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Monotonicity in concurrent systems stipulates that, in any global state, system actions 
remain executable when new processes are added to the state. This concept is both 
natural and useful: if every thread’s memory is finite, monotonicity often guarantees the 
decidability of safety properties even when the number of running threads is unknown. 
In this paper, we show that finite-data thread abstractions for model checking can be 
at odds with monotonicity: predicate-abstracting monotone software can result in non-
monotone Boolean programs — the monotonicity is lost in the abstraction. As a result, 
pertinent well-established safety checking algorithms for infinite-state systems become 
inapplicable. We demonstrate how monotonicity in the abstraction can be restored, without 
affecting safety properties. This improves earlier approaches of enforcing monotonicity 
via overapproximations. We implemented our solution in the unbounded-thread model 
checker monabs and applied it to numerous concurrent programs and algorithms, whose 
predicate abstractions are often fundamentally beyond existing tools.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Multi-threading is becoming a premier technology for accelerating computations in a post frequency-scaling era. The 
widespread availability of thread libraries for mainstream languages including C and Java, as well as for all major operat-
ing systems, makes this technology easily accessible. This can entrap the inexperienced programmer to create code with 
puzzling and irreproducible behavior. The software community needs to respond to this threat in part by providing formal 
technology that exposes potential bugs in concurrent programs before deployment.

Towards this end, this paper proposes a safety analysis method for non-recursive procedures executed by multiple 
threads (e.g. dynamically generated, and possibly unbounded in number), which communicate via shared variables and 
higher-level mechanisms such as mutexes. OS-level code, including Windows, UNIX, and Mac OS device drivers, makes fre-
quent use of such concurrency APIs, whose correct use is therefore critical to ensure a reliable programming environment.

The verification method we propose is based on predicate abstraction. The utility of this technique is known to depend 
critically on the choice of predicates: the consequences of a poor choice range from inferior performance to flat-out unprov-
ability of certain properties. We introduce an extension of predicate abstraction to multi-threaded programs that enables 
reasoning about intricate data relationships, namely
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The ticket algorithm: Shared variable lock has two natural-
number components: s holds the number of the ticket cur-
rently being served, while t holds the next free number (if no 
thread is currently served, we have s = t).
To request access to the protected region, a thread atomically 
retrieves the value of t into local variable l and then incre-
ments t. The thread then spins until l equals s. To unlock, 
s is incremented.

Fig. 1. The ticket algorithm — Our goal is to verify standard parameterized mutual exclusion: no matter how many threads try to acquire and release the 
lock concurrently, no two of them are simultaneously between the calls to functions spin_lock and spin_unlock.

shared-variable: “shared variables s and t are equal”,
single-thread: “local variable l of thread i is less than shared variable s”, and
inter-thread: “local variable l of thread i is less than variable l in all other threads”.

Why such a rich predicate language? For certain concurrent algorithms such as the widely used ticket busy-wait lock 
algorithm [1] (the default locking mechanism in the Linux kernel since 2008; see Fig. 1), the verification of elementary 
safety properties requires inter-thread relationships (see Sect. 2.2). They are needed to express, for instance, that a thread 
holds the minimum ticket value, an inter-thread relationship.

In the main part of the paper, we address the problem of full parameterized (unbounded-thread) program verification 
with respect to our predicate language. Such reasoning requires first that the n-thread abstract program P̂n , obtained by 
existential predicate abstraction of the n-thread concrete program Pn , is rewritten into a generic template program P̃ to be 
executed by (any number of) multiple threads. In order to capture the semantics of these programs in the template P̃ , the 
template programming language, too, must permit variables that refer to the currently executing thread, or to all passive 
(non-executing) threads; we call such programs dual-reference (DR). We describe how to obtain P̃ , namely as an overap-
proximation of P̂b , for a constant b that grows linearly with the number of inter-thread predicates used in the abstraction.

Given a Boolean dual-reference program P̃ (obtained from predicate abstraction), we might expect the unbounded-thread 
replicated program P̃∞ to form a classical well quasi-ordered transition system [2], enabling the fully automated, algorithmic 
safety property verification in the abstract. This turns out not to be the case: the expressiveness of dual-reference programs 
renders parameterized program location reachability undecidable, despite the finite-domain variables. The root cause is the 
lack of monotonicity of the transition relation with respect to the standard partial order over the space of unbounded thread 
counters. That is, adding passive threads to the source state of a valid transition can invalidate this transition. Since the 
input C programs are, by contrast, typically monotone, we say the monotonicity is lost in the abstraction. As a result, our 
abstract programs are in fact not well quasi-ordered.

Inspired by earlier work on monotonic abstractions [3], we address this problem by restoring the monotonicity using a 
simple closure operator, which enriches the transition relation of the abstract program P̃ such that the obtained program P̃m

gives rise to a monotone (and thus well quasi-ordered) system. The closure operator essentially terminates passive threads 
that block transitions allowed by other passive threads. In contrast to earlier work [3], which enforces monotonicity in 
genuinely non-monotone systems, we exploit the monotonicity of the input programs. As a result, the monotone closure P̃m

can be shown to be safety-equivalent to the non-monotone program P̃ .
To summarize, the core contribution of this paper is a predicate abstraction strategy for asynchronous unbounded-thread 

C programs, with respect to the rich language of inter-thread predicates. This language allows the abstraction to track 
properties that are essentially universally quantified over all passive threads. We have implemented our technique in the 
infinite-state model checker monabs. We observe that our tool is able to verify certain parameterized programs (such as the 
ticket algorithm) that are fundamentally beyond existing tools we are aware of [4–11]. The reasons vary from their inabil-
ity to deal with unbounded threads, to lacking support for inter-thread predicates. We include an extensive experimental 
evaluation on system-level concurrent software and synchronization algorithms.

2. Inter-thread predicate abstraction

In this section we introduce single- and inter-thread predicates, with respect to which we then formalize existential 
predicate abstraction. Except for the extended predicate language, these concepts are mostly standard and lay the technical 
foundations for the contributions of this paper.



