
Linear Completeness Thresholds
for Bounded Model Checking?

Daniel Kroening1, Joël Ouaknine1, Ofer Strichman2, Thomas Wahl1, and
James Worrell1

1 Department of Computer Science, Oxford University, UK
2 Technion, Israel

Abstract. Bounded model checking is a symbolic bug-finding method
that examines paths of bounded length for violations of a given LTL
formula. Its rapid adoption in industry owes much to advances in SAT
technology over the past 10–15 years. More recently, there have been in-
creasing efforts to apply SAT-based methods to unbounded model check-
ing. One such approach is based on computing a completeness threshold :
a bound k such that, if no counterexample of length k or less to a given
LTL formula is found, then the formula in fact holds over all infinite
paths in the model. The key challenge lies in determining sufficiently
small completeness thresholds. In this paper, we show that if the Büchi
automaton associated with an LTL formula is cliquey, i.e., can be decom-
posed into clique-shaped strongly connected components, then the asso-
ciated completeness threshold is linear in the recurrence diameter of the
Kripke model under consideration. We moreover establish that all unary
temporal logic formulas give rise to cliquey automata, and observe that
this group includes a vast range of specifications used in practice, consid-
erably strengthening earlier results, which report manageable thresholds
only for elementary formulas of the form F p and G q.

1 Introduction

LTL bounded model checking (BMC) [4, 3] is a symbolic bug-finding method that
searches for lasso-shaped counterexamples to an LTL formula in a given Kripke
structure. Within three or four years following its introduction, it was found
to have almost entirely replaced BDD-based model checkers in the hardware
industry, owing to the fact that many users care more about finding bugs quickly
than about formal proofs of their absence, especially as the latter often require
vast amounts of memory and time. This major success can be attributed mostly
to the impressive advances made in SAT technology over the past 10 to 15 years.

The fundamental approach underpinning BMC is to look for counterexam-
ples, or bugs, of bounded length. As such, an absence of counterexample is in-
conclusive; a genuine bug could still lurk deeper in the system. For this reason,
from the very inception of the technique, researchers have attempted to turn

? Supported by the EU FP7 STREP PINCETTE.

BMC into a complete method with the ability also to guarantee the absence of
counterexamples of any length. See, for instance, the original work of Biere et
al. [4], or the 2008 Turing Award lecture of Ed Clarke [7], in which the problem
is described as a topic of active research.

In [4], Biere et al. observed that for safety properties of the form G p, a com-
pleteness threshold is given by the diameter (longest distance between any two
states) of the Kripke structure under consideration: indeed, if no counterexam-
ple to G p of length at most the diameter of the system can be found, then no
counterexample of any length can possibly exist. Likewise, for liveness proper-
ties such as F q, the recurrence diameter (longest loop-free path) of the Kripke
structure can be seen to be an adequate completeness threshold. But the general
problem of determining reasonably tight completeness thresholds for arbitrary
LTL formulas remains wide open to this day.

Note that the diameter (for safety properties) and the recurrence diameter
(for liveness properties) are not merely sound bounds, they are also worst-case
tight. In other words, no smaller completeness threshold expressible strictly in
terms of the diameters can be achieved. Of course, in any particular situation
the least completeness threshold may well be orders of magnitude smaller than
the diameter, but determining its value is clearly at least as hard as solving the
original model-checking problem in the first place, and we must therefore be
content with sound but reasonably tight over-approximations.

In this paper, we describe an efficient technique for obtaining fairly tight, lin-
ear completeness thresholds for a wide range of LTL formulas, as a function of the
diameter and recurrence diameter of any Kripke structure under consideration.
All Büchi automata that are cliquey, i.e., that can be decomposed into clique-
shaped strongly connected components, admit linear completeness thresholds.
Moreover, we show that such automata subsume unary linear temporal logic,
and indeed comprise a wide range of formulas used in practice, including, for
example, the vast majority of specifications appearing in Manna and Pnueli’s
classic text on the specification of reactive and concurrent systems [12].3 We
also show that computing these linear completeness thresholds can be done in
time linear in the size of the given Büchi automata. Finally, we exhibit some
simple (non-cliquey) Büchi automata, and corresponding LTL formulas, having
superpolynomial and even exponential completeness thresholds.

In the past, researchers have been able to achieve completeness thresholds by
studying the product structure of the Kripke model and the Büchi automaton
corresponding to the specification of interest; see, e.g., [6, 1]. Such thresholds
are in general incomparable with the ones we present in this paper. Moreover,
a significant disadvantage of the earlier approach is that it requires one to inves-
tigate a structure which is often much too large and unwieldy to construct, let
alone perform any calculations upon. Another benefit of the present approach
is that, once the diameter and recurrence diameter of a given Kripke structure
are known (or over-approximated), they can be put to use against any num-

3 For instance, specifications such as conditional safety, guarantee, obligation, response,
persistence, reactivity, justice, compassion, etc., all fall within our framework.

