/*

does not yield the desired bound. The reason is that one edge may serve as a can-

didate edge in several embeddings as already stated above. Therefore, we will exam-

ine such situations and show how to perform the summation in a more sophisticated

way.

3.1. The structure ~j’ the visibility cells

For a fixed skeleton V*, we examine the visibility cells whose visibility skeleton

equals V’. Each edge of such a visibility cell is either a kernel edge or an AC

edge:

Kernel edges are edges that lie on the boundary of the embedded kernel h(Ker V*)

of the skeleton. Here, the kernel Ker V* of a skeleton V* is defined analogously to

the kernel of a polygon (see the left part of Fig. 3): Ker V* consists of all points that

are visible from all edges of the skeleton (i.e., from all points of all full edges and all

artificial edges). For example, all horizontal and vertical edges of the visibility cells of

Fig. 3 are kernel edges.

AC edges are determined by pairs consisting of an embedded artificial edge and a

corresponding candidate edge. An AC edge lies on the ray induced by a reflex vertex

of the artificial edge and a vertex of the candidate edge. In Fig. 3 these rays are drawn

as dotted lines starting at the vertices of the embedded artificial edge hz(al).

The next lemma, the proof of which we omit, gives us an upper bound for the

total number of kernel edges. It shows that it suffices to count only the AC edges for

establishing the P(n + r2) bound.

Lemma 2. The total number of kernel edges in 8% b’* is in f(n + r2 + t). ~herr t i.s

the total number of AC edges.

In order to count all AC edges we consider each embedding hj of the skeleton V”

and count the number of AC edges in hj(V*). Summing up over all embeddings yields

the total number of AC edges in &V?‘V*. To this end, let k be the number of artificial

edges of V* and let s be the number of all embeddings of V*. Recall that s (as well

as k) is in P(r), the number of reflex vertices.

The following lemma bounds the number of AC edges in a single embedding hi(V”).

96 0. Karch, T. Wahil Discrete Applied A4athematics 93 (1999) 89-108

Lemma 3. The number of all AC edges in embedding hj(V*) is in

(1)

Proof. This can be shown by considering how the visibility cells are created: each

pair consisting of an embedded artificial edge and a candidate edge induces a visibility

wedge. This wedge consists of all points that can see the candidate edge “through” the

embedded artificial edge. Fig. 3 shows the visibility wedges (drawn in light-gray) of

hz(V*) as an example.

It can easily be seen that each AC edge lies on the boundary of one visibility

wedge. Therefore, the complexity of the arrangement of the visibility wedges for all

artificial and corresponding candidate edges of hj(V*) gives us an upper bound for the

number of AC edges. When we take into account that each visibility wedge in h,J V*)

corresponds to a candidate edge in one of the sets Ci,j, for 1 <i < k, this complexity

is contained in the class stated in (1). 0

3.2. The total number of possible candidate edges

Since the number of candidate edges plays an important role in Lemma 3, we es-

tablish an upper bound for the total number of all possible candidate edges of cells in

d%?“*. To this end, let c be the set of all candidate edges for all artificial edges in all

embeddings of the skeleton V*, that is

Cl= U Ci,,j.

For the cardinality of c the following can be shown:

Lemma 4. In map polygons without holes or with only convex holes, the cardinality

0fC is in O(r).

Idea of Proof. Basically, this holds because at least one reflex vertex lies between

two consecutive candidate edges. For example, in Fig. 3 there are two reflex vertices

between edges el and e2. 0

If we assume that the sets Ci,j of candidate edges for a single embedding h,(V*) are

disjoint, 3 the sum CT=, ci,j is in O(Y) by Lemma 4 and using Lemma 3 we obviously

get an upper bound of Qr*) for the number of AC edges in a single embedding.