32 A. Kaiser et al. / Information and Computation 252 (2017) 30–47
2.1. Input programs and predicate language

Asynchronous programs An asynchronous program P allows only one thread at a time to change its local state; the exe-
cutability of the state change does not depend on the state of other threads. We model P , designed for execution by n ≥ 1
concurrent threads, as follows. The variable set V of a program P is partitioned into sets S and L. The variables in S , 
called shared, are accessible jointly by all threads, and those in L, called local, are accessible by the individual thread that 
owns the variable. We assume the statements of P are given by a transition formula R over unprimed (current-state) and 
primed (next-state) variables, V and V ′ = {v′ : v ∈ V }. Further, the initial states are characterized by a formula I over V . 
We assume I is expressible in a suitable logic for which existential quantification is computable (required later for the 
abstraction).

As usual, the computation may be controlled by a local program counter pc; it may also involve non-recursive function 
calls. When executed by n threads, P gives rise to n-thread program states consisting of the valuations of the variables 
in Vn = S ∪ L1 ∪ . . . Ln , where Li = {li : l ∈ L}. We call a variable set uniquely indexed if its variables either all have no 
index, or all have the same index. For a formula f and two uniquely-indexed variable sets X1 and X2, let f {X1 � X2}
denote f after replacing every occurrence of a variable in X1 by the variable in X2 with the same base name, if any; 
unreplaced if none. We write f {X1 ��X2} short for f {X1 � X2}{X1

′ � X2
′}. As an example, given S = {s} and L = {l}, we have 

(l′ = l+ s){L ��La} = (l′a = la + s). Finally, let X
◦= X ′ stand for ∀x ∈ X : x = x′ .

The n-thread instantiation Pn is defined for n ≥ 1 as

Pn = (Rn,In)=
(∨n

a=1
(Ra)

n,
∧n

i=1
I{L � Li}

)
(1)

where

(Ra)
n :: R{L ��La} ∧ ∧

p∈[1..n]\{a} Lp
◦= L′p . (2)

Formula (Ra)
n asserts that the shared variables and the local variables of the active (executing) thread a are updated 

according to R, while those of passive threads p �= a are unchanged. A state is initial if all threads are in a state satisfying I . 
An n-thread execution is a finite sequence of n-thread program states whose first state is initial, and whose adjacent states 
are related by Rn . We assume the existence of an error program location in P ; an error state of Pn is one with some thread 
in the error location. P is safe if no execution in Pn , for any n, ends in an error.

Predicate language We extend the predicate language from [9] by introducing passive-thread variables LP = {lP : l ∈ L}; 
here P is a fixed symbol (not a variable). Each passive-thread variable represents a local variable owned by a generic passive 
thread. The presence of variables of various categories gives rise to the following predicate classification.

Definition 1. A predicate Q over S , L and LP is shared if it contains variables from S only, local if it contains variables 
from L only, single-thread if it contains variables from L but not from LP , and inter-thread if it contains variables from L
and from LP .

Assuming each predicate contains at least one variable, the classifications shared, single-thread, and inter-thread are mu-
tually exclusive. Note that single- and inter-thread predicates may contain variables from S; local predicates are a special 
case of single-thread predicates. As an example, in the ticket algorithm (Fig. 1), with S = {s, t} and L = {l, pc}, examples 
of shared, local, single- and inter-thread predicates are: s = t, l = 5, s = l and l �= lP , respectively.

Semantics Let Q [1], . . . , Q [m] be m predicates (any class). Predicate Q [ j] is evaluated in a given n-thread state (n ≥ 2) 
with respect to a choice of active thread a:

Q [ j]a ::
∧

p∈[1..n]\{a} Q [ j]a,p (3)

where

Q [ j]a,p :: Q [ j]{L � La}{LP � Lp} . (4)

As special cases, for single-thread and shared predicates (no LP variables), we have Q [ j]a = Q [ j]{L � La} and Q [ j]a = Q [ j], 
respectively. We write u |= Q [ j]a if Q [ j]a holds in state u. Predicate Q [ j] gives rise to an abstraction function α, mapping 
each n-thread program state u to an m × n bit matrix with entries

α(u) j,a = u |= Q [ j]a . (5)

Function α partitions the n-thread program state space via m predicates into 2m×n equivalence classes. Consider the inter-
thread predicates l ≤ lP , l > lP , and l �= lP for a local variable l, n = 4 and the state u :: (l1, l2, l3, l4) = (4, 4, 5, 6):

α(u)=
⎛
⎝T T F F
F F F T
F F T T

⎞
⎠ . (6)
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In the matrix, row j ∈ {1, 2, 3} lists the truth of predicate Q [ j] for each thread a ∈ {1, 2, 3, 4} in the active role. Predicate 
l ≤ lP captures whether a thread owns the minimum value for local variable l (true for a = 1, 2); l > lP tracks whether 
a thread is the unique owner of the maximum value (true for a = 4); finally l �= lP captures the uniqueness of a thread’s 
value of l (true for a = 3, 4).

According to Eq. (3), the semantics of inter-thread predicates is defined via universal thread quantification. As a result, 
our predicate language is not closed under negation. For example, the predicate formulas l ≤ lP and l > lP both evaluate 
to false under (3), for a = 3. (On the other hand, a predicate and its formal negation cannot both evaluate to true.)

2.2. Limits of single-thread predicate abstraction

The use of the expressive and presumably expensive inter-thread predicates introduced in Sect. 2.1 is motivated: auto-
mated methods that cannot reason about them [12,9,7] fail for the ticket algorithm:

Lemma 2. Consider the parameterized ticket algorithm (Fig. 1) where threads call spin_lock and spin_unlock arbitrarily often. There 
is no quantifier-free invariant over finitely many shared and single-thread predicates that implies mutual exclusion.