2

ber of specifications, whereas the earlier approach requires a fresh calculation
of the diameters of each of the different product automata, possibly resulting in
prohibitive computation costs.

Orthogonal research directions aiming to achieve completeness of bounded
model checking include cube enlargement techniques [13], circuit co-factoring [8],
induction [16], and Craig interpolation [14].

2 Definitions

By LTL\X we denote standard propositional linear temporal logic [5] without
the next-time operator X; all the results in this paper also hold if backwards
temporal operators are included as well. Every LTL\X formula ϕ is invariant
under stuttering, meaning that any two stuttering-equivalent paths either both
satisfy or both violate ϕ (see [5] for a precise definition).4

Let AP be a finite set of atomic propositions. A Kripke structure is a tuple
M = (S, S0, R, L) with finite set of states S, set of initial states S0 ⊆ S, transition
relation R ⊆ S × S, and state-labelling function L : S → 2AP , which assigns to
each state the set of atomic propositions considered to be true in that state.
A path through M is a sequence (πi)

l
i=0 (l ∈ N ∪ {∞}) of states such that for

i < l, (πi, πi+1) ∈ R. By |π| we denote the number l of edges in π. Thus, if π is
finite, its last vertex is π|π|. An infinite path π is lasso-shaped and k-bounded if
there exist two finite paths u and v such that π = u.vω and |u|+|v| ≤ k. Here, vω

denotes infinite repetition of v, and u and vω are concatenated. For concatenating
two paths, we require that the last state of the first path be identical to the
first state of the second path. Thus the definition of k-bounded implies that
u|u| = v0 = v|v|. The concepts of ‘reachable’ (existence of a connecting path)
and ‘distance between reachable states’ (length of shortest connecting path) are
defined in the standard way.

A (generalised) Büchi automaton is a tuple B = (S, S0, R, L,A) with finite
set of states S, set of initial states S0 ⊆ S, transition relation R ⊆ S × S, state-
labelling function L : S → B(AP), and family A ⊆ 2S of accepting sets of states;
here B(AP) denotes the set of all Boolean combinations of atomic propositions
in AP . Note that states (rather than transitions) are labelled, namely by such
Boolean combinations of atomic propositions. An infinite path π through B is
accepting if, for each state set T ∈ A, π visits a state of T infinitely often.

The product of Kripke structure M = (S, S0, R, L) with Büchi automaton
B = (S′, S′0, R

′, L′,A′), denoted M × B, is defined as the Büchi automaton
(S′′, S′′0 , R

′′, L′′,A′′) with

– S′′ = {(s, s′) ∈ S × S′ |L(s) � L′(s′)}5
– S′′0 = (S0 × S′0) ∩ S′′

4 Many computer scientists, starting with Lamport in the 1980s [11], have argued that
high-level specifications of computer systems always ought to be stuttering-invariant.

5 By L(s) � L′(s′), we mean that the Boolean formula L′(s′) evaluates to true if all
variables in L(s) are assigned true and all other variables are assigned false.

3

– R′′ = {((s1, s
′
1), (s2, s

′
2)) ∈ S′′ × S′′ |(s1, s2) ∈ R and (s′1, s

′
2) ∈ R′}

– L′′ : S′′ → 2AP × B(AP) with L′′(s, s′) = (L(s), L′(s′))
– A′′ = {(S × T ′) ∩ S′′ |T ′ ∈ A′} .

Note that the labelling functions of M and B determine which states exist (are
valid) in the product M×B. There is a transition in the product iff corresponding
transitions are present in both components. For our purposes, the labelling of
states in the product automaton is irrelevant. Finally, the acceptance set family
A′′ is derived from that of the Büchi automaton.

The product construction is related to LTL model checking as follows:

Theorem 1 ([9]) Let M be a Kripke structure and ϕ an LTL formula. There
exists a generalised Büchi automaton B¬ϕ such that M |= ϕ exactly if M ×B¬ϕ
has no accepting path.

In figures, we represent Büchi automata as directed graphs. Initial states
have an incoming edge without source. Accepting states are drawn as filled discs
(our illustrating examples all have a singleton acceptance set family, in other
words they are simple Büchi automata), and other states are drawn as hollow
circles. In Kripke structures (cf. Figure 4), we depict the label of a state as a set
of propositions, omitting the braces {}.

For a Kripke structure M , we write M |=k ϕ to denote that every lasso-
shaped k-bounded path π in M satisfies ϕ. A completeness threshold for M and
ϕ is an integer k such that

M |=k ϕ ⇒ M |= ϕ .

This definition reflects the intuition behind bounded model checking: assuming
that there is no counterexample to ϕ of length at most k, ϕ should hold in M .
We can generalise this definition to Büchi automata as follows: a completeness
threshold for a Kripke structure M and a Büchi automaton B is any integer k
such that, if M×B has any accepting path, then it has a k-bounded lasso-shaped
accepting path. With these definitions, an integer k is a completeness threshold
for a Kripke structure M and formula ϕ precisely if it is a completeness threshold
for M and B¬ϕ, where B¬ϕ is the result of translating ¬ϕ into any equivalent
generalised Büchi automaton.

