Strengthening Properties
using Abstraction Refinement

Mitra Purandare Thomas Wahl Daniel Kroening
Computer Systems Institute Computing Laboratory Computing Laboratory
ETH Zurich Oxford University, U.K. Oxford University, U.K.
mitra.purandare@inf.ethz.ch thomas.wahl@comlab.ox.ac.uk daniel.kroening@comlab.ox.ac.uk

Abstract—Model Checking is an automated formal method for supplied by the user substantially improves the model dhgck
verifying whether a finite-state system satisfies a user-spfied result, as it increases the certified knowledge about thigules
specification. The usefulness of the verification result demds In this paper, we present an algorithm that, given a for-

on how well the specification distinguishes intended from no- o
intended system behaviorVacuity is a notion that helps formalize mula¢ and a modelV/ satisfying¢, checks whether a stronger

this distinction in order to improve the user's understanding of ~ Satisfying formula can be obtained féf. The algorithm does
why a property is satisfied. The goal of this paper is to expose so by replacing ing a maximal number atomic subformula

vacuity in a property in a way that increases our knowledge othe gccurrences from some candidate €eby a constant expres-
design. Our approach, based on abstraction refinement, compes gjnn that strengthens the overall formula. In the simplasec

a maximal set of atomic subformula occurrences that can be C is iust th t of all atomi bf | f
strengthened without compromising satisfaction. The reshi is a Is just the set of all atomic subformula occurrences)o

shorter and stronger and thus, generally, more valuable prperty. ~We first describe a principal strategy that explores possibl
We quantify the benefits of our technique on a substantial sevf ~replacements in order to compute a strongest formula. Sacce

circuit benchmarks. or failure in verifying candidate formulas guides the skarc
towards the optimal solution.

We then enhance the principal strategy by exploiting coun-

Model Checkings an automated technique to verify whetheferexample information of a failed model checking run. If a
a finite-state design complies with a property given as @ndidate formula is too strong, we use a path witnessing
temporal logic formula. For certain types of propertiesisit the fajlure to narrow the search space before identifying ne
possible to compute a witness or a counterexample, atlestgndidates. This approach can be seen as an instance of
to their satisfaction or violation. In general, howeverctsu counterexample-guided abstraction refinement [5], agpte
evidence cannot be succinctly presented, such as in ordepfgperties. The result is a maximally strengthened formula
confirm a property that universally quantifies over all akalv shown to hold (or, dually, a weakened formula shown to
executions. fail) on a given model. We demonstrate the efficiency of the

This lack of evidence not Only diminishes the VeriﬁcatiOIa_pproach using a Signiﬁcant set of hardware benchmarks.
engineer’s confidence in the model checking result, but can

also cause errors to go undetected. For example, Beatty &flated Work
Bryant observed that the LTL property(req — F ack)is A variety of vacuity notions have been proposed in the
satisfied by a model that never assessg [1], which is likely Jiterature. Among the earliest, [3] and [2] introduce synta
not intended. Intuitively, a formula holdsacuouslyif it does tic vacuity, i.e., vacuity with respect to subformulas awed t
so for “unintended reasons”, as in the above case of antetedgibformula occurrences, respectively. Efficient alganishfor
failure. Vacuous satisfaction usually indicates a flaw ie thsyntactic vacuity detection for CTL are given in [6]. The
design or the property and should be reported to the user. semantic notions of vacuity in [4] for LTL are extended to
Formalizing this intuition of vacuity turned out to be chalCTL* in [7] and to RELTL in [8]. A detailed discussion
lenging; numerous strategies have been investigated[@.,d. on the ramifications of the various notions of vacuity can
[3], [4] and others). All these notions have in common thaje found in [9]. A temporal logic query based approach
the satisfaction of the formula is invariant under certaimdm to vacuity detection is presented in [10]. Vacuity detettio
ifications to the formulaformula vacuity[3]) or the design in the framework of SAT-based bounded model checking is
model ¢race and structure vacuitj4]). Invariance under such addressed in [11].
modifications provides hints where the formula can possibly Closest to our work, Gurfinkel and Chechik presenttual
be strengthened without causing it to fail on the given desigyacuity [12]. The objective is to find a maximum set of
Reporting the satisfaction of a formula stronger than the ofiteral occurrences that can be simultaneously replacefdity