Proof. We formalize the statement of the lemma. Let Q [1], . . . , Q [m] be predicates formulated over the shared variables 
s, t and the local variables pc, l of any one thread. Define a set of Boolean variables {b[ j]a : 1 ≤ j ≤ m ∧ a ∈ N}, with 
semantics b[ j]a ⇔ Q [ j]{L � La}. Suppose I is an invariant formula over the b[ j]a , i.e. Reach⇒ I for the (infinite) set Reach
of reachable global states. We show that I does not imply safety.

For i ∈N, consider the global states ui with

ui .s= 1, ui .t= 2, ui .pci = �3, ui .li = 1,

ui .pck = �1, ui .lk = 0 for k �= i
(7)

(where x.y denotes the value of variable y in state x; an index points to a local variable owned by the corresponding thread; 
�3 stands for the protected code region). All ui are reachable, witnessed by thread i pulling the first ticket and proceeding 
to the protected region; the other threads remain in �1.

Let C1, . . . , C w be the cubes in the DNF representation of I: I = C1 ∨ . . .∨ C w . Since, for each i, ui is reachable and thus 
satisfies I , it satisfies at least one cube of I . Since we have infinitely many ui to choose from, by the pigeon hole principle 
there exist a cube C and ui , uk with i �= k such that both ui , uk satisfy C . Now let u be the state equal to ui except that, 
on thread-k variables, u agrees with uk: u.pck = uk.pck (= �3) and u.lk = uk.lk (= 1). Since u.pci = ui .pci = �3, state u
violates mutual exclusion. We argue that u satisfies I , which shows that I does not imply safety.

To this end, we note that C is a conjunction of literals over the b[ j]a . We partition C into the sub-cubes C i and Ck of 
literals containing pci, li and pck, lk , resp., and the remaining literals Cr : C = C i ∧ Ck ∧ Cr . Since u is equal to ui except for 
thread-k variables, and ui satisfies C and hence C i and Cr , and the latter two do not refer to any thread-k variables, u also 
satisfies C i and Cr . It remains to show that u satisfies Ck (hence C , hence I): u agrees with uk on all variables s, t, pck, lk , 
and uk satisfies C and hence Ck , and the latter refers only to those four variables. �

We discuss the sensitivity of this proof to the program being investigated, and to the expressiveness of the predicate 
language.

• The proof generalizes to the class of safe unbounded-thread asynchronous programs (i) with a mutual exclusion safety 
property that does not depend on the shared variables (as is the case for local state section reachability), and (ii) with 
an unbounded supply of reachable states ui such that thread i is in its critical section (and all other threads are not, 
since the program is safe).

• The proof generalizes to the case of arbitrary c-thread predicates (instead of only single-thread predicates), for a 
constant c: these are predicates over the (shared and) local states of any c-tuple of threads. To see this, observe that 
formula I refers to only a finite number of predicate variables b[ j]a1..ac and thus can track only a finite number of 
thread c-tuple relationships. More precisely, there always exists an unbounded supply of states ui, uk with i �= k such 
that no predicate j used in I (via the corresponding variable b[ j]a1..ac ) relates threads i and k (we can pick i and k
“large enough”). This enables partitioning cube C as in the proof into sub-cubes that refer to i but not k, to k but not i, 
and to neither. State u as in the proof now satisfies C and hence I , but violates mutual exclusion.

• The proof breaks down if we permit quantifiers, e.g. in the form of inter-thread predicates: individual predicates can 
now reason about any number of threads; the partitioning of cube C is no longer possible.

• The proof breaks down under a thread bound: in this case the “state pool” ui is bounded, too; the pigeon hole principle 
may fail.

A general treatment of the limits of thread-modular and Owicki–Gries style proof systems (which do not use inter-thread 
predicates) is available in the literature [13].
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Table 1
Abstraction (R̂1)2 for stmt. l := l − 1 against predicate l < lP (left); concrete witness transitions, 
i.e. elements of (R1)2 (right). The highlighted row indicates asynchrony violations.

b1 b2 b′1 b′2 l1 l2 l′1 l′2
F F T F

←
1 1 0 1

F T F F 1 0 0 0
F T F T 2 0 1 0
T F T F 1 2 0 2

2.3. Existential inter-thread predicate abstraction

Embedded into our formalism, the goal of existential predicate abstraction [14,15] is to derive an abstract program P̂n by 
treating the equivalence classes induced by Eq. (5) as abstract states. P̂n thus has m × n Boolean variables:

V̂n =
⋃n

a=1
L̂a =

⋃n

a=1
{b[ j]a : 1≤ j ≤m} .

Variable b[ j]a tracks the truth of predicate Q [ j] for active thread a (if m = 1 we simply write ba). This is formalized in (8), 
relating concrete and abstract n-thread states (valuations of Vn and V̂n , resp.):

Dn ::
m∧

j=1

n∧
a=1

b[ j]a ⇔ Q [ j]a . (8)

For a formula f , let f ′ denote f after replacing each variable by its primed version. We then have P̂n = (R̂n, În) =(∨n
a=1(R̂a)

n, În
)

where

(R̂a)
n :: ∃Vn V ′n : (Ra)

n ∧Dn ∧ (Dn)′, (9)

În :: ∃Vn : In ∧Dn . (10)

In the abstraction, all variables are local,1 and variables b[ j]a are owned by abstract thread a. As an example, consider 
the decrement operation l := l − 1 on a local integer variable l, and the inter-thread predicate l < lP . Using Eq. (9) with 
n = 2, a = 1, we get four abstract transitions, listed in Table 1. The table shows that asynchrony is lost in the abstraction: in 
the highlighted transition, the executing thread 1 changes its local state by advancing its pc, and thread 2 changes its local 
state by changing b2. By contrast, on the right we have l2 = l′2 (and pc2 = pc′2) in all rows. The loss of asynchrony will 
become relevant in Sect. 3, where we define an abstract Boolean programming language that necessarily must accommodate 
non-asynchronous programs.