The following are key notions in this paper:

Definition 2 Let M be a Kripke structure. The distance from a state s to a
state t is the length of a shortest path from s to t (or ∞ if there is no such
path). The diameter of M , denoted d(M), is the largest distance between any
two reachable states (‘longest shortest path’). The recurrence diameter of M ,
denoted rd(M), is the length of a longest simple (loop-free) path through M .

3 Büchi Automata with Linear Completeness Thresholds

Given a Kripke structure and an LTL formula, it is clear that determining the
smallest completeness threshold is at least as hard as the model-checking prob-
lem itself, and is thus not something we are aiming to achieve. Rather, the

4

goal of this paper is to establish a class of LTL formulas admitting complete-
ness thresholds that are linear in the diameter and the recurrence diameter of
any given Kripke structure. In this section, we first introduce a class of gener-
alised Büchi automata, termed cliquey, with this property. We also present an
algorithm which, given a cliquey automaton B, produces a symbolic arithmetic
expression ct(d, rd) such that, for any Kripke structure M , ct(d(M), rd(M)) is a
valid completeness threshold for M and B. Moreover, the expression ct is linear
in d and rd . In Section 4, we exhibit a class of LTL formulas that have cliquey
Büchi representations, namely unary linear temporal logic formulas.

Let sap(B) = min{k |B has a lasso-shaped k-bounded accepting path}, for
a non-empty Büchi automaton B. An sap(B)-bounded accepting path is called
a shortest accepting path, SAP for short. If B is empty, let sap(B) = −∞.

Definition 3 A generalised Büchi automaton B has a linear completeness
threshold if there exists c ∈ N such that for all Kripke structures M ,
sap(M ×B) ≤ c · rd(M).

We are now ready to define a class of Büchi automata that admit linear
completeness thresholds.

3.1 Cliquey Büchi Automata

The class of automata we consider in this section is characterised by a particular
structure of the underlying transition graph:

Definition 4 A directed graph is cliquey if every maximal strongly connected
component (SCC) is a bidirectional clique, i.e. any two nodes of an SCC are
connected by an edge in either direction. In particular, every node has a self-
loop.

We say that a generalised Büchi automaton is cliquey if its underlying graph
structure (ignoring the vertex labelling and the accepting condition) is cliquey.
The Büchi automaton in Figure 1 (a) is cliquey, whereas that in (b) is not cliquey.
Moreover, we shall see in Section 5.1 that the latter has no equivalent cliquey
representation.

Theorem 5 Every cliquey generalised Büchi automaton admits a linear com-
pleteness threshold.

Proof : Let B be cliquey, M an arbitrary Kripke structure with recurrence di-
ameter rd , and Π = M ×B. We show sap(Π) ≤ c · rd , for a number c that can
be chosen independently of M . If Π has no accepting path, then sap(Π) = −∞,
so there is nothing to prove. Otherwise, let π be an SAP of Π, and let C1, . . . , Cs
be the sequence of SCCs of B that π traverses, in this order. We now bound the
length of π in each SCC.

Consider a non-final SCC Ci (i.e., i < s), and let πi be the segment of π
that traverses Ci (in other words, πi is a maximal segment of π such that the
projection of its states to B is a path in Ci). Suppose |πi| ≥ rd +2. The prefix of

5

πi of length |πi| − 1 exceeds M ’s recurrence diameter rd . Thus we can find two
product states of the form (m, b) and (m, b′) along this segment. Let (m′′, b′′) be
the successor of (m, b′) along πi (note that (m′′, b′′) still belongs to πi):

(m, b) (m, b′)→ (m′′, b′′) .

From (m, b′) → (m′′, b′′) in Π, we conclude m → m′′ in M . Since Ci is a
clique, we conclude b→ b′′ in B. Hence, (m, b)→ (m′′, b′′) in Π. This, however,
contradicts the fact that π is an SAP through Π. Therefore, |πi| ≤ rd + 1.

Consider now the final SCC Cs, and let the family of accepting sets of B be
A = {A1, . . . , An}. The segment πs of π traversing Cs visits each Ai infinitely
often. Since each Ai is finite, there exists in fact a fixed state ai ∈ Ai in each of
them that is visited infinitely often. Segment πs thus looks like this:

(m, b) (m1, a1) (m2, a2) . . . (mn, an) (m, b) .

Using the same argument as in the non-final case, each segment abbreviated
by has length at most rd + 1 (otherwise, a shorter accepting path could be
constructed). As a result, |πs| ≤ (n+ 1)(rd + 1).