Furthermore, if we could expect that all sets Ci,j of candidate edges are disjoint, each

possible candidate edge of c could be assigned to exactly one visibility wedge and

the complexity of the arrangement of the O(IFI) visibility wedges in all embeddings

3 Note that this assumption does not hold if the map polygon is allowed to have holes.

Fig. 4. Assigning two candidate edges to two pairs of artificial edges.

of V” would also be bounded by cil(\c]‘) C: fi(v2). That is, we would have established

our desired bound of cf(r2) for the total number of AC edges. But unfortunately, this

assumption is not true, since the sets C,,i need not be disjoint as already noted in the

example in Section 2.3.

Therefore, we have to take a closer look at situations where one edge may serve as

a candidate edge in more than one embedding of I/*. In this context it is useful to

take puirs of candidate edges into account.

3.3. Pairs of possible cundidate edges

Although one possible candidate edge of c may be contained in more than one of

the sets Ci. ,, the following lemma shows that for one pair (e, f) E 5; x c of possible

candidate edges there exist at most one embedding hj and at most one pair of artificial

edges such that e and ,f are candidate edges for the two artificial edges in embedding

hj(V*). Informally speaking, each pair of candidate edges can be assigned to at most

one pair of visibility wedges.

Lemma 5. IIZ mup polygons mithout holes, the cmdinality qf the set

{(i~,k,j) / in # i2 A (e,f’) E Ci,., x G.,}

is at rno.st one, ,fiw ruery puir (e, f) E C x C.

Proof. Omitting the details and simplifying the situation, the argument is as follows:

assume that for a skeleton V* two pairs of visibility wedges exist that are induced by

the same pair (e,,f) of possible candidate edges. This situation is depicted in Fig. 4: the

skeleton V* has two embeddings hl and h2 such that the edge e determines a visibility

wedge for the artificial edges hl(al) and hz(ar). Analogously, f determines a wedge for

h,(al) and hl(a2). (Note that the lines yr and q2 and the visibility wedges are omitted

in the figure.) As e and .f’ must be visible “through” the embedded artificial edges,

there must exist lines of sight (drawn dashed in the figure) from the candidate edges e

and ,f’, respectively, to points inside the embeddings hl(V*) and hz(V*), respectively.

These lines intersect and create a circle (drawn in light-gray) that does not intersect

98 0. Kurch, 7: WahllDiscrute Applied Mathematics 93 (1999) 89-108

any map edge and contains at least one map vertex. Therefore, the map must have at

least one hole (drawn in dark-gray), which contradicts our assumption that the map

has no holes. q

Using the same idea as in this proof, it can furthermore be shown that for each

possible candidate edge e and for each embedding h,i, at most one artificial edge exists

such that e is a candidate edge in embedding hi(V*), which corresponds to the artificial

edge. lnformally speaking, in each embedding each candidate edge can be assigned to

at most one visibility wedge. This fact is expressed in the following lemma.

Lemma 6. In map polygons without holes, the cardinality of the set {i 1 e E Ci,j} is
at most one for every e E c und jbr 1 ,<j<s.

Now, we are able to show the O(r2) bound for the total number of AC edges. Using

(1) from Lemma 3, this number is in

This sum can be rewritten as
s k s

and applying Lemmas 5 and 6 yields

j=l

Using Lemma 4 and the fact that s E O(Y), this number is in G(rJCJ + lc12) C O(r*).

Summarizing our results, we get the following theorem.

Theorem 7. The total complexity of any equivalence class for a map polygon without
holes is in fl(n + r2).

In the case of many reflex vertices (i.e., Y E O(n)) this yields the same bound as

[5]. However, the dependence on the number of reflex vertices is now expressed more

clearly. For example, if the number of reflex vertices r is bounded by O(G), the

complexity of an equivalence class depends only linearly and not quadratically on the

total number n of map vertices.

3.4. Eflects on the preprocessing costs

Using Theorem 7 and the same arguments as in [5], the time and space bounds for

the preprocessing (see Section 2) can be sharpened from O(n4r) to O(n2r . (n + r2)).

