
Robot Localization Using Polygon Distances�

Oliver Karch1, Hartmut Noltemeier1, and Thomas Wahl2

1 Department of Computer Science I, University of Würzburg,
Am Hubland, 97074 Würzburg, Germany

{karch,noltemei}@informatik.uni-wuerzburg.de
2 ATR Interpreting Telecommunications Research Laboratories,
2-2 Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

twahl@itl.atr.co.jp

Abstract. We present an approach to the localization problem, for
which polygon distances play an important role. In our setting of this
problem the robot is only equipped with a map of its environment, a
range sensor, and possibly a compass.
To solve this problem, we first study an idealized version of it, where all
data is exact and where the robot has a compass. This leads to the pure
geometrical problem of fitting a visibility polygon into the map. This
problem was solved very efficiently by Guibas, Motwani, and Raghavan.
Unfortunately, their method is not applicable for realistic cases, where
all the data is noisy.
To overcome the problems we introduce a distance function, the polar
coordinate metric, that models the resemblance between a range scan
and the structures of the original method. We show some important
properties of the polar coordinate metric and how we can compute it
efficiently. Finally, we show how this metric is used in our approach and
in our experimental Robot Localization Program RoLoPro.

1 The Localization Problem

We investigate the first stage of the robot localization problem [3,12]: an au-
tonomous robot is at an unknown position in an indoor-environment, for exam-
ple a factory building, and has to do a complete relocalization, that is, determine
its position and orientation. The application we have in mind here is a wake-up
situation (e.g., after a power failure or maintenance works), where the robot is
placed somewhere in its environment, powered on, and then “wants” to know
where it is located. Note, that we do not assume any knowledge about previous
configurations of the robot (before its shutdown), because the robot might have
been moved meanwhile.

In order to perform this task, the robot has a polygonal map of its environ-
ment and a range sensor (e.g., a laser radar), which provides the robot with a set
of range measurements (usually at equidistant angles). The localization should
� This research is supported by the Deutsche Forschungsgemeinschaft (DFG) under
project numbers No88/14-1 and No 88/14-2.

Christensen et al. (Eds.): Sensor Based Intelligent Robots, LNAI 1724, pp. 200–219, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Robot Localization Using Polygon Distances 201

Fig. 1. Polygonal map and its decomposition into visibility cells

be performed using only this minimal equipment. In particular, the robot is not
allowed to use landmarks (e.g., marks on the walls or on the floor). This should
make it possible to use autonomous robots also in fields of application where it
is not allowed or too expensive to change the environment.

The localization process usually consists of two stages. First, the non-moving
robot enumerates all hypothetical positions that are consistent with its sensor
data, i.e., that yield the same visibility polygon. There can very well be sev-
eral such positions if the map contains identical parts at different places (e.g.,
buildings with many identical corridors, like hospitals or libraries). All those
positions cannot be distinguished by a non-moving robot. Figure 1 shows an ex-
ample: the marked positions at the bottom of the two outermost niches cannot
be distinguished using only their visibility polygons.

If there is more than one hypothetical position, the robot eliminates the
wrong hypotheses in the second stage and determines exactly where it is by
traveling around in its environment. This is a typical on-line problem, because
the robot has to consider the new information that arrives while the robot is
exploring its environment. Its task is to find a path as efficient (i.e., short) as
possible for eliminating the wrong hypotheses. Dudek et al. [4] have already
shown that finding an optimal localization strategy is NP-hard, and described
a competitive greedy strategy, the running time of which was recently improved
by Schuierer [10].

This paper concentrates on the first stage of the localization process, that is,
on generating the possible robot configurations (i.e., positions and orientations),
although in our current work we also want to give solutions for the second stage,
which can be applied in practice. With the additional assumption that the robot
already knows its orientation (i.e., the robot has a compass) and all sensors

202 Oliver Karch et al.

and the map are exact (i.e., without any noise), this problem turns into a pure
geometric one, stated as follows: for a given map polygon M and a star-shaped
polygon V (the visibility polygon of the robot), find all points p ∈ M that have V
as their visibility polygon.

Guibas et al. [5] described a scheme for solving this idealized version of the
localization problem efficiently and we will briefly sketch their method in the
following section. As this more theoretical method requires exact sensors and an
exact map, it is not directly applicable in practice, where the data normally is
noisy. In Sect. 3 we consider these problems and show in Sections 4 and 5 an
approach to avoiding them, which uses distance functions to model the resem-
blance between the noisy range scans (from the sensor) and the structures of the
original method (extracted from the possibly inexact map).

2 Solving the Geometric Problem

In the following we sketch the method of Guibas et al., which is the basis for our
approach described in Sections 4 and 5. We assume that the robot navigates on a
plain surface with mostly vertical walls and obstacles such that the environment
can be described by a polygon M, called the map polygon. Additionally, we
assume that M has no holes (i.e., there are no free-standing obstacles in the
environment), although the algorithm remains the same for map polygons with
holes; the preprocessing costs, however, may be higher in that case.