In total, |π| ≤ (s − 1)(rd + 1) + (n + 1)(rd + 1), clearly inducing a linear
completeness threshold, for example with constant c = 2(s+n) (note that s and
n are parameters of B and do not depend on M). �

3.2 Computing Completeness Thresholds of Cliquey Automata

The proof in Section 3.1 establishes linearity of the completeness threshold for
cliquey Büchi automata. It is, however, very coarse. Among others, the argument
ignores the structure of the SCC quotient graph. In the following, we give a
higher-order algorithm that takes a cliquey Büchi automaton B as input and
returns a function ct over two arguments. When supplied with the diameter d
and the recurrence diameter rd of a Kripke structure M , this function returns
a completeness threshold for M and B: sap(M ×B) ≤ ct(d, rd). Exploiting the
fact that B is cliquey, ct(d, rd) will be linear in d and rd .

The algorithm proceeds in two stages. In the first stage, each clique in the
SCC quotient graph of B is assigned a cost, as a function of d and rd , of traversing
it in the product automaton M×B, namely the maximum length a path segment
can ‘spend’ in this clique, given that the path is an SAP. In the second stage, the
algorithm traverses the SCC quotient graph, in order to symbolically compute
respective longest paths from initial cliques to all cliques, using the cost measures
computed during the first stage. The result returned by function ct is then the
maximum path length computed, over all cliques that could potentially serve as
the clique visited last along an accepting path.

The Cost of Traversing a Clique. For a generalised Büchi automaton B with
accepting sets A1, . . . , An, call a clique C in B accepting if for each i ∈ {1, . . . , n},
C ∩ Ai 6= ∅. Such a clique contains a state from each accepting set and is thus

6

eligible as a final clique, visited infinitely often, as M ×B is traversed. Further,
we say C is vacuously labelled if, for each Büchi state b in C, L(b) = true. The
significance of this condition is that such a Büchi state b can be paired with
any Kripke state m: the condition L(m) � L(b) holds for any m. This will be
instrumental in redirecting certain non-optimal paths, as we shall see below.

We denote the cost of traversing C as a non-final clique by cost [C], and
the cost of traversing C as a final clique by costf [C]. These values are assigned
according to Table 1, depending on whether C is vacuously labelled or not,
and whether C is accepting or not. Note that an accepting clique may well
be traversed as a non-final clique, whereas a non-accepting clique cannot be
traversed as a final clique.

C vacuously labelled? C accepting? cost [C] costf [C]

no no rd + 1 ∞
no yes rd + 1 (n + 1)(rd + 1)
yes no d ∞
yes yes d (n + 1)d

Table 1. Over-approximating the cost of traversing a clique

To discuss these figures, consider first the typical case in which C is not
vacuously labelled. We have seen in the proof of Theorem 5 in Section 3.1 that
any SAP segment within C, visited as a non-final clique, is of length at most
rd + 1; it does not matter here whether C is accepting or not. When visited as
the final clique, however, C must be accepting; in this case said segment is of
length at most (n+ 1)(rd + 1), as shown in the same proof.

If C is vacuously labelled, we can strengthen the argument from Section 3.1:
let s = (m0, b0) (m1, b1) be a path segment of an SAP whose projection to
the B component runs within C. Suppose the length of s is greater than M ’s
diameter d. Then there is a path π from m0 to m1 in M with |π| < |s|. Path π
can be used to form a path through C in the product that is shorter than s: pair
every state along π with b0, except the last state m1, which is paired with b1
as above. The product states (m, b) thus created vacuously satisfy the condition
L(m) � L(b), since L(b) = true. The B-components of the new path form a path
in B, since they run within a clique, with self-loops on all states. These findings
contradict the fact that s is a segment of an SAP through M × B. Therefore,
|s| ≤ d, so d is the cost of traversing C as a non-final clique. For traversing C
as the final clique (assuming it is accepting), the cost is (n+ 1) times higher, as
before: we apply the diameter argument to each subsegment of s between two
accepting states.

7

The Cost of Traversing the SCC Quotient Graph. The second stage is
to ‘collect’ the costs we have computed per clique in stage 1. Which cliques of B
are visited in an actual SAP in M ×B of course depends on M . For our results
to hold over any Kripke structure, we determine a longest path through the SCC
quotient graph. This quotient graph is acyclic, so that the single-source longest
path problem can be solved in time linear in the number of quotient edges, by
traversing the graph in topological order.

A complication is that, since we do not have the concrete Kripke structure
at hand, the costs of moving from clique to clique are given symbolically, by
expressions of the form appearing in Table 1. Thus, when comparing the lengths
of paths to a particular clique found so far, instead of recording the new length
as the numerical maximum of the two given lengths, we record it as the symbolic
maximum of the two length expressions. The final result reported by the function
will thus be an expression involving the parameters d and rd of the unknown
Kripke structure, as well as linear operators connecting them, such as addition,
constant multiplication, and max.

The traversal of the SCC quotient graph is shown in Algorithm 1. It assumes
the Büchi automaton has a unique initial clique C0 (i.e., a clique containing
initial states of B); we handle the general case below. The algorithm keeps the
cost of traversing a clique, as computed in Table 1, in an array cost , and the cost
of reaching and traversing a clique in an array reach, both as a non-final and
final clique (the latter stored in arrays with subscript f). The reach values are
initialised to 0. For the initial clique, these values are set to the cost to traverse
it (Line 4).