0. Ktrrch, T. Wuldl Disc’retr Applied Mtrthmmic..~ 93 11999) X9-108

3.5. A bcorst-case rxample

Consider the map polygon shown in Fig. 3, which can be looked at as a corridor

with large niches on one side and small niches on the other side. If we insert additional

collinear candidate edges e; and additional large niches I?~(V*), we get a map polygon

with Q(r) embeddings of V*, each with n(r) possible candidate edges for the artificial

edge ur in embedding h,(V*). If we scale the scene in an appropriate way, we can

achieve that each edge e, induces a visibility cell with skeleton V* in each embedding

h,(V*). Therefore, the total number of AC edges of all visibility cells equivalent to

V* is in n(r’). Furthermore, by appropriately inserting additional points to V’ we can

achieve that the number of kernel edges is in O(n).

Therefore, we get a total complexity of 9(n + r-‘) for the equivalence class of the

skeleton V’ for this worst-case example.

The above results only hold for map polygons Gthout holes. That is, no free-standing

obstacles are allowed in the robot’s environment. For map polygons with holes, the

bounds become worse (see [5,6]). But for the special case of map polygons with I

convex holes, an upper bound of P(n + (I + 1)~‘) for the worst-case complexity of an

equivalence class can be proven.

The idea for establishing this bound is essentially the same as in the case without

holes: as in that proof, it can be shown that the cardinality of the two sets defined

in Lemmas 5 and 6 is at most 1 (instead of one). Again, this is done by introducing

lines of sight from points inside the embedded skeletons to the candidate edges and

counting the number of created holes.

4. Problems in realistic scenarios

The idealizing assumptions of the method described in Section 2 prevent us from

using it in realistic scenarios, as we encounter several problems:

l Realistic range sensors do not generate a visibility polygon Y as assumed for

the method, but only a finite sequence Y of SUM points (usually, measured at

equidistant angles). Furthermore, these scan points do not lie exactly on the robot’s

visibility polygon, but are perturbed due to sensor uncertainties. An example is

depicted in Fig. 5, which shows the exact visibility polygon and a (simulated)

noisy scan for a robot standing in the left niche of Fig. 1. Even if we connect

the scan points by straight-line segments, we only get an approximation Y + of the

robot’s exact visibility polygon Y ‘.

l For the localization process we assume that we already know the exact orientation

of the robot. But in practice this is often not the case, and we only have inexact

knowledge or no knowledge at all about the robot’s orientation.

100 0. Karch, T. Wahll Discrete Applied Mathematics 93 (1999) 89-108

Fig. 5. Exact visibility polygon (left) and noisy scan (right)

There may be obstacles in the environment that are not considered in the map

and which may affect the robot’s view. For example, furniture that is too small to

be considered for map generation or even dynamic obstacles like people or other

robots.

Realistic range sensors have a limited sensing range and obstacles that have a greater

distance to the robot cannot be detected.

The consequence is that the (approximated) visibility skeleton P$, which the robot

computes from its approximated visibility polygon V&, usually does not match any

of the preprocessed skeletons exactly. That is, the robot is not able to determine the

correct equivalence class, and the localization process completely fails.

5. Adaptation to practice

Our approach to tackling these problems is, for a given range scan Y (from the

sensor), to search for the preprocessed skeleton that is most simihr to the scan. For

modeling the resemblance between a scan Y and a skeleton V* we use an appropriate

distance function d(Y, V*). Then, instead of performing an exact match query as in

the original algorithm, we carry out a neurest-neighbor query in the set of skeletons

with respect to the chosen distance function d(Y, V*) to find the skeleton with the

highest resemblance to the scan.

Depending on the distance function, we then additionally have to apply a matching

algorithm to the scan and the skeleton in order to determine the position of the robot.

The reason is that not all methods for determining a distance measure yield an optimal

matching (i.e., a translation vector and a rotation angle) as well. Consider, for example,

the algorithm for computing the Arkin metric [2] for polygons, which, besides the

0. Kurch, T Wulzll Discretr Applied Mutlwnutics 93 i 1999) X9-/0X 101

distance measure, only provides the optimal rotation angle and no translation vector.