The (exact) range sensor generates the star-shaped visibility polygon V of
the robot. As the range sensor is only able to measure the distances relative
to its own position, we assume the origin of the coordinate system of V to be
the position of the robot. Using the assumption that we have a compass, the
geometric problem is then to find all points p ∈ M such that their visibility
polygon Vp is identical with the visibility polygon V of the robot.

The main idea of Guibas et al. [5] to solving this problem is to divide the
map into finitely many visibility cells such that a certain structure (the visibility
skeleton, which is closely related to the visibility polygon) does not change inside
a cell.

For a localization query we then do not search for points where the visibility
polygon fits into the map, but instead for points where the corresponding skele-
ton does. That is, the continuous problem1 of fitting a visibility polygon into the
map is discretized in a natural way by decomposing the map into visibility cells.

2.1 Decomposing the Map into Cells

At preprocessing time the map M is divided into convex visibility cells by intro-
ducing straight lines forming the boundary of the cells such that the following
property holds:
1 “Continuous” in the sense that we cannot find an ε > 0 such that the visibility
polygon Vp of a point p moving by at most ε does not change.

Robot Localization Using Polygon Distances 203

Vp

p
Vq

q

g1

M

V ∗
Ca1

p

q
C

Fig. 2. Decomposition of a map polygon into visibility cells (left), two visibility
polygons (middle), and the corresponding skeleton (right)

The set of visible map vertices does not change when we travel around
within a cell.

As the visibility of a vertex only changes if we cross a straight line induced by
that vertex and an occluding reflex vertex (i.e., having an internal angle ≥ π),
the subdivision into visibility cells can be constructed in the following way: we
consider all pairs consisting of a vertex v and a reflex vertex vr that are visible
from each other; for each such pair (v, vr) we introduce the ray into the map
that goes along the line through v and vr, starts at vr, and is oriented as to move
away from v. An example of such a decomposition is depicted in the left part of
Fig. 2. The introduced rays are drawn as dashed lines. The points p and q from
cell C see the same set of five map vertices (marked gray in the corresponding
visibility polygons in the middle). Figure 1 shows a decomposition for a more
complex map with three obstacles (gray), generated with our software RoLoPro
described in Sect. 6.

If the map consists of a total number of n vertices, of which r are reflex, the
number of introduced rays is in Θ(nr) in the worst-case. Therefore the worst-
case complexity of the decomposition is in Θ(n2r2). For map polygons without
holes it can be shown that this complexity is actually in Θ(n2r). Moreover, it is
easy to give worst-case examples that show that these bounds are tight.

2.2 The Visibility Skeleton

When we compare two visibility polygons of points from the same cell (see
Fig. 2), we observe that they are very similar and differ only in certain aspects,
namely in the spurious edges that are caused by the reflex vertices and are
collinear with the viewpoint, and in those map edges that are only partially
visible. The remaining full edges (which are completely visible) are the same in
both polygons. This observation can be used to define a structure that does not
change inside a visibility cell, the visibility skeleton.

For a visibility polygon Vp with viewpoint p, the corresponding visibility
skeleton V ∗

p is constructed by removing the spurious edges, and by substituting
the partially visible edges (they lie between two spurious vertices or between

204 Oliver Karch et al.

a spurious and a full vertex) with an artificial edge ai together with the corre-
sponding line gi on which the original (partially visible) edge of Vp lies. Thus, we
simply ignore the spurious edges and the spurious vertices, as this information
continuously depends on the exact position p.

As the skeleton does not change inside a cell, we can define the cell skele-
ton V ∗

C as the common skeleton of all visibility polygons of points from cell C.
Figure 2 shows an example of the common skeleton V ∗

C of two visibility poly-
gons Vp and Vq for viewpoints p and q from the same cell C.

2.3 Performing a Localization Query

When we construct the skeleton V ∗
p from the visibility polygon Vp, we “throw

away” some information about the spurious edges and the partially visible edges.
But this information can be reconstructed using the position of the viewpoint p
relative to the skeleton. It is already shown by Guibas et al. that exactly those
points q are valid robot positions for a given visibility polygon Vp that have the
following two properties:

1. The point q lies in a visibility cell C with V ∗
C = V ∗

p .
2. The position of q relative to V ∗

C is the same as the position of p relative
to V ∗

p .

The consequence is that in order to determine all points in the map that
have Vp as their visibility polygon, it suffices to consider the equivalence class
of all cells with visibility skeleton V ∗

p (first property) and then to determine the
subset of cells consisting of those that contain a viewpoint with the same relative
position to V ∗

p as p (second property). After that, all remaining viewpoints are
valid robot positions.

Hence, for performing the localization query, the skeleton V ∗
p of the given

visibility polygon Vp is computed and the corresponding equivalence class of
skeletons is determined. As we know the position of the point p relative to the
skeleton V ∗

p and as we also know the position of each cell C relative to its cell
skeleton V ∗

C , we can easily determine for each cell in the equivalence class the
corresponding viewpoint of the robot and check whether it lies in C. This test can
be performed very efficiently by using a point location structure; in fact, using
a sophisticated preprocessing of the visibility cells only a single point location
query is necessary in order to test the viewpoints of all cells in an equivalence
class at once.

This way we get a query time of O(m + log n + A) where m is the number
of vertices of Vp and A denotes the size of the output, that is, the number of all
reported robot locations, which can easily be shown to be in O(r).