Algorithm 1 Maximum length of an SAP in M ×B
Input: B with initial clique C0

0: for each clique C do
1: initialise cost [C], costf [C] as in Table 1
2: reach[C] := reachf [C] := 0
3: end for
4: reach[C0] := cost [C0], reachf [C0] := costf [C0]
5: for each clique C of B in a topological order, starting at C0 do
6: for each successor clique D of C do
7: reach[D] := max{reach[D], reach[C] + cost [D]}
8: if D is accepting then
9: reachf [D] := max{reachf [D], reach[C] + costf [D]}

10: end if
11: end for
12: end for
13: return max{reachf [C] | C is accepting}

The algorithm traverses the cliques C of B in some topological order, starting
with C0, and examines all of C’s successor cliques D. Value reach is updated to
the maximum of its current value and the value obtained by reaching D via C.

8

Value reachf is updated analogously, but only if D is accepting. After processing
all cliques this way, the algorithm returns the maximum of the values reachf [C]
over all accepting cliques.

If B has several initial cliques, the algorithm is performed for each of them
in turn; in this case we return the maximum over all values obtained, as the
maximum length of an SAP, for any Kripke structure M .

Complexity. The applications of + and max in the algorithm are to be un-
derstood as symbolic operations. That is, the result returned in Line 13 is an
expression, involving d, rd and the linear operators +, max, and constant mul-
tiplication (the latter come from the base expressions in Table 1). In the worst
case, the expression can contain a number of max applications that is linear
in the number of edges of the SCC quotient graph. In many cases, however,
the symbolic maximum can be evaluated to one of its arguments. For example,
max{rd , d} = rd , while max{rd , 2d} cannot be simplified.

The algorithm itself also has linear time complexity, as a (slight modification
of the) standard algorithm to compute longest paths in a directed acyclic graph.

4 Linear Temporal Logic and Cliquey Automata

We now turn to temporal-logic model checking, and investigate the relationship
with cliquey Büchi automata. In this section, we write bold-face LTL, LTL\X,
and CL to denote the set of ω-regular languages that correspond to LTL formu-
las, LTL\X formulas, and cliquey Büchi automata respectively.

Lemma 6 CL ⊆ LTL : every cliquey generalised Büchi automaton can be en-
coded as an equivalent LTL formula.

Proof : Given a cliquey automaton B, we show how to express its language in
LTL. Recall that every strongly connected component of B is a clique, and that
an accepting clique is one that has a non-empty intersection with each accepting
set of B. There are only a finite number of SCC paths that go from a initial
clique to an accepting clique. Moreover, for each pair of neighbouring cliques Ci,
Ci+1 along such a path, there is only a finite number of edges from Ci to Ci+1.
We can therefore write the language of B as a finite union of ‘path languages’
each of which encodes the words along a path π to an accepting clique such that
any successive cliques Ci, Ci+1 along π are connected by a unique edge.

Each path language can be written as an ω-regular expression over the al-
phabet 2AP , of the form

L(i0).L(C0)∗.L(o0)︸ ︷︷ ︸
first clique

L(i1).L(C1)∗.L(o1)︸ ︷︷ ︸
second clique

L(i2) . . . L(of−1) L(if).L(Cf)ω︸ ︷︷ ︸
final clique

(1)

where, for clique number j, L(ij) is the labelling of the unique in-point (entry)
of Cj coming from Cj−1, L(oj) is the labelling of the unique out-point (exit) of
Cj to Cj+1, and L(Cj) is the union of the labellings of all Büchi states in Cj .

9

For example, a clique of three states, with the entry state labelled a, exit state
labelled b and a third state labelled c, where a, b, c ∈ 2AP , is encoded as a regular
expression a.{a, b, c}∗.b.

Expression (1) can be turned into a star-free ω-regular expression by replac-

ing the subexpressions L(Cl)
∗ by ∅.L(Cl).∅, where X denotes complementation.

Being star-free, it is well-known that this expression is equivalent to a suitable
LTL formula [10, 15]. �

Lemma 7 CL 6⊆ LTL\X : there exist cliquey automata that cannot be encoded
as LTL\X formulas.

Proof : Consider the Büchi automaton B in Figure 1 (a). B is cliquey: the
two p-labelled states form one SCC, the q-labelled state forms the other SCC,
and both are cliques. B does not, however, correspond to any LTL\X formula:
B’s language contains the word {p}.{p}.{q}ω, but not the word {p}.{q}ω. Since
these two words are stuttering equivalent, an encoding of B as an LTL\X formula
would violate the stuttering closure of LTL\X. �

(a)

p qp
(b)

qp r

Fig. 1. (a) A cliquey Büchi automaton that does not correspond to any LTL\X formula;
(b) A non-cliquey Büchi automaton with linear completeness threshold

Lemma 8 LTL\X 6⊆ CL : not all LTL\X formulas have a cliquey automaton
encoding.