In contrast to this, algorithms for computing the mininwn Hausdorff distance (under

rigid motions) [l] provide both, the distance measure and the corresponding matching.

5.1. Requirements to the distance jimction

In order to be useful in practice, a distance function d(.Y, V*) should at least have

the following properties:

Continuity). The distance function should be continuous in the sense that small

changes in the scan (e.g., caused by noisy sensors) or even in the skeleton (e.g.,

caused by an inexact map) should only result in small changes of the distance. More

precisely: Let d.~(91,91) and dl,* (VT, V;") be functions that measure the resemblance

between two scans 9’1 and .!Yz and between two skeletons VT and VT, respectively.

An appropriate reference distance measure for d Cl (.‘Y’I, ,‘/‘I) and dl- (VT, VT) is, for

example, the Hausdorff distance (see Section 6.1).

The distance d(,Y, V*) is said to be continuous ,i,ith rrspect to stuns if

~,.>03~>0 : d:/(,Y’,,,‘y2) < ii + Id(.Y,, V*) ~ d(.u2, V-)1 < c

holds, for all scans Yi,Y2 and all skeletons V*. Analogously, cl’(,Y’, V*) is said to be

continuous ,\?tll respect to skeletons if

~,:>o&>o : dl,.(V;, V;) < 6 + ld(.C/‘, V;) - d(.Y’, I’;)1 < i:

holds, for all skeletons VT, V;” and all scans 9’.

The requirement of continuity is also motivated by the fact that particularly the

classification of the edges of the visibility polygon into different types (spurious edges,

partially visible edges, etc.) makes the original method susceptible to perturbations:

even a small translation of a vertex can change the type of an edge which yields a

skeleton that does not match any equivalence class. In this sense, the exact match

query of the original method can also be interpreted as a discrete distance between

a visibility polygon and a skeleton, which, however, strongly violates the continuity

requirement, because it takes only two values (e.g., 0 - “match” and 1 - “no match”).

Similarity preservation. A skeleton V * that is similar to .Y should have a small

distance value d(Y, V*). Otherwise, the distance would not give any advice for finding

a well-matching skeleton and therefore be useless for the localization algorithm. In

particular, if we take a scan .Cf from a point p whose skeleton equals V*, we want

the distance d(,Y’, V*) to be zero or at least small, depending on the amount of noise

and the resolution of the scan.

Translational incariance. As the robot has no knowledge about the relative position

of the coordinate systems of the scan and the skeleton to each other, a translation

of the scan or the skeleton in their local coordinate systems must not influence the

distance. Rather finding this position is the goal of the localization algorithm.

Rotational invariance. If the robot does not have a compass, the distance must also

be invariant under rotations of the scan (or the skeleton, respectively).

102 0. Kurch, T Wuhll Discrete Applied Muthrmatics 93 (1999) 89-108

Fust computability. As the distance d(Y, V*) has to be determined several times for

a single localization query (for different skeletons, see Section 5.2), the computation

costs should not be too high.

As we do not want to compare a scan with all skeletons to find the skeleton with

the highest resemblance (remember that their number can be in R(n*r*), see Section

2.1) the skeletons should be stored in an appropriate data structure that we can search

through efficiently.

5.2. Maintaining the skeletons

For this purpose we can use the monotonous bisector tree [8], a spatial index that

allows to partition the set of skeletons hierarchically with respect to a second distance

function D(Vy, VT) that models the resemblance between two skeletons Vf and VT.
The set of skeletons is recursively divided into clusters with monotonously decreasing

cluster radii in the preprocessing step. This division then represents the similarities of

the skeletons among each other.

The distance function D(VT, VT) should be chosen “compatible” to the function

d(Y, V”), such that in the nearest-neighbor query not all clusters have to be investi-

gated. That is, at least the triangle inequality

d(Y, V;) ,< d(Y, V;) + D(V;, V;)

should be satisfied. This way, we can determine lower bounds for the distance values

d(Y, V*) of complete clusters, when traversing the tree. Such a cluster can then be

rejected and does not have to be examined.