_ _ _ _ without causing the property to fail. The authors propose an
This research is supported by the Semiconductor Researcpof@ton

(SRC) under contract no. 2006-TJ-1539, by the EU FP7 STREBEIOTES €XPonential-time multi-valued model checking algorithon t
(project ID ICT-216679), and by the EPSRC project EP/G026R5 detect mutual vacuity. We provide a solution to this problem

I. INTRODUCTION

Level 3 false

for which a two-valued model checker suffices, as they are
typically available in industry. Our algorithm is similan i / ¢\

spirit to the one proposed by Chockler and Strichman [13], fevel 2 e o Greve)
[14]. They propose an iterative algorithm at the automaton

: Level 1 FGa VvV Xb FGa VvV GF(b V ¢) Xb V GF(b V ¢)
level, which hides literals in the automaton and iteragivel
adds back aminimum number of literals that give rise to Level 0 o v GF (b v &)

the counterexample. The second step requires solving an NP-
complete problem (minimum hitting set). In contrast, we Fig. 1. Formula lattice foFGa v XbV GF(bV c)
address the problem at the formula level and systematically

exploit the relationship between candidate formulae, twhic) .
allows for a much more cost-effective solution. Moreover, 1hroughout the paper, we writ€' for the set of atomic

we use counterexample traces to eliminate many candldﬁi@formma occeurrences under consideration for replaneme
formulaswithout model-checking the entire design. in ¢. As usual,2™ denotes the power set @f. GivenY” C
A recent approach by Chockler et al. determinvesuity C, we write ¢y for the formula obtained by replacing the

valuesover paths in}M, in order to compute the strongesPecurrences i by L. Thus, ifY = {y1,...,y.}, then
formula that satisfies\/ and lies in the Boolean closure of by = olyr — L, ... yn — L].
the strengthenings of the original property [15]. Althoubk

approach finds formulas stronger than mutual vacuity dees, i HI. AL ATTICE OF FORMULAE

complexity seems impractical for large formulas. Kupferman and Vardi present an efficient way of tightening
a formula by replacing a single occurrence of a subformula by
1. PRELIMINARIES L [2]. We first observe that the more occurrences are replaced

by L in ¢, the stronger the resulting formula:

Model checking is a technique to verify a finite-state model Theorem 1:For two formulaesy and ¢x such thaty” C
of a system against a user-specified property [16]. A prgperk C C, ¢y — ¢x is valid.
is typically given in atemporal logi¢c we focus in this paper The set{¢, : Z C C} of formulae obtained by re-
on the linear-time logic LTL [17]. LTL model checking isplacing certain subsets of occurrences Ghby | forms
worst-case exponential in the size of the formula. In cagecomplete lattice, with the partial order relation given by
of a failing property, a model checker can provide a finitely, C ¢y iff Y C X. Let this formula lattice be denoted
representableounterexampleevidencing the failure. In this py .. The top and bottom elements fare ¢°"9 = ¢ (all
paper, we first transform every LTL formula inteegation occurrences irC' replaced byl) and¢ (no occurrences i
normal form where the Boolean negation operatoroccurs replaced byl), respectively. Givem := |C|, the height of the
only immediately in front of atomic propositions. lattice isn + 1; its width is the binomial coefﬂmen((1)