The total preprocessing time and space of this approach is in O(n2r ·(n+r2))
for map polygons without holes (see [7]).

Robot Localization Using Polygon Distances 205

Fig. 3. Exact visibility polygon (left) and approximated visibility polygon (mid-
dle) of a noisy scan (right)

3 Problems in Realistic Scenarios

The idealizing assumptions of the method described in Sect. 2 prevent us from
using it in realistic scenarios, as we encounter several problems:

– Realistic range sensors do not generate a visibility polygon V as assumed for
the method, but only a finite sequence S of scan points (usually, measured at
equidistant angles). Furthermore, these scan points do not lie exactly on the
robot’s visibility polygon, but are perturbed due to sensor uncertainties. An
example is depicted in Fig. 3, which shows in the left part an exact visibility
polygon of a robot (based on a map of our department). In the right part
of the figure we see a real noisy laser range scan taken at the corresponding
position in our department using a SICK LMS 200 laser scanner. Even if we
connect the scan points by straight line segments as shown in the middle
part of the figure, we only get an approximation VS of the exact visibility
polygon V based on the map.

– For the localization process we assume that we already know the exact ori-
entation of the robot. But in practice this is often not the case, and we only
have inexact knowledge or no knowledge at all about the robot’s orientation.

– There may be obstacles in the environment that are not considered in the
map and which may affect the robot’s view. For example, furniture that is
too small to be considered for map generation or even dynamic obstacles like
people or other robots. Such obstacles can also be recognized in the right
part of the example scan of Fig. 3.

– Realistic range sensors have a limited sensing range and obstacles that have
a greater distance to the robot cannot be detected.

The consequence is that the (approximated) visibility skeleton V ∗
S , which the

robot computes from its approximated visibility polygon VS , usually does not

206 Oliver Karch et al.

match any of the preprocessed skeletons exactly. That is, the robot is not able to
determine the correct equivalence class, and the localization process completely
fails.

4 Adaptation to Practice

Our approach to tackling these problems is, for a given range scan S (from the
sensor), to search for the preprocessed skeleton that is most similar to the scan.
For modeling the resemblance between a scan S and a skeleton V ∗ we use an
appropriate distance function d(S, V ∗). Then, instead of performing an exact
match query as in the original algorithm, we carry out a nearest-neighbor query
in the set of skeletons with respect to the chosen distance function d(S, V ∗) to
find the skeleton with the highest resemblance to the scan.

Depending on the distance function, we then additionally have to apply a
local matching algorithm to the scan and the skeleton in order to determine
the position of the robot. The reason is that not all methods for determining
a distance measure yield an optimal matching (i.e., a translation vector and
a rotation angle) as well. Consider, for example, the algorithm for computing
the Arkin metric [2] for polygons, which, besides the distance measure, only
provides the optimal rotation angle and no translation vector. In contrast to
this, algorithms for computing the minimum Hausdorff distance (under rigid
motions) [1] provide both, the distance measure and the corresponding matching.

4.1 Requirements to the Distance Function

In order to be useful in practice, a distance function d(S, V ∗) should at least
have the following properties:

Continuity The distance function should be continuous in the sense that small
changes in the scan (e.g., caused by noisy sensors) or even in the skeleton
(e.g., caused by an inexact map) should only result in small changes of the
distance. More precisely: Let dS(S1,S2) and dV ∗(V ∗

1 , V ∗
2) be functions that mea-

sure the resemblance between two scans S1 and S2 and between two skeletons V ∗
1

and V ∗
2 , respectively. An appropriate reference distance measure for dS(S1,S2)

and dV ∗(V ∗
1 , V ∗

2) is, for example, the Hausdorff distance (see Sect. 5.1).
The distance d(S, V ∗) is said to be continuous with respect to scans if

∀ε>0 ∃δ>0 : dS(S1,S2) < δ ⇒ |d(S1, V
∗) − d(S2, V

∗)| < ε

holds, for all scans S1,S2 and all skeletons V ∗. Analogously, d(S, V ∗) is said to
be continuous with respect to skeletons if

∀ε>0 ∃δ>0 : dV ∗(V ∗
1 , V ∗

2) < δ ⇒ |d(S, V ∗
1) − d(S, V ∗

2)| < ε

holds, for all skeletons V ∗
1 , V ∗

2 and all scans S.

Robot Localization Using Polygon Distances 207

The requirement of continuity is also motivated by the fact that particularly
the classification of the edges of the visibility polygon into different types (spu-
rious edges, partially visible edges, etc.) makes the original method susceptible
to perturbations: even a small translation of a vertex can change the type of an
edge which yields a skeleton that does not match any equivalence class. In this
sense, the exact match query of the original method can also be interpreted as
a discrete distance between a visibility polygon and a skeleton, which, however,
strongly violates the continuity requirement, because it takes only two values
(e.g., 0 – “match” and 1 – “no match”).

Similarity preservation A skeleton V ∗ that is similar to S should have a
small distance value d(S, V ∗). Otherwise, the distance would not give any ad-
vice for finding a well-matching skeleton and therefore would be useless for the
localization algorithm. In particular, if we take a scan S from a point p whose
skeleton equals V ∗, we want the distance d(S, V ∗) to be zero or at least small,
depending on the amount of noise and the resolution of the scan.