6. Suitable distances for d(Y, V*)

It is hard to find distance functions that have all the properties from Section 5.1.

Particularly, the fifth requirement is contrary to the remaining ones. Moreover, it is

often not possible to simply use existing polygon distances, because in our problem

we have to cope with scans and skeletons instead of polygons. Therefore, a careful

adaptation of the distance functions is almost always necessary. In the following we

investigate two distance functions, the Hausdorff distance and the polar coordinate

metric, and illustrate the occurring problems.

6.1. The Hausdorff distance

For two point sets A, B C R*, their Huusdorff distnnce &A, B) is defined as

6(A,B):=max{@A,B),$(B,A)},

where

0. Kurch, T. Wuhli Discrete Applied Muthemutics 93 (1999) 89-108 103

is the directed Huusdorfs distance from A to B, and I/ . 11 is the Euclidean norm.

Accordingly, the term &A, B) stands for the maximum distance of a point from A to

the set B.

Let X be the set of all Euclidean transformations (i.e., combinations of translations

and rotations). The undirected and directed minimum Huusdotf distances with respect

to these transformations are defined as

&,,,(A, B) := ;I$ 6(A, t(B)) and 6;ni,(A, B) := 1’2; $A, t(B)).

It can easily be shown that the minimum Hausdorff distances are continuous and by

definition also fulfill the third and fourth property of Section 5.1. But their computation

is very expensive. According to [I], this can be done in time ci((ms)4(m+s)log(m+s))

if m is the complexity of the scan and s is the complexity of the skeleton. This is

surely too expensive in order to be used in our application.

On the other hand, the computation of the Hausdorff distance without minimization

over transformation application is relatively cheap [I], namely in IQ((m+s)log(m +s)).

The property of continuity is also not affected, but we now have to choose a suitable

translation vector and a rotation angle by hand.

An obvious choice for such a translation vector for a scan .Y and a skeleton V*

is the vector that moves the scan origin (i.e., the position of the robot) somewhere

into the corresponding visibility cell %?:I,* (e.g., the center of gravity of @ID). This is

reasonable, because by the definition of the visibility cells, exactly the points in % IJa

induce the skeleton V*. Of course, the consequence of doing so is that all cells with

the same skeleton (e.g., the big cells in the two outermost niches in Fig. 1) must be

handled separately, because the distance d(Y, V*) now does not only depend on V*,

but also on the visibility cell itself. 4 Besides, their intersection may be empty and we

might not find a common translation vector for all cells. Of course, the bigger the cell

is that the scan has to be placed into, the bigger is the error of this approach, compared

with the minimum Hausdorff distance.

A compromise for computing a good matching, which does have the advantages

of the previous algorithms, is using an approximate matching strategy, which yields

only a pseudo-optimal solution. This means, the algorithm finds a transformation t E .T

with &A, t(B)) d c . &,,,(A, B), for a constant c 3 1. Alt et al. [11 showed that for any

constant c > 1 an approximate matching with respect to Euclidean transformations can

be computed in time Cr(m.~log(ms)1og*(m.~)) using so-called reference points. If we

only want an approximate matching with respect to translations instead of Euclidean

transformations, the time complexity would even be in Ci’((m + s)log(m + s)).

Another point to consider is that a skeleton (interpreted as a point set) in general is

not bounded, because it includes a straight line for each artificial edge. The result is

that the directed distances c?(V* , 9) and &,,,,(V*, .Y) almost always return an infinite

a In this case, the notation d(JF. V*) is a bit misleading, since there might exist several cells that have

the same skeleton V”. To be correct, we should use the notation d(.‘/.%v-), where the dependence of

the distance from the cell is expressed more clearly. But we will use the easier-to-understand expression

d(.‘/‘, V*).