A partially ordered sef("poset”) (L, C) is a setL together The upward closure of an elemepy € L is Uxcy ¢x-
with a reflexive, transitive and anti-symmetric binary tila The level of ¢y € L is |Y], i.e., the number of literal
C; we say the elements ot are ordered according toC. occurrences i that are replaced by .. Theweight imbalance
Let B C L. An elementy € L is anupper boundfor B if of ¢y is the absolute value of the difference between the
for everys € B, s C y. Further,y is aleast upper bound size of its upward and downward closure. gkoup is an
for L if y C o' for every upper bound/ of B. Lower antichain in L containing elements at the same level. The
bound and greatest lower bound are defined analogouslyupper (lower) weighof a group with level in L is the number
lattice is a poset(L,C) such that every non-empty finiteof elements in all groups with level greater than (less than)
subsetB C L has a least upper bound and a greatest lowghe weight imbalance of a group iis the absolute value of
bound. Acomplete latticeis a poset(L, =) such that every the difference between the upper and the lower weight of that
subsetB C L has a least upper bound and a greatest lowgfoup. A lattice element with minimum weight imbalance is
bound. Finite lattices are complete. Fig. 1 shows a complefgid to bebalanced A balanced grougs defined similarly.
lattice. A chain (antichair) is a set of pairwise comparable As an example, the lattice for the formui&a v XbV GF (bV
(pairwise incomparable) elements bf The heightof a lattice ¢), with C = {a,b,bV ¢}, is given in Fig. 1. Our goal is to
is the cardinality of the biggesthain The subsets of a finite compute a top-most element? in L that is satisfied by\/.
set X, partially ordered by the subset relatisny form the Various properties of the formula lattice can be exploitdulev
subset latticeof X. Given a lattice (L,C) and a subset searching for such an element.
B C L, the (reflexive) upward closureof B is the set Lemma 1:For any formulaa € L satisfiedby M, ¢t°r
UC(B) = {e € L|3b € B.b C e}; note thatB C UC(B). belongs toUC(a). For any formulag € L not satisfiedby
The (reflexive) downward closur®C' is defined analogously. A7, UC/(3) does not contain any formula satisfied by.

Notation: For a subformula occurrengeof a formulag, Given o, the lemma allows us to restrict attentiondts up-

we write ¢[¢ «+ L] to mean the result of replacingin ¢ by ward closure, which can reduce the set of candidate sokition
true if ¢ is immediately preceded by a negation (which impliegrastically. Analogously, giver, the upward closure off
that ¢ is an atomic proposition), and bylse otherwise. can beeliminated An algorithm to compute’°? shrinks the

solution space after every model checking run, directirgy titlgorithm 2 Property Strengthening Using Binary Search

algorithm towards the solution. We now show in more detaBINARY-LATTICE-SEARCH(M, L)

how to search through the lattice, with the goal of verifyingnput: Model M with M [¢, formula lattice L (unmarked)

againstM as few times as possible. Output: a strongest lattice element satisfied k¥
Exhaustive Search through the LatticBince we are inter- 1: while true do

ested in a top-most element ib that is satisfied byM, a 2. if |L| =1 then // count unmarked elements

reasonable strategy is to start from the top of the latticd ans: return the unique element of the lattice

verify each elemenpy againstM (Algorithm 1). If M E ¢y, 4: end if

we have found atrongestpossible solution. M £ ¢y, the s Select a most balanced groype L

algorithm eliminated/C(¢y) (Lemma 1). Note that/C'(¢y) 6: Pick a most balanced unmarkeg < g

also includespy . We point out that the exhaustive technique 7: if M |= ¢y then
returns a maximum (not maximal) set of literal occurrences: return BINARY-LATTICE-SEARCH(M, UC(¢y))
that can be replaced with. 9: else
10: mark all elements inVC(¢y)
Algorithm 1 Property Strengthening Using Exhaustive Search: end if
EXHAUSTIVE-LATTICE-SEARCH(M, L) 12: end while

Input: Model M with M = ¢, formula lattice L (unmarked)
Output: a strongest lattice element satisfied ki

1 while true do using a specialized path checker, with a complexity that is

worst-case linear in the size of the formula.