Translational invariance As the robot has no knowledge about the relative
position of the coordinate systems of the scan and the skeleton to each other, a
translation of the scan or the skeleton in their local coordinate systems must not
influence the distance. Rather finding this position is the goal of the localization
algorithm.

Rotational invariance If the robot does not have a compass, the distance must
also be invariant under rotations of the scan (or the skeleton, respectively).

Fast computability As the distance d(S, V ∗) has to be determined several
times for a single localization query (for different skeletons, see Sect. 4.2), the
computation costs should not be too high.

4.2 Maintaining the Skeletons

As we do not want to compare a scan with all skeletons to find the skeleton with
the highest resemblance (remember that their number can be in Ω(n2r2), see
Sect. 2.1), the skeletons should be stored in an appropriate data structure that
we can search through efficiently.

For this purpose we can use the Monotonous Bisector Tree [9], a spatial
index that allows to partition the set of skeletons hierarchically with respect
to a second distance function D(V ∗

1 , V ∗
2) that models the resemblance between

two skeletons V ∗
1 and V ∗

2 . The set of skeletons is recursively divided into clusters
with monotonously decreasing cluster radii in a preprocessing step. This division
then represents the similarities of the skeletons among each other.

208 Oliver Karch et al.

The distance function D(V ∗
1 , V ∗

2) should be chosen “compatible” to the func-
tion d(S, V ∗), such that in the nearest-neighbor query not all clusters have to
be investigated. That is, at least the triangle inequality

d(S, V ∗
2) ≤ d(S, V ∗

1) + D(V ∗
1 , V ∗

2)

should be satisfied. This way, we can determine lower bounds for the distance
values d(S, V ∗) of complete clusters, when traversing the tree. Such a cluster
can then be rejected and does not have to be examined.

5 Suitable Distances for d(S, V �) and D(V �

1 , V �

2)

It is hard to find distance functions that have all the properties from Sect. 4.1.
Particularly, the fifth requirement (fast computability) is contrary to the re-
maining ones. Moreover, it is often not possible to simply use existing polygon
distances, because in our problem we have to cope with scans and skeletons in-
stead of polygons. Therefore, a careful adaptation of the distance functions is
almost always necessary. And of course, it is even more difficult to find for a
given scan-skeleton distance d(S, V ∗) a compatible distance D(V ∗

1 , V ∗
2), which

we need for performing the nearest-neighbor query efficiently.
In the following, we investigate two distance functions, the Hausdorff distance

and the polar coordinate metric, and illustrate the occurring problems.

5.1 The Hausdorff Distance

For two point sets A, B ⊂ IR2, their Hausdorff distance δ(A, B) is defined as

δ(A, B) := max{�δ(A, B), �δ(B, A)} ,

where

�δ(A, B) := sup
a∈A

inf
b∈B

‖a − b‖

is the directed Hausdorff distance from A to B, and ‖·‖ is the Euclidean norm.
Accordingly, the term �δ(A, B) stands for the maximum distance of a point from A
to the set B.

Let T be the set of all Euclidean transformations (i.e., combinations of trans-
lations and rotations). The undirected and directed minimum Hausdorff dis-
tances with respect to these transformations are defined as

δmin(A, B) := inf
t∈T

δ(A, t(B)) and �δmin(A, B) := inf
t∈T

�δ(A, t(B)) .

It can easily be shown that the minimum Hausdorff distances are contin-
uous and by definition also fulfill the third and forth property of Sect. 4.1.
But their computation is very expensive. According to [1], this can be done in
time O((ms)4(m + s) log(m + s)) if m is the complexity of the scan and s is the

Robot Localization Using Polygon Distances 209

complexity of the skeleton. This is surely too expensive in order to be used in
our application.

On the other hand, the computation of the Hausdorff distance without mini-
mization over transformation application is relatively cheap [1], namely in
O((m + s) log(m + s)). The property of continuity is also not affected, but we
now have to choose a suitable translation vector and a rotation angle by hand.

An obvious choice for such a translation vector for a scan S and a skeleton V ∗

is the vector that moves the scan origin (i.e., the position of the robot) somewhere
into the corresponding visibility cell CV ∗ (e.g., the center of gravity of CV ∗). This
is reasonable, because by the definition of the visibility cells, exactly the points
in CV ∗ induce the skeleton V ∗. Of course, the consequence of doing so is that
all cells with the same skeleton (e.g., the big cells in the two outermost niches
in Fig. 1) must be handled separately, because the distance d(S, V ∗) now does
not only depend on V ∗, but also on the visibility cell itself.2 Besides, their
intersection may be empty and we might not find a common translation vector
for all cells. Of course, the bigger the cell is that the scan has to be placed into,
the bigger is the error of this approach, compared with the minimum Hausdorff
distance.