Proving the ticket algorithm for the fixed-thread case As in any existential abstraction, the abstract program P̂n overapproxi-
mates (the set of executions of) the concrete program Pn; the former can therefore be used to verify safety of the latter. 
We illustrate this using the ticket algorithm (Fig. 1). Consider the predicates Q [1] :: l �= lP , Q [2] :: t > max(l, lP), and 
Q [3] :: s = l. The first two are inter-thread; the third is single-thread. The predicates assert the uniqueness of a ticket 
(Q [1]), that the next free ticket is larger than all tickets currently owned by threads (Q [2]), and that a thread’s ticket 
is currently being served (Q [3]). The (symmetry-reduced and slightly partial) abstract reachability tree for P̂n and these 
predicates is shown in Fig. 2. It tells us that mutual exclusion is satisfied: there is no state with both threads in location �3 . 
The tree has about a dozen nodes, a number that grows exponentially with n.

3. From existential to parametric abstraction

Classical existential abstraction as described in Sect. 2.3 obliterates the parametricity present in the concrete concurrent 
program: the program is given as an instantiation of a template P , while the abstraction is formulated via predicates over 
the explicitly expanded n-thread program Rn . As a result, parametric reasoning over an unknown number of threads is 
impossible.

To overcome these problems, we now derive an overapproximation of P̂n via a generic program template P̃ that can be 
instantiated for any n. To this end we note that the programs P̂n resulting from inter-thread predicate abstraction are no 
longer asynchronous, as Table 1 has shown. As a result, we need an abstract programming language more powerful than 
the asynchronous language of Sect. 2.1.

1 If predicate Q [ j] is shared, the semantics of terms Q [ j]a is the same for all a; we could track Q [ j] using a single Boolean variable. To keep the 
notation compact, we ignore this redundancy here
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Fig. 2. Abstract reachability tree for the ticket algorithm for 2 threads. Local variables of abstract thread 1 are shown atop those of thread 2. (There are no 
shared abstract variables.)

3.1. Dual-reference programs

In contrast to asynchronous programs, the variable set Ṽ of a dual-reference (DR) program P̃ is partitioned into two 
sets: L̃, the local variables of the active thread as before, and L̃P = {lP : l ∈ L̃}, where again P is a fixed symbol. The 
latter set contains passive-thread variables, which, intuitively, regulate the behavior of non-executing threads. To simplify 
reasoning about DR programs, we exclude classical shared variables from the description: they can be simulated using the 
active and passive flavors of local variables, as we discuss at the end of Sect. 3.1.

The statements of P̃ are given by a transition formula R̃ over Ṽ and Ṽ ′ , now potentially including passive-thread 
variables. Similarly, Ĩ may contain variables from L̃P . The n-thread instantiation P̃n of a DR program P̃ is defined for n ≥ 2
as

P̃n = (R̃n, Ĩn)=
(∨n

a=1
(R̃a)

n,
∨n

a=1
(Ĩa)

n
)

(11)

where

(R̃a)
n :: ∧

p∈[1..n]\{a} R̃{L̃ ��L̃a}{L̃P ��L̃ p} (12)

(Ĩa)
n :: ∧

p∈[1..n]\{a} Ĩ{L̃ � L̃a}{L̃P � L̃ p} (13)

Recall that f {X1 ��X2} denotes index replacement of both current-state and next-state variables. Eq. (12) encodes the effect 
of a transition on the active thread a, and n − 1 passive threads p. The conjunction ensures that the transition formula R̃
holds no matter which thread p �= a takes the role of the passive thread in R̃: transitions that effectively depend on the 
identity of the passive thread are rejected.

Simulating shared via local variables Our exclusion of shared variables from the description of dual-reference programs is not 
a restriction: such variables can be simulated via active- and passive-thread local variables, as follows. To eliminate shared 
variable s, we introduce a fresh local variable l ∈ L̃, and replace a statement like s := 5 by the atomic statement l := 5, 
lP := 5. That is, each thread keeps a local copy of what used to be the shared variable; the semantics of passive-thread 
variables ensures that the values are synchronized across all threads. An example of this construction is given in the proof 
of Theorem 6 in Sect. 4.1.

3.2. Computing an abstract dual-reference template

From the existential abstraction P̂n we derive a Boolean dual-reference template program P̃ such that, for all n ≥ 2, the 
n-fold instantiation P̃n overapproximates P̂n . The variables of P̃ are L̃ = {b[ j] : 1 ≤ j ≤m} and L̃P = {b[ j]P : 1 ≤ j ≤m}. 
Intuitively, the transitions of P̃ are those that are feasible, for some n, in P̂n , given active thread 1 and passive thread 2. 
The semantics of dual-refer ence programs then ensures that the transitions are valid for any choice of passive thread.

We first compute the set R̃(n) of these transitions for fixed n. Formally, the components of P̃(n) = (R̃(n), Ĩ(n)) are, for 
n ≥ 2,

R̃(n) :: ∃L̂3, L̂′3, . . . , L̂n, L̂′n : (R̂1)
n{L̂1 ��L̃}{L̂2 ��L̃P} (14)

Ĩ(n) :: ∃L̂3, . . . , L̂n : În {L̂1 � L̃}{L̂2 � L̃P} (15)
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Table 2
Part of the abstraction (R̂1)3 for stmt. l := l − 1 against predicate l < lP (left); concrete witness 
transitions (right). The abstract transitions are inconsistent with (16) as a template.

b1 b2 b3 b′1 b′2 b′3 l1 l2 l3 l′1 l′2 l′3
F F F F F F 1 0 0 0 0 0
F F T F F F 1 1 0 0 1 0
F F T F F T 2 1 0 1 1 0

We apply this strategy to the earlier example of the decrement statement l := l − 1. To compute Eq. (14) first with 
n = 2, we need (R̂1)