2: Pick a top-most unmarked elem el
3 it M = ¢p then ant The counterexample test serves as a low-cost way to reduce
4 returr? & the set of candidate solutions in the lattice, compared ¢o th
5. else Y exponential cost of model checking every candidate.

) : We observe that the number of elements in the upward
6 mark all elements inJC (¢y) . : .
; end if closure of an element with levell; in L is less than the
g end while number of elements in the upward closure of an element with

level Hy in L where H; > H,. That is, verification against
the counterexample should be performed from bottom-to-top
in order to mark as many elements as possible.
The above strategy may have very limited benefits in
rms of the number of times path checking was performed
compared to the number of times the formula did not allow
the counterexample. The formulae at the bottom of the attic
&re weaker and hence, are harder to refute. But, if refuted, t
result in large reduction in the size of the lattice. Hence, w
ropose a strategy similar to binary lattice search to perfo

Binary Search through the Latticdf we select a formula
near the top ofZ, it is likely to be falsified since it is much
stronger than the original formula. If we select a formul?e
close to the bottom ofL, it is likely to be satisfied, but
it may not be a strongest element satisfying. A better
strategy, implemented by Algorithm 2, is therefore to sele
a most balancedyroup ¢ and a most balanced elemepy
within g. If M satisfiespy, there is a solution in the upward

closure of¢y (Lemma 1). In th!s case, th_e algorithm call he counterexample tests as well. Algorithm 3 implements
BINARY-LATTICE-SEARCH recurswely_ on this closure. _On(,:ethe strategy. The function IBARY-ELIMINATE is recursively
the numt_)er of unmarked eI(_aments in the current Ia_ttlce IS dalled until the formula at the middle of the lattice allows
the algorithm returns the unique element as a solution. the counterexample. Lines 6 and 10 in Algorithms 1 and 2,
respectively are replaced by a call toNBRY-ELIMINATE .
Computing a most balanced group and a most balanced
When M - ¢y, neither of the search strategies presentedement: If M [~ ¢y, the algorithm eliminates the upward
so far exploits counterexample information provided by thelosure ofpy and uses the counterexample to eliminate further
model checker. A counterexample pathis an inexpensive elements. When an element in the lattice is marked, the
guide to rule out any formula in the lattice that is not saifi weight imbalance of all the groups has to be recalculateis Th
along 7, since such a formula is not satisfied by the modegquires tracking the upper weight and lower weight of each
either. We say that a formula allows a pathr if 7 |= 1. group. The weights are updated for all groups each time when
Lemma 2:If a formulay € L is not satisfied byl and an element in the lattice is marked. The weight imbalance of
permits a counterexample path the formulae inL that do every individual element can be calculated on the fly using
not allow = can be discarded. the difference between the number of incoming and outgoing
That is, if some formula in the lattice does not allow a vali@édges as a rough indication of the imbalance.
path through the model, the upward closure of that formuta ca We demonstrate our lattice search algorithms 1 and 2
be discarded. Since a counterexample to an LTL property isvh and without binary elimination in Algorithm 3 using an
single finitely representable path, the test whether a ftamwexample. Consider the Kripke structuté in Fig. 2 and the
allows a counterexample can be performed very efficienthropertyFGaVvXbVGF(bVe). A formula lattice for the property

IV. GUIDED PROPERTYREFINEMENT

Algorithm 3 Eliminating lattice elements using counterexam- Level 3 false™

ple in Binary Search manner / ¢\

Level 2 FGa™ Xb* GF(bV c
BINARY-ELIMINATE (¢y, L) (bve)
Input: lattice elementy, lattice L — a0 foa VB To Xy GE Y o)
Effect: mark irrelevant lattice elements
1: let 7 be a counterexample witnessiag = ¢y Level 0 FGav Xb v GF(b v ¢)
2: while true do
3 mark all elements inUC(¢y) Fig. 3. Dynamic Lattice state after markifgC (FGa Vv Xb)
4 Select a most balanced groype L e
. alse
5: Let ¢y be a most balanced unmarked elemeng in
6: if 7 = ¢y then o GF(bV)
7: return;
8: end if FGa V GF(V)
9: end while