A compromise for computing a good matching, which does have the advan-
tages of the previous algorithms, is using an approximate matching strategy,
which yields only a pseudo-optimal solution. This means, the algorithm finds a
transformation t ∈ T with δ(A, t(B)) ≤ c·δmin(A, B), for a constant c ≥ 1. Alt et
al. [1] showed that for any constant c > 1 an approximate matching with respect
to Euclidean transformations can be computed in time O(ms log(ms) log∗(ms))
using so-called reference points. If we only want an approximate matching with
respect to translations instead of Euclidean transformations, the time complexity
would even be in O((m + s) log(m + s)).

Another point to consider is that a skeleton (interpreted as a point set) in
general is not bounded, because it includes a straight line for each artificial edge.
The result is that the directed distances �δ(V ∗,S) and �δmin(V ∗,S) almost always
return an infinite value (except for the trivial case when V ∗ equals the convex
map polygon and has no artificial edges). Therefore, we must either modify the
skeletons or we can only use the directed distances �δ(S, V ∗) and �δmin(S, V ∗).
Note that if we pursue the second approach, the distance �δmin(S, V ∗) is also
similarity preserving, provided that the resolution of the scan is high enough
such that no edge, in particular, no artificial edge, is missed.

5.2 The Polar Coordinate Metric

A more specialized distance for our problem than the Hausdorff distance is the
polar coordinate metric (PCM for short) investigated by Wahl [11], which takes
2 In this case, the notation d(S , V ∗) is a bit misleading, since there might exist sev-
eral cells that have the same skeleton V ∗. To be correct, we should use the nota-
tion d(S ,CV ∗), where the dependence of the distance from the cell is expressed more
clearly. But we will use the easier-to-understand expression d(S , V ∗).

210 Oliver Karch et al.

P

ϕ

pK

pcfP (ϕ)

2π
ϕ

Fig. 4. The polar coordinate function pcfP (ϕ) for a star-shaped polygon P

a fundamental property of our problem into account: all occurring polygons are
star-shaped in the following sense, and we even know a kernel point:

– The approximate visibility polygon VS (generated from the scan points) is
star-shaped by construction with the origin as a kernel point.

– Every skeleton V ∗ is star-shaped in the sense that from every point in the
corresponding visibility cell CV ∗ all full edges are completely visible, and for
each artificial edge ai a part of the corresponding straight line gi is visible.

To define the PCM between two (star-shaped) polygons P and Q with kernel
points pK and qK we first define the value of the polar coordinate function (PCF
for short)

pcfP (ϕ) : IR → IR≥0

as the distance from the kernel point pK to the intersection point of a ray starting
at pK in direction ϕ with the boundary of P . That is, the function pcfP (ϕ)
corresponds to a description of the polygon P in polar coordinates (with pK as the
origin) and is periodical with a period of 2π. Figure 4 depicts the PCF for a star-
shaped polygon as an example. In the same way we define the function pcfQ(ϕ)
for the polygon Q.

Then, the PCM between the polygons P and Q is the minimum integral norm
between the functions pcfP and pcfQ in the interval [0, 2π[over all horizontal
translations between the two graphs (i.e., rotations between the corresponding
polygons):

pcm(P, Q) := min
t∈[0,2π[

√∫ 2π

0

(
pcfP (ϕ − t) − pcfQ(ϕ)

)2 dϕ (1)

Figure 5 shows an example, where the two graphs are already translated in a
way such that this integral norm is minimized.

Robot Localization Using Polygon Distances 211

Fig. 5. Computation of the PCM as minimum integral norm

For a fixed kernel point the function pcfP is continuous in ϕ except for one
special case: when we move a vertex of a polygon edge such that the edge becomes
collinear to pK, the function pcfP has a discontinuity at the corresponding angle,
the height of which represents the length of the collinear edge. Moreover, the
PCF is also continuous in the sense of the definitions in Sect. 4.1 with respect
to translations of the polygon vertices or translations of the kernel point unless
this special case occurs. But as pcfP and pcfQ may have only finitely many
such discontinuities, the integration makes them continuous with respect to all
translations of polygon vertices and translations of the kernel points, provided
that P and Q remain star-shaped with kernel points pK and qK.

It can easily be seen that the PCM fulfills the continuity requirement of
Sect. 4.1, if the kernel points are considered as a part of the polygons (i.e., part
of the input of the PCM). This means that, given two polygons P and Q and
an ε > 0, we can find a δ > 0 such that |pcm(P, Q) − pcm(P ′, Q)| < ε, for
all polygons P ′ that are created from P by moving all vertices and the kernel
point pK by at most δ. Moreover, if the kernel points are not considered as input
of the PCM (that is, they are computed from P and Q by the algorithm that
computes pcm(P, Q)), the PCM is continuous as well, provided that the kernel
points depend continuously on the polygons. For example, the center of gravity
of the kernel of a polygon P depends continuously on P and can be used as a
kernel point pK, whereas, for example, the left-most kernel point does not depend
continuously on the polygon.

Wahl [11] also showed that the function pcm(P, Q) is a polygon metric, pro-
vided that the kernel points are invariant under Euclidean transformations. That
is, if p′

K
denotes the kernel point of a polygon P ′ = t(P) for a transforma-

tions t ∈ T , the equality t(pK) = p′
K

must hold, for all polygons P and all t ∈ T .
For example, the center of gravity of the kernel of the polygon has this property.