2, which was enumerated in Table 1. Simplification results in a Boolean DR program with variables b
and bP and transition relation

R̃(2)= (¬b∧ bP ∧¬b′)∨ (¬bP ∧ b′ ∧ ¬b′P) . (16)

Using (16) as the template R̃ in (12) generates existential abstractions of many concrete decrement transitions; for instance, 
for n = 2 and a = 1 we get back the transition relation in Table 1. The question is now: does (16) suffice as a template, i.e. 
does (R̃(2))n overapproximate R̂n for all n? The answer is no: the abstract 3-thread transitions shown in Table 2 are not 
permitted by (R̃(2))n for any n, since neither ¬b ∧bP nor b′ ∧ ¬b′P are satisfied for all choices of passive threads. We thus 
increase n to 3, recompute Eq. (14), and obtain

R̃(3) :: R̃(2)∨ (¬b∧¬bP ∧¬b′ ∧ ¬b′P) . (17)

The new disjunct accommodates the abstract transitions in Table 2, which were missing before.
Does (R̃(3))n overapproximate R̂n for all n? When does the process of increasing n stop? To answer these questions, 

we first state the following diagonalization lemma, which helps us prove the overapproximation property for the template 
program.

Lemma 3. (P̃(n))n overapproximates P̂n: For every n ≥ 2 and every a, (R̂a)
n ⇒ (R̃(n)a)

n and În ⇒ (Ĩ(n)a)
n.

Proof. For the initial states, by equations (10), (13) and (15) the implication becomes

În ⇒ ∧
p∈[1..n]\{a} Ĩ(n){L̃ � L̃a}{L̃P � L̃ p}

≡
În ⇒ ∧

p∈[1..n]\{a}
((
∃L̂3, . . . , L̂n : În

)
{L̂1 � L̃}{L̂2 � L̃P}

)
{L̃ � L̃a}{L̃P � L̃ p}

≡
În ⇒ ∧

p∈[1..n]\{a}
(
∃L̂3, . . . , L̂n : În

)
{L̂1 � L̃a}{L̂2 � L̃ p} .

The final implication is a formula over the Boolean variable set V̂n = {b[ j]i : 1 ≤ j ≤m, 1 ≤ i ≤ n}. Consider any assignment 
Ân to these variables that satisfies În . Let p ∈ {1, . . . , n} \ {a} be arbitrary, and assign to the variables in L̂3 ∪ . . . ∪ L̂n =
{b[ j]i : 1 ≤ j ≤m, 3 ≤ i ≤ n} the values given by Ân . Then the final implication holds since the initial condition I is identical 
for all threads (1), so replacing thread ids 1 and 2 by thread ids a and p preserves truth. The case of the transition relation 
is similar. �

We finally give a linear saturation bound for the sequence (P̃(n)). Along with the diagonalization lemma, the bound 
allows us to obtain a template program P̃ independent of n, which in turn enables parametric reasoning in the abstract.

Theorem 4. Let #IT be the number of inter-thread predicates among the Q [ j]. Then the sequence (P̃(n)) stabilizes at b = 2 ×(#IT+1), 
i.e. for n ≥ b, P̃(n) = P̃(b).

Proof. It suffices to prove this theorem for the special case that all predicates are inter-thread: m = #IT . Sect. 3.1 ex-
plained how to eliminate shared predicates, and any single-thread predicate can syntactically be turned into an inter-thread 
predicate by conjoining it with the redundant expression lP = lP; applying formula (3) gives us single-thread predicate 
semantics.

For the duration of this proof, let Q [1], . . . , Q [m] be the list of predicates, all of which are inter-thread, and the for-
mula R̃(∞) over the variable set L̃ ∪ L̃P denote a finite characterization of 

∨∞
n=1 R̃(n). The existence of a finite encoding 

of R̃(∞) is guaranteed, since the sequence (P̃(n)) is monotonously increasing and the variable sets L̃ and L̃P are finite.
We show that stabilization occurs at b = 2 × (m + 1), i.e., R̃(∞) = R̃(b). The proof is by induction on m, we begin 

with m = 1. Let t = (b, bP, b′, b′P) be some abstract transition in the dual-reference relation R̃(∞), and ŵ and w be the 
abstract and concrete n-thread witness transitions for t , respectively, and finally u = (ŵ, w). Hence u is — in analogy with 
the presentation in Table 2 — of the form
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Table 3
Tightness example: The input transition relation (18) with inter-thread predicate (19). The obtained 
abstract dual-reference program template R̃(∞) is shown on the left, with the concrete part of a 
minimal witness from V 4 and V ′4 for each abstract transition in the middle (� = unconstrained), 
and on the right the mapping π as used in the proof of Theorem 4.

t w� π

b bP b′ b′P l1 l2 l3 l4 l′1 l′i �=1 π1 π2 π3 π4

F F F F 1 1 2 3 4 li 3 3 4 3
F F T F 1 1 2 � 4 li 3 3 – 3
T F F F 1 4 2 � 4 li 2 – 3 –
F T F T 1 2 3 � 4 li 2 – – –
F T T T 1 2 � � 4 li – 3 3 3
T T F T 1 3 � � 4 li – – 2 –
T T T T 1 5 � � 4 li – – – –

u = (

ŵ︷ ︸︸ ︷
b1, . . . ,bn︸ ︷︷ ︸

V̂n

,b′1, . . . ,b′n︸ ︷︷ ︸
V̂ ′n

,

w︷ ︸︸ ︷
l1, . . . ,ln︸ ︷︷ ︸

Vn

,l′1, . . . ,l′n︸ ︷︷ ︸
V ′n

)

and such that it satisfies (R1)n ∧ Dn ∧ (Dn)′ of the expanded R̃(n); see (9) and (14).2 We call u an (n-thread) witness
for t , and in particular a minimal one if no (n − 1)-thread witness exists. Due to the final substitution in (14) it is t =
(b1, b2, b′1, b′2), and due to asynchrony li = l′i for i ∈ [2..n].