Fig. 4. State of Dynamic lattice in Fig. 3 after retainiti@” (FGaV GF (bVc))

U The most balanced elements in this leveléare= FGaV Xb
andvy, = FGa VvV GF(bV ¢). Let the algorithm seleap,. Since
M = 4, the algorithm now operates on tfiéC(¢3). The
algorithm select&F (b V ¢), which fails in M. The lattice has
only one unmarked element left, which F&a vV GF(b V ¢).
with C = {a,b,bV ¢} is given in Fig. 1. This formula is also the solution. The binary search reguire
EXHAUSTIVE-LATTICE-SEARCH: Without the coun- three calls to the model checker in total.
terexample test, the algorithm refuase, FGa, Xb, GF(bVc¢), SinceM = FGa, the counterexample to it can be exploited.
and FGa v Xb. The next candidate, i.eEGa vV GF(b Vv ¢) is Let the counterexample, be (515,)". The current balanced
the solution. Observe that the solution does not contain tl@el in the dynamic lattice is 1. Assume that the algorithm
redundant subformulb, indicating vacuity. selects the element, = FGa V Xb. The element), does not
When the top-most elemefilse is refuted, let the coun- allow 1. The algorithm marks/C(¢2). Fig. 3 illustrates the
terexampler; to it be (S;)™. The counterexample test utilizesstate of the dynamic lattice. The balanced level continoes t
7 to discard more elements. Assume that the algorithR® 1. The algorithm selects; = FGa vV GF(bV ¢) as a most
chooses the formula);, = FGa vV Xb as a most balancedPalanced element. The element allows the counterexample
element from the balanced level 1. The elementallows ™1 aborting the counterexample test. In the new dynamic
™ aborting the Counterexamp|e test. |attice,w3 is still a most balanced element. SInMél: s, the
Let the top-most element selected B6a and the coun- algorithm operates ob/C(vs). Fig. 4 illustrates the state of
terexampler, to it be (5;.54)". The most balanced element the lattice. Let the balanced element selecte@bg@Vc). This
does not allowr,. The algorithm marké/C(¢1). The current €lement is not satisfied by/. Thus, the new dynamic lattice
state of the dynamic lattice is shown in Fig. 3. The most batontains only one unmarked element which is the solution.

Fig. 2. Kripke structureM

anced element in the balanced level 1is= FGaV GF(bVc). Complexity Analysis: The number of model checking
Since the pathrm, allows 1, the counterexample test isfuns against\/ dominates the cost of our algorithms. This
aborted. number is maximal, for both search techniques, when the

The algorithm now select6F (b \ ¢) for which the coun- Property is not vacuous and no counterexample test eliesnat
terexamplens be (S;)*. The balanced level is still theany lattice element. In this case, for the exhaustive search
same. Let the most balanced element selectedheThe the number of runs against/ is about equal to the size
elementy, allows the pathrs aborting the counterexampleof the lattice. For the binary search, this number is about
test. The next top-most element in the dynamic lattice gfual oy %" (n72) which can be bounded from above by
1o and is the solution. Observe that the number of modelgn - (n"Q) This number is only a small factor larger than
checking calls against/ are reduced from six to four with the width of the lattice.
the counterexample test. The best case for the exhaustive search technique occurs

BINARY-LATTICE-SEARCH: Initially, level 1 and level 2 when the top-most formula in the lattice is satisfied kg
in the lattice are balanced. The algorithm selects, sayetred requiring only one model checking run. For the binary search
2. Assume further that the algorithm chooses the forlf@a algorithm, the best case occurs when none of the elements to
as the balanced element. Sinkk}~ FGa, the upward closure be verified againsd/ fail. The algorithm is recursively called
of FGa is marked disturbing the balance the lattice. The mosh ever smaller sublattices with the height halved in each
balanced level is shifted to level 1 in the lattice towards thteration. The algorithm performs abolsz n» model checking
solution. runs against\/.