Using the PCM as distance d(S, V ∗) If we want to use the PCM as a
distance function d(S, V ∗) we need corresponding star-shaped polygons for S
and V ∗ that can be used as polygonal representatives for the scan and the
skeletons:

212 Oliver Karch et al.

– For the scan, we choose the approximated visibility polygon VS , which is
star-shaped by construction. Again, the coordinate origin can be used as a
kernel point.

– For generating a polygon from a skeleton V ∗ (with corresponding cell CV ∗),
we choose a point c inside the cell CV ∗ (e.g., the center of gravity) and
determine the visibility polygon Vc of this point. By construction, c is a
kernel point of V ∗

C .

In the sequel we will only use VS and Vc for determining the distance mea-
sures. Then, our goal is to find the polygon Vc that is most similar to the ap-
proximated visibility polygon VS with respect to pcm(VS ,Vc). With this choice
we obtain the following theorem about the polar coordinate metric as a distance
function:

Theorem 1. The distance function d(S, V ∗) := pcm(VS ,Vc), with VS and Vc

as defined above, fulfills the following requirements from Sect. 4.1: continuity and
invariance against translations and rotations.

Note that the PCM is not similarity preserving: if the point c chosen above for
computing a corresponding polygon for a visibility cell C does not equal the
robot’s position, the two polygons that are compared by the PCM are different
and their distance value cannot be zero. But in practice, the visibility cells usually
are not too large. That means, if we take a scan at a position p ∈ C, the distance
from p to the corresponding point c ∈ C is not too large. Thus, the approximated
visibility polygon VS and the visibility polygon Vc differ not too much, and the
value of pcm(VS ,Vc) is small.

Computing the PCM value efficiently The exact computation of the min-
imum in (1) seems to be difficult and time consuming, since the polar coordi-
nate functions of a polygon with p edges consists of p pieces of functions of the
form ci/ sin(ϕ + αi). For one fixed translation t (this corresponds to the case,
when the robot already knows its exact orientation), the integral

√∫ 2π

0

(
pcfP (ϕ − t) − pcfQ(ϕ)

)2 dϕ

can be computed straightforward in linear time O(p+q), where p and q stand for
the complexities of the two polygons. But the global minimum over all possible
values of t ∈ [0, 2π[seems to be much harder to determine.

Therefore, we use two different approximative approaches for computing a
suitable PCM value. Both approaches use a set of supporting angles/points for
each of the two involved polar coordinate functions. For a given polygon its
supporting angles are the angles that correspond to a vertex of the polygon plus
the angles of the local minima of the inverse sine functions (see the left part of
Fig. 6). The ideas of the two approximative approaches are then as follows:

Robot Localization Using Polygon Distances 213

Fig. 6. Two approaches for an approximative PCM value

1. For the first approach we concentrate on the O(p) (or O(q), respectively)
supporting angles (see the left part of Fig. 6). Namely, we do not minimize
over all rotation angles of the two polygons, but only over the O(pq) rotation
angles, that place one supporting angle of the first polygon on a supporting
angle of the second one. The integral values are then computed exactly in
time O(p + q). Summing up, we need O(pq(p + q)) time to compute this
approximated value of the PCM.

2. In the second approach we compute an exact minimum over all rotation
angles, but use a modified polar coordinate function. Namely, we introduce
a linear approximation of the PCM, which also has all metric properties and
is sufficient for our applications. This approximation is depicted in the right
part of Fig. 6: the supporting points (that correspond to a polygon vertex
or a local minima of the PCF) are connected by straight line segments to
get a modified PCF. The minimum integral norm is then defined like in the
non-approximated version of the PCM (see (1)). Following an idea of Arkin
et al. [2], the actual computation of the minimum integral norm between the
two piecewise linear functions can now be carried out much faster than the
computation of the original PCM: Arkin et al. compute the minimum integral
norm between two piecewise constant functions in time O(pq). This idea can
be generalized to compute the approximated PCM in time O(pq · (p+q)). Of
course, if we do not want to minimize over the rotations, the computation
time is again in O(p + q) like for the non-approximated version.

Using the PCM as distance D(V ∗
1 , V ∗

2) Since the PCM has all metric
properties, it particularly fulfills the triangle inequality. Therefore, we can use it
not only for defining the scan-skeleton distance d(S, V ∗), but also for defining a
compatible skeleton-skeleton distance D(V ∗

1 , V ∗
2).

For this task, we again use for each pair of a skeleton V ∗ and its corresponding
cell CV ∗ the polygonal representative Vc as defined in the last section. Then, the
triangle inequality

d(S, V ∗
2) ≤ d(S, V ∗

1) + D(V ∗
1 , V ∗

2)

214 Oliver Karch et al.

follows immediately from the triangle inequality of the PCM,

pcm(VS ,Vc2) ≤ pcm(VS ,Vc1) + pcm(Vc1 ,Vc2) ,

and we can apply the Monotonous Bisector Tree to the set of skeletons for
increasing the performance of the nearest-neighbor query.

The PCM in realistic scenarios Since the PCM is continuous and invariant
under Euclidean transformations, we can hope that the first two problems men-
tioned in Sect. 3 (the noisy scans and the unknown robot orientation) are solved
satisfactorily.