Next, we proof by cases that we can derive for any t with given witness u an ≤ 4-thread witness u� = (ŵ�, w�), and 
thus that t ∈ R̃(4). Case t = (T, T, T, T). According to Eq. (3), Q [1]1 evaluates to true (and hence b1) if and only if all its 
conjuncts Q [1]1,p evaluate to true (analog for b2 and primed versions). As in this case, removing any of the conjuncts 
preserves the overall’s truth value, ŵ� = (b1, b2, b′1, b′2) and w� = (l1, l2, l′1, l′2) induce the 2-thread witness u� for t .

Case t = (F, F, F, F). According to Eq. (3), Q [1]1 evaluates false (and hence b1) if and only if there exists a p ∈ [2..n]
such that each of the Q [1]1,p evaluates false (again, analog for b2 and primed versions). Without loss of generality, let 
π : {1, . . . , 4} → {3, . . . , 6} identify 4 passive threads in w that falsify each of the 4 conjuncts Q [1]1, Q [1]2, Q [1]′1 and 
Q [1]′2, i.e., π is such that Q [1]1,π1 , Q [1]2,π2 , Q [1]′1,π3

, and Q [1]′2,π4
evaluate false. Then a 6-thread witness u� for t is 

induced by ŵ� = (b, b′) with b = (b1, b2, bπ1 , .., bπ4 ) and w� = (l, l′) with l = (l1, l2, lπ1 , .., lπ4).
For the inductive step from m to m + 1 predicates, we extend the obtained permutation by (at most) 4 = 6 − 2 elements 

(we can reuse the first and second thread). We can conclude that stabilization occurs at 2 × (2 ×m + 1) for any m ≥ 1. 
Moreover, since for each single-thread predicate that was syntactically turned into inter-thread one, just the corresponding 
thread’s local state (1st or 2nd) determines the truth of Eq. (3), and their state is untouched, we obtain that stabilization 
occurs at 2 × (2 × #IT + 1), and hence single-thread predicates do not “count”.

Note that the previous bound holds for non-asynchronous input programs as well, as we did not assume any immutability 
of passive-thread variables so far. For asynchronous input programs, which exhibit this property, we can do better: First, 
we eliminate the reference to thread π2 by defining π2 := π1 and setting l2 := l1. Then, if Q [1]1,π1 evaluates false, 
Q [1]2,π2 still evaluates false. Second, we eliminate the need for thread π4. Due to asynchrony, which implies l2 = l′2 and 
lπ2 = l′π2

, by defining π4 := π2, it still holds that if Q [1]2,π2 evaluates false, so does Q [1]′2,π4
. Hence, ŵ� = (b, b′) with 

b = (b1, b2, bπ1 , bπ2 ), and w� = (l, l′) with l = (l1, l2, lπ1 , lπ2 ) induce a 4-thread witness u� for t . The proofs for the 
remaining 14 cases is analogous, always yielding < 4-thread witnesses.

With the same inductive step as before we can conclude that stabilization occurs at b = 2 × (#IT + 1) for any m ≥ 1. The 
proof for the stabilization of Ĩ is analogous. �

The bound established in Theorem 4 is asymptotically tight: consider the following concocted scenario with local vari-
ables l ∈ {1, . . . , 5}:

R :: (l= 1)∧ (l′ = 4) (18)

Q :: (l �= 1∨ lP �= 2)∧ (l �= 4∨ lP �= 3) . (19)

Eq. (14) does not stabilize for less than 4 threads. The obtained DR program has 7 transitions, which are enumerated in 
Table 3. The generalization that shows tightness for arbitrary numbers of inter-thread predicates is straightforward.

Corollary 5. Let P̃ := P̃(b), for b as in Theorem 4. The components of P̃ are thus (R̃, Ĩ) = (R̃(b), Ĩ(b)). Then, for n ≥ 2, P̃n overap-
proximates P̂n.

2 Expanding Eq. (14) yields R̃(n) :: ∃Vn, V ′n, ̂L3, ̂L′3..L̂′n : (R1)n ∧Dn ∧ (Dn)′{L̂1 ��L̃}{L̂2 ��L̃P}.
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Fig. 3. Minsky machine and (part of) its DR program encoding, shown as formulas labeling control transitions. The initial state Ĩ of the DR encoding is 
l = lP = 0 ∧ pc= pcP = d0.

Proof. We have P̃n = (P̃(b))n
(∗)� (P̃(n))n

(∗∗)� P̂n , where � means “overapproximates”. Step (∗) follows, for b > n, from the 
monotonicity of sequence (P̃(n)) and, for b ≤ n, from Theorem 4 (in which case � is = ). Step (∗∗) is Lemma 3. �

As a consequence of losing asynchrony in the abstraction, many existing model checkers for concurrent software are not 
applicable to P̃ [16,17,10]. For a fixed thread count n, the problem can be circumvented by forgoing the replicated nature 
of the concurrent programs, as done in [9] in the boom tool: it proves the ticket algorithm correct up to n = 3, but takes a 
defeating 30 minutes. The goal of the following section is to design an efficient and fully parametric solution.

4. Unbounded-thread dual-reference programs

4.1. Undecidability of boolean DR program verification

The multi-threaded Boolean dual-reference programs P̃n resulting from predicate-abstracting asynchronous programs 
against inter-thread predicates are symmetric and free of recursion. The symmetry can be exploited using classical methods 
that counter-abstract the state space [18]: a global state is encoded as a vector of counter variables, each recording the 
number of threads currently occupying a particular local state.

These methods are applicable to unbounded thread numbers as well, in which case the local state counters are un-
bounded. The fact that the DR program executed by each thread is finite-state might suggest that the resulting infinite-state 
counter systems can be modeled as vector addition systems (as done in [18]) or, more generally, as well quasi-ordered tran-
sition systems [19,20] (defined below). This would give rise to sound and complete algorithms for local-state reachability in 
such programs.

