Robot Localization: Theory and Implementation*

Oliver Karch

Hartmut Noltemeier

Thomas Wahl

Department of Computer Science I
University of Wiirzburg
Am Hubland, D-97074 Wiirzburg, Germany

Email: {karch, noltemei, wahl}@informatik.uni-wuerzburg.de

1 Introduction

We consider the robot localization problem de-
scribed as: a robot is at an unknown position in an
indoor-environment and has to determine where
it is located. This problem occurs if, for example,
the robot “wakes up” after a breakdown (e.g., a
power failure) and knows nothing about its initial
configuration before the breakdown.

We assume that the robot has a polygonal map
P of its environment, a range sensing device (e.g.,
a laser radar), which allows it to determine its
visibility polygon V, and a compass (i.e., the robot
already knows its orientation). Then, the localiza-
tion process usually consists of two stages:

First, the non-moving robot enumerates all hy-
pothetical positions that are consistent with its
sensor data, that is, all points p € P such that
the visibility polygon V, of p equals the measured
polygon V. For this task, Guibas, Motwani, and
Raghavan [2] present a simple algorithm with run-
ning time O(nm) if P consists of n and V consists
of m vertices. They also propose a more sophisti-
cated data structure to perform this query in time
O(log n+m+k) with preprocessing costs of O(n'r)
in the worst case, where r is the number of reflex
vertices of P and k is the number of hypothetical
robot positions, for which ¥ < r can be shown.

If there are several robot positions that in-

duce the same visibility polygon, they cannot be
distinguished by a non-moving robot. In those
cases, the robot eliminates the wrong hypothe-
ses and determines its position exactly by mov-
ing around in its environment (as little as possi-
ble) in the second stage. For this, Dudek, Ro-
manik, and Whitesides [1] describe a simple com-
petitive greedy strategy with time and space com-
plexity O(k?n*), which was recently improved by
Schuierer [5] to a running time of O(knlogn) and
space complexity of O(kn).

In this talk we concentrate on generating the
possible robot locations in the framework of the
method proposed by Guibas et al. We present a
slightly sharper bound of O(n%r(n + r2)) for the
preprocessing costs, in which the dependence on
the number of reflex vertices is more evident.

Since this method requires an exact map and
error-free sensors it is not directly applicable in
practice. To overcome this problem we are cur-
rently working on the use of distance functions to
model the resemblance between the range scans
and the preprocessed skeletons. We have already
implemented a variant of the original method of
Guibas et al. (with some simplifications) and are
going to adapt it in order to test different distance
functions for their usability in practice.

2 A Sharper Preprocessing Bound

2.1 Preliminaries

The main idea in [2] is to decompose the map P
into wisibility cells such that all points p of one
cell C have identical visibility skeletons V7 = V.
That is, their visibility polygons V, are essen-
tially the same and differ only in spurious edges
(collinear with the viewpoint p) or in those map
edges that are only partially visible (due to oc-
clusions by reflex vertices). In the corresponding
skeleton, such a partially visible edge is replaced
by an artificial edge together with the line equa-
tion of the original edge.

A position where a skeleton V* “fits” into the
map is called an embedding h(V*) of the skele-
ton. Figure 1 shows an example: the skeleton
V* on the left has one artificial edge a; (with the
corresponding line g1). There exist three embed-
dings hy(V*),...,hs(V*) such that the skeleton
fits into the map. The visibility cells with skele-
ton V* (dark gray) are those places where exactly
one of the three candidate edges e, ... ,es is (par-
tially) visible through the embedded artificial edge
h;i(ay). These candidate edges are collinear and lie
on the embedded line h;(g1).

*This research is supported by the Deutsche Forschungsgemeinschaft (DFG) under Proj.no. No 88/14-1.