104 0. Karch. T. Wuhll Discrrte Applied Muthemutics 93 (1999) 89-108

Fig. 6. The function pcf,(cp) and its linear approximation for the polygon P

value (except for the trivial case when V* equals the convex map polygon and has no

artificial edges). Therefore, we must either modify the skeletons or we can only use

the directed distances $(Y, V*) and Jmin(Y, V*). Note that if we pursue the second

approach, the distance &i,(Y, V*) is also similarity preserving, provided that the res-

olution of the scan is high enough such that no edge, in particular, no artificial edge, is

missed.

6.2. The polar coordinate metric

A more specialized distance for our problem than the Hausdorff distance is the

polar coordinate metric (PCM for short) investigated by Wahl [IO], which takes a

fundamental property of our problem into account: all occurring polygons are star-

shaped in the following sense, and we even know a kernel point:

l The approximate visibility polygon %‘$y (generated from the scan points) is star-

shaped by construction with the origin as a kernel point.

l Every skeleton V* is star-shaped in the sense that from every point in the cor-

responding visibility cell %?v* all full edges are completely visible, and for each

artificial edge ai a part of the corresponding straight line gi is visible (cf. the defi-

nition of the kernel of a skeleton in Section 3.1).

To compute the PCM between two (star-shaped) polygons P and Q with kernel points

PK and qK we first define the value of the polur coordinate function (PCF):

as the distance from the kernel point pi to the intersection point of a ray starting at

PK in direction cp with the boundary of P. That is, the function pcf,(cp) corresponds

to a description of the polygon P in polar coordinates (with PK as the origin) and is

periodical with a period of 29~. Fig. 6 depicts the PCF (drawn in black) for a star-

shaped polygon as an example. In the same way we define the function pcfp(q) for

the polygon Q.

Then, the PCM between the polygons P and Q is the minimum integral norm be-

tween the functions pcf, and pcfQ in the interval [0,2x] over all horizontal translations

between the two graphs (i.e., rotations between the corresponding polygons):

2n

W-,(cp pt)- N'QW)2dv. (2)

For a fixed kernel point the function pcf, is continuous in cp except for one special

case: when we move a vertex of a polygon edge such that the edge becomes collinear

to PK, the function pcf, has a discontinuity at the corresponding angle, the height of

which represents the length of the collinear edge. Moreover, the PCF is also continuous

in the sense of the definitions in Section 5.1 with respect to translations of the polygon

vertices or translations of the kernel point unless this special case occurs. But as pcf,

and pcft, may have only finitely many such discontinuities, the integration makes them

continuous with respect to all translations of polygon vertices and translations of the

kernel points, provided that P and Q remain star-shaped with kernel points PK and qK.

It can easily be seen that the PCM fulfils the continuity requirement of Section 5.1.

if the kernel points are considered as a part of the polygons (i.e., part of the inp~r of

the PCM). This means that, given two polygons P and Q and an c > 0, we can find

a 6 > 0 such that Ipcm(P, Q) - pcm(P’,Q)I < I:, f or all polygons P’ that are created

from P by moving all vertices and the kernel point PK by at most 6. Moreover, if the

kernel points are not considered as input of the PCM (that is, they are computed from

P and Q by the algorithm that computes pcm(P,Q)), the PCM is continuous as well,

provided that the kernel points depend continuously on the polygons. For example,

the center of gravity of the kernel of a polygon P depends continuously on P and

can be used as a kernel point PK, whereas the left-most kernel point does not depend

continuously on the polygon.

Wahl [IO] showed that the function pcm(P,Q) is a polygon metric, provided that

the kernel points are invariant under Euclidean transformations. That is, if pX denotes

the kernel point of a polygon P’ = t(P) for a transformations t E .F, the equality

t(pK) = pk must hold, for all polygons P and all t E .8. For example, the center of

gravity of the kernel of the polygon has this property.

Furthermore, a linear approximation of the PCM is introduced, which also has all

metric properties and is sufficient for our applications. This approximation is depicted

in Fig. 6: the points corresponding to a polygon vertex and the local minima of the

PCF are connected by straight-line segments (drawn in gray) to get a modified PCF.