Also the third problem (unknown obstacles in the environment) does not
strongly influnce the PCM as long as the obstacles take up only a small interval
of the whole scanning angle. But the other case, where the obstacles occupy a
large part of the robot’s view, poses a problem to our localization method. Here,
additional (heuristic) algorithms are needed to detect such cases.

In contrast to this, a possibly limited sensing range (the fourth problem
addressed in Sect. 3) can be easily tackled in a straightforward manner: when
we compute the distances d(S, V ∗) and D(V ∗

1 , V ∗
2), we simply cut off all distance

values larger than the sensing range, that is, for all occuring polygons we use a
modified PCF,

pcf ′P (ϕ) := min{pcfP (ϕ), sensing range} .

6 Our Implementation RoLoPro

We have implemented the two versions of the localization algorithm in C++ using
the Leda Library of Efficient Datatypes and Algorithms [8], namely the original
method described in Sect. 2 for exact sensors as well as the modification for
realistic scenarios introduced above. Here, the original algorithm was modified
and simplified at some points, since we did not focus our efforts on handling
sophisticated but rather complicated data structures and algorithmic ideas that
were suggested by Guibas et al. Rather, we wanted to have an instrument to
experiment with different inputs for the algorithm that is reasonably stable to
be used in real-life environments in the future and that can serve as a basis
for own modifications. A consequence is that the program does not keep to all
theoretical time and space bounds proven in [5,6], as this would have required a
tremendous programming effort. Nevertheless, it is reasonably efficient. Figure 7
shows some screen shots of our robot localization program RoLoPro processing
localization queries in real as well as in simulated environments.

As distance function d(S, V ∗) we have implemented the Hausdorff distance
and the polar coordinate metric described in Sect. 5. Only for the PCM the
efficient skeleton management described in Sect. 4.2 was implemented, since
for the Hausdorff distance we could not find a suitable distance D(V ∗

1 , V ∗
2).

Therefore, in this case the scan has to be compared with all skeletons, which is

Robot Localization Using Polygon Distances 215

Fig. 7. Screen shots of RoLoPro

216 Oliver Karch et al.

much more time consuming than the PCM approach, which uses the Monotonous
Bisector Tree.

Furthermore, we have implemented some additional features into RoLoPro,
described in the following.

Noisy compass We are able to model different kinds of compasses by using
modified minimization intervals in (1), namely

– an exact compass: here the minimization interval consists only of a single
value that represents the orientation of the robot with respect to the map,

– no compass at all: since we know nothing about the robot’s orientation, we
use [0, 2π[as the minimization interval,

– a noisy compass: here we use a smaller interval [o − ε, o + ε[⊂ [0, 2π[that
depends on the orientation of the robot and the uncertainty ε < π of the
compass.

In most cases we have to carefully adapt the distances d(S, V ∗) and D(V ∗
1 , V ∗

2)
in different ways, such that the requirements from Sect. 4.1 and the triangle
inequality remain fulfilled.

Partial range scans By modifying the integration interval in (1) we also can
process partial range scans, where the scanning angle is less than 2π. As well
as in the noisy-compass feature the distances have to be carefully modified, in
particular if we want to use both features at the same time.

Additional coarsening step The complexity of the visibility cell decomposi-
tion, which is necessary for the geometrical approach described in Sect. 2 and
which is the basis for our own approach, is quite high. But in practice many
of the visibility cells need not be considered, because their skeletons differ only
slightly from the skeletons of neighboring cells and the cells themselves are often
very small.

Therefore, we have implemented an additional coarsening step, where neigh-
boring cells with small distances D(V ∗

1 , V ∗
2) are combined into one bigger cell.

This way, we need less space for storing the cells as well as less time for con-
structing the Monotonous Bisector Tree. Of course, this coarsening procedure
reduces the quality of the localization, since we obtain both, a fewer number
of distance values and larger visibility cells. Thus, the threshold value for the
merging step must be carefully chosen by the user.

7 First Experimental Tests

First tests in small simulated scenes have shown a success rate of approxi-
mately 60 % for the directed Hausdorff distance, i.e., the scan origins of about 60

Robot Localization Using Polygon Distances 217

Fig. 8. Some localization examples using the PCM

out of 100 randomly generated scans were inside that cell with the smallest dis-
tance d(S, V ∗) to the scan. In the same scenes the success rate of the polar
coordinate metric was about 80 - 90 %.

We also have evaluated our approach in real environments (using the PCM
as distance function), namely in our department and in a “less friendly” super-
market environment, where the scans were very noisy. In both cases the scans
were generated by a SICK PLS/LMS 200 laser scanner and we always assumed
that the robot has a compass.

Figure 8 shows some localization examples for the first environment: we used
a partial map of our department, which consists of 76 vertices, 54 of them reflex.
This led to a total number of about 4 300 visibility cells, which were finally
reduced to about 3 300 cells by our coarsening step (using a suitable threshold).
Each of the full range scans consists of 720 range measurements.