Benchmark Ma,)fl'eil‘geﬁtt'ce T\,‘{;'C."Fr,‘r’gp’ Strengmjﬁi‘ng Level Tables Il and Ill illustrate the effect of counterexample
Chameleon 6 470 0 checks on the exhaustive and binary lattice search tecasfqu
_Lock 12 712 2 Both tables are sorted by the latch count of the designs,hwhic
Efsgctg)rg 120 29%1 ‘1‘ is a rough indicator of the hardness of the benchmarks. I bot
Heap 8 15/5 3 tables #LTL is the number of lattice elements checked against
Coherence 6 8/3 4 the complete design, i.e., calls to the LTL Model Checkét,
\S/lluz%% 2 Sﬁg 0 is the time taken for these calls, afotal is the total time. The
Matrix 12 1/0 0 time spent on the lattice operations such as finding the midd|
Needham(ns3) 9 20/8 2 of the lattice or finding the top of the lattice is denotedI\T.
TABLE | The number of times the counterexample test was performed

is given in column#CE. In the same column, the number
of counterexample tests that were successful, i.e., ezbidt
eliminating a lattice element, are listed%4SUC. The column
CE lists the time spent on the counterexample checks.

On average, some schedule of failing and satisfying modelBoth tables indicate that the number of successful coun-
checking runs will occur. We can estimate in this case th@rexample tests is considerably high. For the exhaustide a
number of candidate formulas in the lattice that get elinsida Pinary search technique, 62% and 81% of the counterexample
In the failing case, this number &, for a formula at level tests, respectively, were successful. This causes a feduct
k of the lattice, i.e., withk of the occurrences presert is in the number of LTL Model Checking runs, resulting in a
roughly the size of the upward closure of the lattice elemer€rformance improvement. Note, however, that combinireg th
which gets eliminated. In the satisfying case, the eliniomat counterexample test with the exhaustive and binary search
count is roughlym — 2*, since the upward closure istained Methods sometimeslegradestheir performance. As stated

rather than eliminated. In these estimates,is the current above, generating the counterexamples comes at a cost. In
cardinality of the (dynamic) lattice. the s1296 benchmark, the time spent by VIS in generating an
We emphasize that these estimates are affected by He¥P trace dominates the run time. For both techniques, _55—
many, and which, elements get eliminated by means of tR8% of the LTL model checking time was spent on generating
(inexpensive) counterexample tests, whose purpose is 10 iine counterexamples. This time is intrinsic to VIS and, legnc

prove convergence of the algorithms. Their success ratris hCannot be completely avoided. In our implementation, the
to predict. In the next section, we present empirical resuounterexample generated is read by VIS each time a lattice
quantify their benefit. element is checked against it. In the Lock benchmark, nearly

80% of the counterexample checking time is wasted in reading
the counterexamples back into VIS. The results obtained can
be further improved by implementing the presented tectesqu
In this section, we present experimental results obtainétside a model checker. The performance degradation in the
with our implementation of the proposed algorithingVe Eisenberg benchmark is the combined result of the reasons
have implemented the proposed lattice search techniquis bpentioned above.
with and without the counterexample test, using the modelAdding the counterexample test to the proposed search
checker VIS [18]. We use a significant subset of the Verildgchniques has significant benefits for the examples witietar
benchmarks released with VIS. The candidate3etontains candidate set’. The counterexample test is effective and very
all literal occurrences in a formula. Since the countergxam inexpensive for these benchmarks. The larger theCsethe
path is always finitely representable, the loop-free lemgthe larger the lattice and, hence, the larger the relative tiavings
counterexample is known. We can therefore use a boundéi¢e to a reduced number of expensive LTL model checking
model checker [19] from the VIS tool set to perform th&alls. On such benchmarks, we observed speedups of 30-50%.
counterexample test. In our benchmarks, we observe that a maximal strength-
Table | presents information about the properties used fPiNg is also a maximum strengthening. We conclude from
these benchmarks. The table lists the total numberasking the tables that t_he binary lattice search reduces the r_lumber
properties that were tested, and the number of properties ¢ Model Checking runs nearly by one order of magnitude.
ported to be vacuous. The table also lists the maximum heidt @ result, the binary search technique is consistentigrfas
of the formula lattice, indicating the size of the propestie than the exhaustive one. However, in the Lock benchmark,
The highest level in the lattice at which a solution was fourij€ observe that the time improvement is not proportional to
is also reported, indicating how many literal occurrencesew the reduction in the number of Model Checking runs. This