Proof : Let AP = {p, q, r}, and let p! be a short-hand notation for p ∧ ¬q ∧ ¬r,
and similarly for q! and r! . Consider the LTL\X formula

ϕ = p! ∧ G ((p!⇒ (p!U q!)) ∧ (q!⇒ (q!U r!)) ∧ (r!⇒ (r!U p!))) . (2)

To prove that ϕ does not have a cliquey Büchi encoding, we first show:

Property 9 Any cliquey Büchi automaton over AP = {p, q, r} that accepts the
word ({p}.{q}.{r})ω also accepts some word in (2AP)∗.{q}.{p}.(2AP)∗.

Proof : Let B be cliquey and accept w := ({p}.{q}.{r})ω. We show that B also
accepts some word with the substring {q}.{p}. Any path π in B along which w
is accepted contains infinitely many states with a label that is satisfied by {p}.
Since B has finitely many states, these states are not all different; let b be a
state with such a label that occurs twice along π. Let c be the state following
the first occurrence of b; the label of c is satisfied by {q}. Since c is between two

10

occurrences of b along π, states b and c belong to the same SCC. As B is cliquey,
b and c are in fact part of one clique; thus there is an edge from c to b in B. Now
consider the path π′ that is identical to π, except that one occurrence of the
edge b → c is replaced by the segment b → c → b → c. Path π′ is a valid path
in B. It is also accepting, since we have only added two edges to the accepting
path π. Finally, π′ accepts a word that contains the substring {q}{p}. �

We can now prove Lemma 8: any automaton B that encodes ϕ in equation (2)
accepts ({p}.{q}.{r})ω, but does not accept any word with substring {q}.{p},
since a path with such a trace would violate ϕ. It follows that B is not cliquey. �

We have so far shown that while CL is contained in LTL, LTL\X and
CL are incomparable. Of particular interest is the intersection of the latter
two: LTL\X formulas that have a cliquey representation. To narrow in on this
class, consider the unary temporal logic fragment of LTL\X, denoted UTL\X,
i.e., LTL\X without the until operator U (and, if one is using past temporal
operators, without the past counterpart of U either). The formulas of UTL\X
are built from atomic propositions using Boolean connectives and the unary

temporal operators F (eventually), and
←−
F (sometime in the past)—the dual

operators G and
←−
G are derived in the usual way. Formally, UTL\X is defined by

the following grammar:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Fϕ |
←−
F ϕ ,

where p is any atomic proposition. Naturally, we denote the associated class of
languages UTL\X.

We now have:

Lemma 10 UTL\X ⊆ CL : every UTL\X formula can be encoded as a gener-
alised cliquey Büchi automaton.

Proof : We prove this lemma by constructing, for any UTL\X formula ϕ, a
cliquey automaton Aϕ that encodes it. Define the closure of ϕ to be the set
cl(ϕ) of all subformulas of ϕ and their negations, where we identify ¬¬ψ with ψ.

Say that s ⊆ cl(ϕ) is a complete type if (i) for each formula ψ ∈ cl(ϕ)
precisely one of ψ and ¬ψ is a member of s; (ii) ψ1 ∧ ψ2 ∈ s iff ψ1 ∈ s and

ψ2 ∈ s; (iii) ψ ∈ s implies Fψ ∈ s and
←−
F ψ ∈ s. Given types s and t, write

s ∼ t if s and t agree on all formulas whose outermost connective is a temporal
operator, i.e., s ∼ t exactly if for all formulas ψ we have Fψ ∈ s iff Fψ ∈ t, and←−
F ψ ∈ s iff

←−
F ψ ∈ t. Write tpϕ for the set of complete types for ϕ.

An ω-word w over alphabet 2AP naturally extends to an ω-word w = w0w1 . . .
over alphabet tpϕ, where wi = {ψ ∈ cl(ϕ) |(w, i) |= ψ}.

Recall that a generalised Büchi automaton has a family A = {A1, . . . , An}
of accepting sets such that an accepting run must visit each Ai infinitely often.
We define a generalised Büchi automaton Aϕ = (S, S0, R, L,A) that accepts
{w ∈ (2AP)ω |(w, 0) |= ϕ}. The set of states is S = tpϕ, with the set S0 of

initial states consisting of those s ∈ tpϕ such that (i) ϕ ∈ s and (ii)
←−
F ψ ∈ s

11

only if ψ ∈ s. The state-labelling function L : S → B(AP) is defined by L(s) =∧
(s∩AP)∧

∧
{¬p | p ∈ AP \s}. The transition relation R consists of those pairs

(s, t) such that

(i)
←−
F ψ ∈ t iff either ψ ∈ t or

←−
F ψ ∈ s,

(ii) Fψ ∈ s and ψ 6∈ s implies Fψ ∈ t, and
(iii) ¬Fψ ∈ s implies ¬Fψ ∈ t .

The accepting set family is A = {AFψ |Fψ ∈ cl(ϕ)}, where AFψ = {s |ψ ∈
s or Fψ 6∈ s}. This completes the definition of Aϕ.