Almost all localization queries resulted in solutions like the first two examples
in Fig. 8. Only about 5 - 10 % of the localization queries failed. For example, the
reason for the bad result of the third query in Fig. 8 probably were some scan
points at a distance of about 50m in the right part of the scan (cut off in the
figure), which were produced by scanning through a window. Since the PCM
“tries” to minimize a kind of average quadratic error, the scan was shifted in
the opposite direction to the left.

In the supermarket environment our current localization approach completely
failed, probably because of the very noisy range scans, which produced effects

218 Oliver Karch et al.

like the third example of Fig. 8. Moreover, in this environment only half range
scans were available such that the localization problem gets even harder.

8 Future Work

Our main goals for the future are to overcome some of the current limitations of
our approach:

– We try to further reduce the large space requirements of our approach
(caused by the space consuming visibility cell decomposition). For this task
we want to use a more sophisticated approach than our current coarsening
step, for example by considering also the scan resolution and the limited
sensing range.

– Currently, the performance of our approach is not good enough, if we have no
compass information, because the distance computation for this case takes
O(pq(p + q)) time, instead of linear time for the case of an exact compass.
Therefore, we want to speed up the distance computation using a suitable
scan preprocessing.

– For the case of extremely disordered scans we get very bad localization results
(like in the supermarket environment described above). To overcome this
problem, we try to modify the PCM appropriately and try to do an additional
preprocessing for the scans.

Another goal is to implement a matching algorithm (see Sect. 4), which eventu-
ally determines the position of the robot from the scan and that skeleton with
highest resemblance to the scan. Otherwise, we would only know the visibility
cell, where the robot is located, that is, a possibly coarse approximation of its
position.

Furthermore, we also want to integrate navigation algorithms into our ap-
proach, such that the robot can move around to eliminate ambiguous positions.

Acknowledgements

We gratefully acknowledge helpful comments given by Rolf Klein, Sven Schuierer,
and Knut Verbarg.

This research is supported by the Deutsche Forschungsgemeinschaft (DFG)
under project numbers No 88/14-1 and No 88/14-2.

References

1. H. Alt, B. Behrends, and J. Blömer. Approximate Matching of Polygonal Shapes.
Annals of Mathematics and Artificial Intelligence, 13:251–265, 1995.

2. E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell.
An Efficiently Computable Metric for Comparing Polygonal Shapes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 13:209–216, 1991.

Robot Localization Using Polygon Distances 219

3. I. J. Cox. Blanche — An Experiment in Guidance and Navigation of an Au-
tonomous Robot Vehicle. IEEE Transactions on Robotics and Automation,
7(2):193–204, April 1991.

4. G. Dudek, K. Romanik, and S. Whitesides. Localizing a Robot with Minimum
Travel. SIAM Journal on Computing, 27(2):583–604, 1998.

5. L. J. Guibas, R. Motwani, and P. Raghavan. The Robot Localization Problem.
In K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson, editors, Algorithmic
Foundations of Robotics, pages 269–282. A K Peters, 1995. http://theory.stanford.
edu/people/motwani/postscripts/localiz.ps.Z.

6. O. Karch. A Sharper Complexity Bound for the Robot Localization Problem. Tech-
nical Report No. 139, Department of Computer Science I, University of Würzburg,
June 1996. http://www-info1.informatik.uni-wuerzburg.de/publications/karch/

tr139.ps.gz.
7. O. Karch and Th. Wahl. Relocalization — Theory and Practice. Discrete Applied

Mathematics (Special Issue on Computational Geometry), to appear, 1999.
8. K. Mehlhorn and S. Näher. LEDA – A Platform for Combinatorial and Geometric

Computing. Communications of the ACM, 38:96–102, 1995. http://www.mpi-sb.

mpg.de/guide/staff/uhrig/ledapub/reports/leda.ps.Z.
9. H. Noltemeier, K. Verbarg, and C. Zirkelbach. A Data Structure for Represent-

ing and Efficient Querying Large Scenes of Geometric Objects: MB∗–Trees. In
G. Farin, H. Hagen, and H. Noltemeier, editors, Geometric Modelling, volume 8 of
Computing Supplement, pages 211–226. Springer, 1993.

10. S. Schuierer. Efficient Robot Self-Localization in Simple Polygons. In R. C. Bolles,
H. Bunke, and H. Noltemeier, editors, Intelligent Robots – Sensing, Modelling, and
Planning, pages 129–146. World Scientific, 1997.

11. Th. Wahl. Distance Functions for Polygons and their Application to Robot Local-
ization (in German). Master’s thesis, University of Würzburg, June 1997.

12. C. M. Wang. Location estimation and uncertainty analysis for mobile robots. In
I. J. Cox and G. T. Wilfong, editors, Autonomous Robot Vehicles. Springer, Berlin,
1990.

	The Localization Problem
	Solving the Geometric Problem
	Decomposing the Map into Cells
	The Visibility Skeleton
	Performing a Localization Query

	Problems in Realistic Scenarios
	Adaptation to Practice
	Requirement to the Distance Function
	Maintaining the Skeletons

	Suitable Distances for d (S ,V *)and (V*_ 1 ,V *_ 2)
	The Hausdor .Distance
	The Polar Coordinate Metric

	Our Implementation RoLoPro
	First Experimental Tests
	Future Work