This strategy turns out to fail: the full class of Boolean DR programs is expressive enough to render safety checking for 
an unbounded number of threads undecidable:

Theorem 6. Program location reachability for Boolean DR programs run by an unbounded number of threads is undecidable.

Proof: by reducing the Halting problem for the Turing-powerful deterministic 2-counter Minsky machines [21] with k
control states to the program location reachability problem in DR programs with 3 locations and a local variable with k
values.

We demonstrate the reduction using the Minsky machine in Fig. 3; the formalism is from [22]. The machine consists of 
five control states {0, . . . , 4} (0 = initial), two natural-number counters c1 and c2 (initially 0), and increment, decrement, and 
zero-test operations, denoted by ci++, ci−− and ci

?=0, respectively. Each operation changes the control state and counter 
value as indicated in the figure (the decrement and zero-test operation block if c is zero and non-zero, respectively).

Control states are encoded in a local variable l of P̃ ranging over 0, . . . , 4. (This makes P̃ non-Boolean but still finite-
domain.) As can be seen from the figure, these local variables are synchronized across the threads: they simulate a single 
shared variable that tracks the control state (see end of Sect. 3.1). Control state changes thus turn into synchronized local 
variable updates.

The two counters are encoded in program locations d1, d2 of the DR program P̃ such that counter value ci equals the 
number of threads in location di , for i ∈ {1, 2}. In addition, location d0 is the single initial program location, thus with 
an unbounded number of threads; it serves as thread pool. For program counter modifications ci++ and ci−−, a thread 
moves from d0 to di and vice versa, respectively. To simulate ci

?=0, we test whether any active or any passive thread resides 
in location di .

Let finally �e be a special program location of P̃ that is reached if and only if a local variable has the value that encodes 
the Minsky machine’s halting control state. The machine halts if and only if program location �e is reached in P̃ . �
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Note how program P̃ used in the above proof is highly non-asynchronous. Theorem 6 implies that its unbounded-thread 
instantiation is not even well quasi-ordered. Can this problem be fixed for the unbounded-counter systems obtained from 
asynchronous programs, in order to permit a complete verification method? If so, at what cost?

4.2. Monotonicity in dual-reference programs

For a transition system (�, �) to be well quasi-ordered, we need two conditions to be in place [19,20,2]:

well quasi-orderedness: there exists a reflexive and transitive binary relation � on � such that for every infinite sequence 
u0, u1, . . . of states in � there exist i, j with i < j and ui � u j .

monotonicity: for any u, u′, w with u � u′ and u � w there exists w ′ such that w � w ′ and u′ � w ′ .

We apply this definition to the case of dual-reference programs. Representing global states of the abstract system P̃n defined 
in Sect. 3 as counter tuples, we define � as

(n1, . . . ,n�)� (n′1, . . . ,n′�) :: ∀i = 1..� : ni ≤ n′i
where � is the total number of thread-local states, i.e. the number of local variable evaluations. We now call a DR program 
P̃ monotone if the induced infinite-state transition system ∪∞i=1P̃ i is monotone with respect to �. Monotonicity of P̃ can 
be characterized as follows:

Lemma 7. A DR program with transition set R̃ is monotone exactly if, for all n ≥ 2:

(u, u′) ∈ R̃n ⇒ ∀ln+1 ∃l′n+1,π :
(〈u, ln+1〉,π(〈u′, l′n+1〉)

) ∈ R̃n+1 . (20)

In (20), the quantifiers ∀ln+1, ∃l′n+1 range over local states (i.e. valuations of the local variables). The notation 〈u, ln+1〉
denotes an (n + 1)-thread state that agrees with u in the first n local states and whose last local state is ln+1; similarly 
〈u′, l′n+1〉. Symbol π denotes a permutation on {1, . . . , n +1} that acts on states by acting on thread indices, which effectively 
reorders local states.

Proof of Lemma 7. “⇒”: suppose ∪∞i=1P̃ i is monotone. Let u = (l1, . . . , ln), u′ = (l′1, . . . , l′n) with (u, u′) ∈ R̃n , and w =
〈u, ln+1〉. We have u � w , hence by the monotonicity of ∪∞i=1R̃i there exists w ′ such that (a) (w, w ′) ∈ ∪∞i=1R̃i and 
(b) u′ � w ′ . From (a) we conclude that in fact (w, w ′) ∈ R̃n+1. From (b) we conclude that w ′ contains n threads in lo-
cal states as in u′ . Let l′n+1 be the local state of the additional thread (not necessarily the (n + 1)st) in w ′ , and σ be a 
permutation such that (l′1, . . . , l′n+1) = σ(w ′). That is, σ reorders the local states of w ′ such that the n local states in u′
come first, l′n+1 comes last. With π := σ−1, we then have

(〈u, ln+1〉,π(〈u′, l′n+1〉)
) =

(
〈u, ln+1〉,σ−1(〈u′, l′n+1〉)

)
= (w, w ′) ∈ R̃n+1 .

“⇐”: suppose (u, u′) ∈ ∪∞i=1R̃i , say (u, u′) ∈ R̃n , so we write u = (l1, . . . , ln) and u′ = (l′1, . . . , l′n). Let further u � w . If w has 
exactly n threads, like u, then u � w implies u � w: the states are symmetry equivalent, say w = π(u), for a permutation 
π on 1, . . . , n. In this case w ′ := π(u′) satisfies the monotonicity conditions.

If w has n + 1 threads, then observe that w contains n threads in local states as in u; let ln+1 be the local state of the 
additional thread (not necessarily the n + 1st). Let further l′n+1 and π be as provided in (20). With y = 〈u, ln+1〉 and y′ =
π(〈u′, l′n+1〉), we get (y, y′) ∈ R̃n+1 by (20). Since y and w contain the same local states, let σ be a permutation such that 
σ(y) = w . Define w ′ = σ(y′). Then w ′ ∼ y′ = π(〈u′, l′n+1〉) � u′ , where ∼ is symmetry equivalence. Further, (y, y′) ∈ R̃n+1

implies (σ (y), σ(y′)) ∈ R̃n+1 by symmetry, so (w, w ′) ∈ R̃n+1 ⊆ ∪∞i=1R̃i , demonstrating that the monotonicity conditions 
are satisfied.