We finally argue that automaton Aϕ is cliquey: by the definition of the tran-
sition relation of Aϕ, states s and t are in the same connected component iff
s ∼ t. Any two states s and t with s ∼ t are connected by a transition. �

Combining Theorem 5 and Lemma 10 yields one of our main results:

Theorem 11 Every UTL\X formula admits a linear completeness threshold.

Finally, one may wonder whether LTL\X formulas that have a cliquey rep-
resentation are in fact always equivalent to some UTL\X formula. The answer
is no, as our next result shows:

Lemma 12 LTL\X ∩ CL 6⊆ UTL\X : there exist LTL\X formulas that do
have a cliquey representation yet are not equivalent to any UTL\X formula.

Proof (sketch): Let a, b, c be distinct elements of 2AP , and consider the language
L = (a+ b+ c)∗.a.a∗.b.(a+ b+ c)ω. L is captured by the LTL\X formula F(a ∧
(aU b)), and it is also clear that L is cliquey. Using the results of [17], one
can show that this language is inexpressible in UTL (let alone UTL\X). For
example, one can compute the syntactic monoid associated with L and invoke
the characterisation of syntactic monoids of UTL-definable languages from [17]
to obtain the desired result. We omit the details. �

Figure 2 summarises our expressiveness results. All inclusions are strict.

UTL\X
LT
L\
X C

L

LTL

Fig. 2. Relationships among various classes of ω-regular languages

12

5 Beyond Cliqueyness

Two natural questions arise as to whether cliqueyness is necessary in order to
achieve a linear completeness threshold, and whether there actually are any ω-
regular languages that fail to have linear completeness thresholds. We answer
the first question negatively and the second one positively. In fact, we show that
ω-regular languages can be engineered to have completeness thresholds bounded
below in the worst case by superpolynomial and even exponential functions of
the recurrence diameter of Kripke structures.

5.1 Linear Completeness Thresholds without Cliqueyness

Consider the Büchi automaton B depicted in Figure 1 (b). It is clearly not cliquey
and is in fact semantically non-cliquey, i.e., not equivalent to any cliquey Büchi
automaton. To see this, observe that B accepts the word w := ({p}.{q}.{r})ω,
yet no word with the substring {q}.{p}. By Property 9, B cannot be equivalent
to a cliquey automaton.

We claim that B nonetheless has a linear completeness threshold: namely,
for any Kripke structure M , sap(M × B) ≤ rd(M) + 1. Indeed, if an SAP had
length greater than rd(M) + 1, its projection onto M would have to exhibit an
‘inner’ loop that for some reason could not be cut out. A straightforward case
analysis then quickly leads to a contradiction.

5.2 Büchi Automata with Non-Linear Completeness Thresholds

On the other hand, not every LTL formula and in fact not every LTL\X formula
has a linear completeness threshold. Consider the non-cliquey automaton B in
Figure 3, which encodes the LTL\X formula

ϕ = p ∧ ¬r ∧ G ((p ∧ ¬r)⇒ ((p ∧ ¬r) U (q ∧ ¬r)) ∧
(q ∧ ¬r)⇒ ((q ∧ ¬r) U r!) ∧

r! ⇒ (r! U (p ∧ ¬r) ∨ G r!)) .

Again, the notation r! is short for r ∧ ¬p ∧ ¬q.

r!
q ∧ ¬rp ∧ ¬r

Fig. 3. A non-cliquey Büchi automaton with superpolynomial completeness threshold

To show that B has no linear completeness threshold, we construct a collec-
tion (Mi)

∞
i=1 of Kripke structures such that, for each i, we have sap(Mi ×B) ≥

i/4 · rd(Mi).

13

The construction is depicted in Figure 4. Mi contains i copies of a q-labelled
loop, ‘q-loop’ for short. Each q-loop comprises i states. Consecutive occurrences
of the q-loop are connected via an r-labelled state, or r-state for short. The final
r-state has a self-loop.

q

p, q rp, qr p, q r

q

q

q
q

q

q
q

q

q
q

q
q

q q qq
q q q

q q q
q qq

Mi : (i times)i i i(i times)

q

(i times)

Fig. 4. Kripke structure family (Mi)
∞
i=1 witnessing a non-linear completeness threshold

Let us compute Mi’s recurrence diameter: a longest loop-free path starts at
the first state of the first q-loop (a successor of the first p, q-state), follows that
loop around to the first p, q-state, then follows the baseline path—skipping all
intermediate q-loops—all the way to the final q-loop. It then enters that loop
and follows it to the last of its states (before the loop is closed). Mi thus has a
recurrence diameter of at most 4i.

An SAP of Π = M ×B, however, must take all q-loops. To see this, consider
the initial state of Π, which is labelled ({p, q}, p ∧ ¬r). B does not allow an
r-state as successor (both possible transitions [one of which is a B-self-loop]
require successors satisfying ¬r). Thus the joint path must enter the first q-
loop. During this loop, B stays in the (q ∧ ¬r)-state, up to and including the
time when M finishes the loop and arrives back at the p, q-state. At this time
the shortest path continues at the state labelled ({r}, r!), followed by the state
labelled ({p, q}, p ∧ ¬r), at which point it is forced into the next q-loop of Mi.
Note that, for this path to be accepting, it has to visit an r-state of Mi infinitely
often, which is only possible via the self-loop reachable after all the q-loops have
been taken.