replaced byl without sacrificing satisfaction. We found aboutS Pecause the binary method selects formulae that arerharde
25% of the 104 properties checked to contain vacuity. than the ones selected by the exhaustive method. Nevesshele

PROPERTYCHARACTERISTICS

V. EXPERIMENTS

2The CPU times were measured on an 3 GHz Intel Xeon with 16 GB of
1The tool called Aardvark can be downloaded fromRAM running Linux. We use the optimized BDD variable ordesrthat ship
http://www.cprover.org/aardvark/. with the benchmarks.

Without CE test With CE test
Ex #LTL | LTL (min) | LAT (min) | Total (min) | #LTL | #CE (%SUC) | LTL (min) | CE (min) | LAT (min) | Total (min)
Chameleon 256 0.38 0.00 0.40 88 112 (42) 0.13 0.11 0.00 0.28
Lock 13543 29.38 8.40 40.40 515 2069 (80) 0.96 27.10 0.86 29.93
TicTacToe 1048 13.70 0.03 13.80 432 525 (26) 6.00 0.63 0.00 6.80
Eisenberg 24 1.73 0.00 1.73 24 15 (0) 2.05 0.31 0.00 2.38
Heap 416 1.43 0.00 1.45 158 200 (43) 0.53 0.18 0.00 0.78
Coherence 174 0.61 0.00 0.61 113 96 (19) 0.41 0.11 0.00 0.58
Viunc 4112 5.85 2.90 9.11| 1729 504 (63) 2.61 0.75 3.06 7.28
s1269 170 7.93 0.00 7.93 91 59 (52) 15.46 0.18 0.00 15.68
Matrix 4096 101.36 2.75 104.51 | 1590 309 (67) 39.53 0.38 1.53 42.35
Needham 2754 2637.33 0.11 2637.63 | 1809 500 (42) 1862.83 0.65 0.10 1864.41
TABLE Il

RESULTS FOREXHAUSTIVE SEARCH

Without CE test With CE test
Ex #LTL | LTL (min) | LAT (min) | Total (min) | #LTL | #CE (%SUC) | LTL (min) | CE (min) | LAT (min) | Total (min)
Chameleon 72 0.10 0.00 0.11 36 72 (50) 0.05 0.08 0.00 0.15
Lock 1833 2.76 0.78 3.80 119 1828 (93) 0.20 25.43 0.76 26.98
TicTacToe 270 3.60 0.01 3.63 159 263 (42) 2.20 0.31 0.01 2.60
Eisenberg 18 1.60 0.00 1.60 18 12 (0) 1.81 0.25 0.00 2.10
Heap 137 0.50 0.00 0.50 64 129 (56) 0.23 0.13 0.00 0.40
Coherence 56 0.20 0.00 0.20 46 48 (20) 0.16 0.06 0.00 0.25
Viunc 540 0.75 0.25 1.05 156 454 (84) 0.23 0.46 0.25 1.05
s1269 62 5.50 0.00 551 35 50 (54) 12.90 0.16 0.00 13.08
Matrix 534 13.25 0.25 13.56 217 342 (92) 5.40 0.35 0.25 6.16
Needham 613 687.03 0.03 687.11| 450 262 (62) 494.06 0.31 0.03 494.63
TABLE Il

RESULTS FORBINARY SEARCH (WINNING TIME PER BENCHMARK IN BOLD)

the total runtime is reduced in half. [5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,”"AAV. Springer,
VI. CONCLUSION 2000, pp. 154-169.