For the localization process, it can be shown
that, in order to determine all points that have V,
as their visibility polygon, it suffices to consider all
embeddings h;(V;) of the skeleton V¥, and then to
check whether the corresponding embedded view-
point h;(p) induces the same skeleton V*. (That
is, the point h;(p) must lie in a visibility cell C
with V& = V)

N ; e1) e3

hi (V) h;(v‘*‘) ha(V*)

Figure 1: A skeleton V* with three embeddings
(bold) hi(V*),...,h3(V*). The three visibility
cells (dark gray) in embedding ho(V*) are created
by intersecting the visibility wedges (light gray)
with the kernel Ker(ho(V*)).

Using this idea along with some sophisticated
data structures and algorithms, Guibas et al. are
able to show that for map polygons without holes
the localization problem can be solved with a
query time of O(logn + m + k) and preprocess-
ing costs of O(n?r - |EC|).

To this end, the visibility cells are divided
into equivalence classes according to their skele-
ton, and |EC| denotes the worst case-complexity of
those equivalence classes. The complexity of such
a class ECy+ is simply the total number of vertices
of all visibility cells in ECy+ (i.e., the number of
vertices of all cells with skeleton V*). In [2] this
complexity is shown to be in O(n?).

2.2 A Sharper Bound for |ECy+|

To establish a sharper bound of O(n + r?2) for the
complexity of any equivalence class ECy+, we have
to count carefully the vertices/edges of the visibil-
ity cells that have V* as their skeleton. To this
end, we show that each such visibility cell (which
lies in an embedding hA(V*) of V*) is bounded by
only two different types of edges:

e edges of the kernel Ker(h(V*)),

e edges of visibility wedges which are induced
by the candidate edges for the (embedded)
artificial edges of the skeleton.

For an artificial edge h(a) in an embedding h(V*)
and a candidate edge e, the corresponding visibil-
ity wedge is the set of all points for which only
points of the candidate edge e are visible when
looking “through” the artificial edge h(a).

Figure 1 illustrates this: each of the three can-
didate edges ey, ... ,es induces a visibility wedge
in the embedding h2(V*). The union of the three
wedges for the artificial edge h2(a1) intersected
with the kernel Ker(hy(V*)) yields the set of visi-
bility cells in ho(V*) that are equivalent to V*.

It is easy to see that the number of edges of
the second type, which depends strongly on the
total number of candidate edges, dominates the
complexity of ECy-. Therefore, let E be the set
of all candidate edges for all artificial edges in all
embeddings of the skeleton V*. For map poly-
gons without holes or with only convex holes, the
cardinality of E is in O(r).

If each candidate edge of E could be assigned
to at most one visibility wedge, the complexity of
the arrangement of all wedges, O(|EJ?) = O(r?),
would be an upper bound for the considered num-
ber of edges. But, unfortunately, this is not pos-
sible as is depicted in Figure 1: edge e; induces
a visibility wedge in all of the three embeddings.
Therefore, edge e; cannot be uniquely assigned
to one of the visibility wedges and this naive ap-
proach does not succeed.

But, with the observation that each pair of
candidate edges can be assigned to at most one
pair of visibility wedges, we are able to show the
following theorem. (We omit the details in this
context; the complete proof is given in [3].)

Theorem 1 The total complexity of any equiva-
lence class for a map polygon without holes is in
O(n +r?).

This result can be extended to map polygons with
only convex holes. For this setting, it can be
shown that the complexity of ECy+ is in O(n +
(I 4+ 1)r?), where [is the number of holes.

3 Implementation of the Algorithm

In order to investigate the behavior of the algo-
rithm, we implemented a simplified version of it in
C++. “Simplified” means that we did not focus our

efforts on observing data structures and program-
ming details that were suggested by Guibas et al.
Rather, we wanted to have an instrument to ezper-

iment with different inputs for the algorithm, as
to make it reasonably stable to be used in real-life
environments in the future. A major consequence
is that the program does not keep to theoretical
time and space bounds proven in [2, 3], as this
would have required tremendous programming ef-
forts. The program correctly handles any topolog-
ical special cases, in particular self-similarities in
the scene which may occur when the obstacles or
the border polygon have many collinear or parallel
edges.