Having to go through i loops each of size i, an SAP of Π has length at least i2.
Combining this with the size of the recurrence diameter of at most 4i, we see
that the completeness threshold for B is at least quadratic in the recurrence
diameter of Kripke structures. �

It is not difficult to see our family of Kripke structures can in fact be modified
to exhibit a cubic completeness threshold for our very same automaton B, by
modifying the loops slightly and grafting a further additional family of loops
onto each of them. In this vein, one sees that completeness thresholds exceeding

14

any given polynomial can in fact be achieved, so that our formula ϕ and Büchi
automaton B have superpolynomial completeness threshold.

In fact, even exponential completeness thresholds can be achieved for LTL
formulas.6 Consider a family of Kripke structures, each of which resembles a
full binary tree, with bidirectional edges between every parent and child. The
recurrence diameter of any such structure is the length of a longest loop-free path
from one leaf to another, and is therefore logarithmic in the size of the structure.
These structures can however be instrumented in such a way that a certain LTL
formula forces the unique accepting path to perform a depth-first traversal of the
entire tree, resulting in a path of length exponential in the recurrence diameter.
To achieve this, atomic propositions are used to keep track of the depth of nodes
modulo 3, and further propositions label the root, leaves, and left and right
children accordingly. A traversal of the tree is then orchestrated by requiring
that (i) whenever an interior node is entered from above (which is determined
by knowledge of the depths modulo 3 of the present node and that of the previous
one), then the left child should be visited next; (ii) whenever a non-leaf node is
returned to from a left child, then the right child should be visited next; and
(iii) whenever a non-leaf node is returned to from a right child, then the parent
node should be visited next. Finally, the rightmost leaf is labelled with a special
proposition which the formula requires to hold eventually.

6 Concluding Remarks

We have presented a method for calculating fairly tight, linear completeness
thresholds for a large class of LTL specifications. The algorithm we propose is
highly efficient, running in time linear in the size of the Büchi automaton. Several
potential bottlenecks however remain, including the following two:

– Computing the diameter and recurrence diameter of a large Kripke structure
can be computationally prohibitive; one possible remedy might be to settle
for tractable over-approximations of the diameters, as in [2], in a trade-off
which would likely require careful consideration.

– It has often been empirically observed that bounded model checking com-
putations tend not to scale up very well. Since many Kripke structures have
deep recurrence diameters (of the order of the total number of states, for
example), one can expect that exploring the system to the required depth
prove in certain cases to be intractable.

Nonetheless, this is an area of active research in which progress is being
made on several fronts. Our hope is that the techniques presented here may
prove beneficial not only to practitioners, but also to other researchers whose
technology it might potentially complement.

6 We are grateful to one of the anonymous referees for this observation.

15

Alongside these practical considerations, two interesting theoretical questions
arise: (i) is it decidable whether a given LTL formula (or more generally a given
ω-regular language) has a linear completeness threshold; and (ii) is the complete-
ness threshold of an ω-regular language always either linear or superpolynomial?
We leave these questions as further research.

References

1. Mohammad Awedh and Fabio Somenzi. Proving more properties with bounded
model checking. In CAV, pages 96–108, 2004.

2. Jason Baumgartner, Andreas Kuehlmann, and Jacob A. Abraham. Property check-
ing via structural analysis. In CAV, pages 151–165, 2002.

3. Armin Biere, Alessandro Cimatti, Edmund Clarke, Ofer Strichman, and Yunshan
Zhu. Bounded model checking. Advances in Computers, 58:118–149, 2003.

4. Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In TACAS, pages 193–207, 1999.

5. Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,
2000.

6. Edmund Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman. Complete-
ness and complexity of bounded model checking. In VMCAI, pages 85–96, 2004.

7. Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: Algo-
rithmic verification and debugging. CACM, 52(11):75–84, 2008.

8. Malay Ganai, Aarti Gupta, and Pranav Ashar. Efficient SAT-based unbounded
symbolic model checking using circuit cofactoring. In ICCAD, pages 510–517, 2004.

9. Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In PSTV, pages 3–18, 1995.

10. Hans Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University
of California, 1968.

11. Leslie Lamport. What good is temporal logic? In IFIP Congress, pages 657–668,
1983.

12. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems—Specification. Springer, 1991.

13. Kenneth McMillan. Applying SAT methods in unbounded symbolic model check-
ing. In CAV, pages 250–264, 2002.

14. Kenneth McMillan. Interpolation and SAT-based model checking. In CAV, pages
1–13. Springer, 2003.

15. Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8(2):190–194, 1965.

16. Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety properties
using induction and a SAT-solver. In FMCAD, pages 108–125, 2000.

17. Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as
one quantifier alternation. In STOC, pages 234–240, 1998.

16