[6] M. Purandare and F. Somenzi, “Vacuum cleaning CTL fommyil in

i indi ; i At ; CAV. Springer, 2002, pp. 485-499.
VaCUItY indicates the inadequacy of a specification, or fsoin {?‘] A. Gurfinkel and M. Chechik, “Extending extended vacylity FMCAD.
to a design bug, and therefore needs to be addressed by the gpringer, 2004, pp. 306-321.

user. We provide an algorithmic way to expose the vacuityg] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, andW\Vardi,

to the user in the form of a strengthened and shorteneq ‘Regular vacuity” inCHARME Springer, 2005, pp. 191-206.
. . g . M. Samer and H. Veith, “On the notion of vacuous truth,” liPAR
formula. In order to achieve an efficient solution, we make™ gpringer, 2007, pp. 2-14.

two contributions: 1) we define a lattice of candidate foragul [10] ——, “Parameterized vacuity,” iffMCAD. ~Springer, 2004, pp. 322—
and devise a binary search strategy on this lattice, and 2) 336.

. . . . ﬁ J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik, gieiting
make use of refutations for failed model checking runs ireord™ " esoiution proofs to speed up LTL vacuity detection for BM®@

to reduce the search space. Our experimental results show FMCAD. [EEE Computer Society, 2007, pp. 3-12.
that on hard benchmarks with Iong properties both techm'qdlz] A. Gurfinkel and M. Chechik, “How vacuous is vacuous?"TACAS

. Springer, 2004, pp. 451-466.
perform best when combined. [13] H. Chockler and O. Strichman, “Easier and more infoiveatacuity

checks,” InMEMOCODE |EEE Computer Society, 2007, pp. 189-198.
Acknowledgments [14] ——, “Before and after vacuity,FMSD, 2008, (to be published).
[15] H. Chockler, A. Gurfinkel, and O. Strichman, “Beyond ud#g: Towards
The authors would like to thank Hana Chockler and Ofer the strongest passing formula,” FMCAD. |IEEE Computer Society,
i i i 2008, pp. 188 — 195.
Strichman for their suggestions. [16] E. M. Clarke and E. A. Emerson, “Design and synthesis yofchro-
nization skeletons using branching-time temporal logio,”Logic of

REFERENCES Programs Springer, 1981, pp. 52—71.
" . [17] A. Pnueli, “The temporal logic of programs,” FOCS |IEEE Computer

[1] D. L. Beatty and R. E. Bryant, “Formally verifying a migsoocessor Society, 1977, pp. 46-57.

using a simulation methodology,” iBAC. ACM, 1994, pp. 596-602. [1g] R.K.Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincelit, F. Somenzi,
[2] O. Kupferman and M. Y. Vardi, “Vacuity detection in tenmab model A. Aziz, S.-T. Cheng, S. A. Edwards, S. P. Khatri, Y. Kukimoto

checking,” inCHARME _ Springer, 1999, pp. 82-96. _ A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shipl&v@amy,
[3] 1. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficiefetection of and T. Villa, “VIS: A system for verification and synthesisii CAV.

vacuity in temporal model checking,” vol. 18, no. 2. Kluwecaklemic Springer, 1996, pp. 428-432.

Publishers, 2001, pp. 141-163. _ _ [19] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolimodel
[4] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Pitermah, Tiemeyer, checking without BDDs,” inTACAS Springer, 1999, pp. 193-207.

and M. Y. Vardi, “Enhanced vacuity detection in linear temrgddogic,”
in CAV. Springer, 2003, pp. 368-380.