Now let us briefly describe the course of the
program. In a first step, the visibility cell decom-
position is computed by introducing visibility lines
into the scene. This decomposition defines a pla-
nar straight line graph, which partitions the plane
into regions; we distinguish between the outer re-
gion, visibility cell regions, and obstacle regions.

Next, the visibility skeleton for each cell region
is computed and stored in an incremental fashion
by walking from one cell to one of its neighbors.
(At this point, we take up a lot more space and
time than it was granted by Guibas et al.) This
concludes the preprocessing.

In the query, the skeleton of the input point is
determined from the visibility polygon and com-
pared to the skeletons of all visibility cells. (In
particular, we currently do not search for match-

ing skeletons in a sophisticated tree data struc-
ture as proposed in [2].) Whenever a match is
found, the corresponding cell is highlighted. We
now overlay the query skeleton with any matching
cell skeleton. Such we obtain the map position of
the query point that is induced by the cell skele-
ton. If this point is inside the cell, an answer to
the query is found and marked as a “solution”.

All constructive phases of the algorithm, as the
cell decomposition, can be processed in a step-by-
step manner, that is, the user may check inter-
mediate results at any point. The program also
includes a demonstration of the visibility poly-
gon/skeleton computation, which can be used to
explain the idea of the algorithm.

For many data structures, we wused the
LEDA Library of Efficient Data Types and Algo-
rithms [4]. This includes all basic geometric ob-
jects, the planar straight line graph and others.
Most of LEDA’s data structures are provided also
for rational coordinates in order to achieve exact
arithmetic. The use of LEDA’s robust algorithms
(e.g., for the computation of line arrangements)
is another reason not to focus on (theoretically)
optimal running time or space requirements, since
in that case many of these algorithms would have
had to be modified or could not have been used at
all.

4 Usability in Realistic Scenarios

When we try to use the localization method de-
scribed above in realistic scenarios, the visibility
skeleton that the robot computes from its sensor
data usually does not ezactly match any of the
preprocessed skeletons due to sensor uncertain-
ties. That is, the robot is not able to determine
the correct equivalence class of skeletons and the
localization process completely fails.

Our suggestion to tackle this problem is to
use an appropriate distance function d(S,V*) that

References

[1] G. Dudek, K. Romanik, and S. Whitesides. Local-
izing a Robot with Minimum Travel. In Proceed-
ings of the 6th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 437446, 1995.

[2] L. J. Guibas, R. Motwani, and P. Raghavan. The
Robot Localization Problem. In K. Goldberg,
D. Halperin, J.-C. Latombe, and R. Wilson, ed-
itors, Algorithmic Foundations of Robotics, pages
269-282. A K Peters, 1995.

[3] O. Karch. A Sharper Complexity Bound for the
Robot Localization Problem. Technical Report
No. 139, Department of Computer Science I,

models the resemblance between a range scan S
(from the sensor) and a preprocessed skeleton V'*.
Then, a localization query corresponds to a near-
est neighbor query in the set of skeletons with re-
spect to the chosen distance function d(S, V*).

Currently, we are investigating the usability of
different distances theoretically, and are going to
implement and test some distance functions in the
framework of our localization software described
above.

University of Wiirzburg, June 1996. http://www-
infol.informatik.uni-wuerzburg.de/publications/
karch/tr139.ps.gz.

[4] K. Mehlhorn and S. Niher. LEDA - A Plat-
form for Combinatorial and Geometric Com-
puting. Communications of the ACM, 38:96—
102, 1995. http://www.mpi-sb.mpg.de/guide/
staff/uhrig/ledapub/reports/leda.ps.Z.

[5] S. Schuierer. Efficient Robot Self-Localization in
Simple Polygons, 1996. Unpublished manuscript,
accepted for the CG’97 Workshop.