The minimum integral norm is then defined like in the non-approximated version of the

PCM (see Eq. (2)). Following an idea of Arkin et al. [2], the actual computation of the

minimum integral norm between the two piecrt~isr linear functions can now be carried

out much faster than the computation of the original PCM: Arkin et al. compute the

minimum integral norm between two pircr~sise constant functions in time c(pq). This

idea can be generalized to compute the approximated PCM in time c’(pq (p + y)),

where p and q stand for the complexities of the two polygons. Of course, if we do

not want to minimize over the rotations, the computation time is only in cf (p f y),

even for the non-approximated version.

106 0. Karch. T. Wahll Discrete Applied Mathematics 93 (1999) 89-108

If we want to use the PCM as a distance function d(Y, V*) we need corresponding

star-shaped polygons for Y and V*:

l For the scan, we choose the approximated visibility polygon “Y;,, which is

star-shaped by construction. Again, the coordinate origin can be used as a ker-

nel point.

l For generating a polygon from a skeleton V* (with corresponding cell %?v*), we

choose a point c inside the cell %?v* (e.g., the center of gravity) and determine the

visibility polygon $$ of this point. By construction, c is a kernel point of V$.

With this choice we yield the following theorem about the polar coordinate metric as

a distance function.

Theorem 8. The distance Jimction d(Y, V*):=pcm(Y~,$$), with $GY and YC as de-

fined above, jiiljills the following requirements from Section 5.1: continuity, invariance

against translations and rotations, and fast computability.

Note that the PCM is not similarity preserving: if the point c chosen above for com-

puting a corresponding polygon for a visibility cell %? does not equal the robot’s posi-

tion, the two polygons that are compared by the PCM are different and their distance

value cannot be zero. But in practice, the visibility cells usually are not too large. That

means, if we take a scan at a position p E W, the distance from p to the corresponding

point c E %’ is not too large. Thus, the approximated visibility polygon YY and the

visibility polygon Yc differ not too much, and the value of pcm(yy, Yc) is small.

7. Implementation and first experimental results

We have implemented the two versions of the localization algorithm in C++ us-

ing the LEDA Library of Efficient Datatypes and Algorithms [7], namely the original

method described in Section 2 for exact sensors as well as the modification for realistic

scenarios introduced above. Here, the original algorithm was modified and simplified

at some points, since we did not focus our efforts on handling sophisticated but rather

complicated data structures and algorithmic ideas that were suggested by Guibas et al.

Rather, we wanted to have an instrument to experiment with different inputs for the

algorithm that is reasonably stable to be used in real-life environments in the future

and that can serve as a basis for own modifications. A consequence is that the pro-

gram does not keep to all theoretical time and space bounds proven in [5,6], as this

would have required a tremendous programming effort. Nevertheless, it is reasonably

efficient. Fig. 7 shows a screen shot of our robot localization program ROLOPRO, which

is processing a localization query for a (simulated) noisy scan.

As distance function d(Y, V*) we have implemented the Hausdorff distance and the

polar coordinate metric described in Section 6. First tests in small scenes have shown a

success rate of approximately 60% for the Hausdorff distance, i.e., the scan origins of

0. Kurch, T. Wuhl I Discrrte Applied Mutlxwtrtic~s 93 (I 999) 89-108 107

ientlfyrng reflex and nonr

xating visibility cell d

imber of rays shot: 131

-eating Subdivision Graph 1
rting adjacent edges __.

iking face Info done.

sking skeletons __. done.

Id of Preprocessing

Fig. 7. Screen shot of ROLOPIW

about 60 out of 100 scans were inside that cell with the smallest distance to the scan.

In the same scenes the success rate of the polar coordinate metric was about 90%.

8. Future work

Currently we are

lation software and

robots.

testing our approach described in the last sections with our simu-

we are going to evaluate it in two different scenarios for service

Our main goals for the future are:

l We are going to implement the efficient skeleton management described in Sec-

tion 5.2 to improve the running time of a localization query. As distance function

D(V;, VT) we can again use the polar coordinate metric, which also satisfies the

triangle inequality required above.

l For better results the distance functions can be further modified, or even new dis-

tances may be investigated. For example, the translation vector in Section 6.1 or

the kernel points in Section 6.2 can also be chosen using other strategies to fur-

ther improve the quality of the localization. Moreover. the approximate matching

I08 0. Kurch, T. Wuhll Discrete Applied Muthwnatic.~ 93 (1999) 89-108

strategies for the Hausdorff distance as well as for other distances may be imple-

mented.

l We want to make the algorithm robust also against small occlusions (e.g., caused

by chairs, desks, or small dynamic obstacles). This can be achieved by modifying

the distance functions or preprocessing the scans.

Another goal is to implement the matching algorithm (see Section 5), which eventu-

ally determines the position of the robot from the scan and the skeleton with highest

resemblance to the scan.

Acknowledgements

We gratefully acknowledge helpful comments given by Rolf Klein, Hartmut

Noltemeier, Sven Schuierer, and Knut Verbarg. This research is supported by the

Deutsche Forschungsgemeinschaft (DFG) under project numbers No. 88/14-l and No.

88/14-2.

References

[I] H. Ah, B. Behrends, J. Blamer, Approximate matching of polygonal shapes, Ann. Math. Artif. Intell.

13 (1995) 251-265.

[2] E.M. Arkin, L.P. Chew, D.P. Huttenlocher, K. Kedem, J.S.B. Mitchell, An efficiently computable

metric for comparing polygonal shapes, IEEE Trans. Pattern Anal. Mach. Intell. I3 (1991) 209-216.

[3] I.J. Cox, Blanche ~ an experiment in guidance and navigation of an autonomous robot vehicle, IEEE

Trans. Robot. Automat. 7 (2) (1991) 193-204.

[4] G. Dudek, K. Romanik, S. Whitesides, Localizing a robot with minimum travel, Proc. 6th Annual

ACM-SIAM Symp. on Discrete Algorithms (1995) 437-446.

[5] L.J. Guibas, R. Motwani, P. Raghavan, The robot localization problem, in: K. Goldberg, D. Halperin,

J.-C. Latombe, R. Wilson (Eds.), Algorithmic Foundations of Robotics A.K. Peters, 1995, pp. 269

-282. http://theory.stanford.edu/people/motwani/postscripts/localiz,ps.Z.

[6] 0. Karch, A sharper complexity bound for the robot localization problem, Technical

Report No. 139, Department of Computer Science I, University of Wiirzburg, June 1996.

http://wwwinfo I .informatik.uni-wuerzburg.de/publications/karch/tr139.ps.gz.

[7] K. Mehlhom, S. Naher, LEDA - a platform for combinatorial and geometric computing, Commun.

ACM 38 (1995) 966102. http://www.mpi-sb.mpg.de/guide/staff/uhri~ledapub/repo~s/leda.ps,Z.

[8] H. Noltemeier, K. Verbarg, C. Zirkelbach, A data structure for representing and efficient querying

large scenes of geometric objects: MB*-trees, in: G. Farin, H. Hagen, H. Noltemeier (Eds.), Geometric

Modelling, Computing Supplement, vol. 8, Springer, Berlin, 1993, pp. 21 l-226.

[9] S. Schuierer, Efficient robot self-localization in simple polygons, in: 0. Karch, H. Noltemeier,

K. Verbarg (Eds.), 13th European Workshop on Computational Geometry (CC ‘97) University of
Wiirzburg, 1997, pp. 20-22.

[IO] Th. Wahl, Distance functions for polygons and their application to robot localization (in German),

Master’s Thesis, University of Wiirzburg, June 1997.

[I I] C.M. Wang, Location estimation and uncertainty analysis for mobile robots, in: I.J. Cox, G.T. Wilfong

(Eds.), Autonomous Robot Vehicles, Springer, Berlin, 1990.