The case that w has more than n + 1 threads follows by induction. �
Asynchronous programs are trivially monotone (and DR): Eq. (20) is satisfied by choosing l′n+1 := ln+1 and π the identity. 

Table 4 shows instructions found in non-asynchronous programs that destroy monotonicity. For example, the swap instruc-
tion in the first row gives rise to a DR program with a 2-thread transition (0, 0, 0, 0) ∈ R̃2. Choosing l3 = 1 in (20) requires 
the existence of a transition in R̃3 of the form (l1, l2, l3, l′1, l′2, l′3) = (0, 0, 1, π(0, 0, l′3)). By equations (11) and (12), 
there must further exist a ∈ {1, 2, 3} such that for {p, q} = {1, 2, 3} \ {a}, both “a swaps with p” and “a swaps with q” hold, 
i.e.

l′p = la ∧ l′a = lp ∧ l′q = la ∧ l′a = lq ,

which is equivalent to l′a = lp = lq ∧ la = l′p = l′q . This formula is inconsistent with the partial assignment (0, 0, 1,

π(0, 0, l′ )), no matter what π and l′ .
3 3
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Table 4
Examples of monotonicity, and violations of it — Each row shows a single-instruction program, 
whether the program gives rise to a monotone system and, if not, an assignment that violates 
Eq. (21). (For ease of illustration, some of these programs are not finite-state.)

Dual-reference program Monotonicity

instruction variables mon.? assgn. violating (21)

l,lP := lP,l l ∈ B no l= 0, l′ = 1
l,lP := l+ 1,lP − 1 l ∈N yes
lP := lP + l l ∈N yes
l := l+ lP l ∈N no l= l′ = 1
lP := c l, c ∈N yes

More interesting for us is the fact that asynchronous programs (= our input language) are monotone, while their para-
metric predicate abstractions may not be; this demonstrates that the monotonicity is in fact lost in the abstraction. Consider 
again the decrement instruction l := l − 1, but this time abstracted against the inter-thread predicate Q :: l = lP . Para-
metric abstraction results in the two-thread and three-thread template instantiations

R̃2 = (¬b1 ∨¬b′1
) ∧ (b1 = b2) ∧

(
b′1 = b′2

)

R̃3 = (¬b1 ∨¬b′1
) ∧ (b1 = b2 = b3) ∧

(
b′1 = b′2 = b′3

)
.

Consider the transition (0, 0) → (1, 1) ∈ R̃2 and the R̃3-state u = (0, 0, 1) > (0, 0) : u has no successor (it is in fact incon-
sistent), violating monotonicity.

The monotonicity can be lost even without inter-thread predicates: the assignment s := l abstracted with respect to the 
predicates Q [1] :: s = l (single-thread) and Q [2] :: l = 4 (local) gives rise to a non-asynchronous abstraction that is not 
even monotone: while (1, 1) → (1, 1) ∈ R̃1 is a valid transition, the R̃2-state (1, 1, 1, 0) > (1, 1) is inconsistent and hence 
has no successors.

4.3. Restoring monotonicity in the abstraction

The cover relation � defined over local state counter tuples turns monotone Boolean DR programs into instances of well 
quasi-ordered transition systems. Program location reachability is then decidable, even for unbounded threads. Therefore, 
our goal now is to restore the monotonicity that was lost in the parametric abstraction.

In order to do so, we first derive a sufficient condition for monotonicity that can be checked locally over R̃, as follows.

Theorem 8. Let R̃ be the transition relation of a DR program. Then the infinite-state transition system ∪∞i=1R̃i is monotone if the 
following formula over L̃ × L̃′ is valid:

∃L̃P∃L̃′P : R̃ ⇒ ∀L̃P∃L̃′P : R̃ . (21)

Unlike the monotonicity characterization given in Lemma 7, Eq. (21) is formulated only over the template program R̃. 
It suggests that, if R̃ holds for some variable assignment, then no matter how we replace the current-state passive-thread 
variables L̃P , we can find next-state passive-thread variables L̃′P such that R̃ still holds. This is true for asynchronous 
programs, since here L̃P = ∅. It fails for the swap instruction in the first row of Table 4: the instruction gives rise to the DR 
program R̃ :: l′ = lP ∧ l′P = l. The assignment l = 0, l′ = 1 in the table satisfies ∃L̃P L̃′PR̃, but for lP = 0, R̃ is violated no 
matter what value is assigned to l′P ∈ L̃′P .

Proof of Theorem 8. We show monotonicity using Lemma 7. Suppose (u, u′) ∈ R̃n , and let ln+1 be given. By (11), there 
exists a ∈ {1, . . . , n} such that (u, u′) ∈ (R̃a)

n . By (12), we have

∀p ∈ {1, . . . ,n} \ {a} R̃{L̃ ��L̃a}{L̃P ��L̃ p} . (22)

Since n ≥ 2, the quantification in Eq. (22) is not empty and hence satisfies the left-hand side of (21). By the right-hand side, 
there exists a valuation l′n+1 of all L̃′P variables such that, replacing the L̃P variables by the valuation ln+1, R̃ still holds, i.e. 
R̃{L̃ ��L̃a}{L̃P ��L̃n+1}. Merging this with (22), we obtain

∀p ∈ {1, . . . ,n+ 1} \ {a} R̃{L̃ ��L̃a}{L̃P ��L̃ p} ,
and thus (〈u, ln+1〉, 〈u′, l′n+1, )〉 ∈ (R̃a)

n+1 ⊆ R̃n+1, establishing the right-hand side of (20) with the identity permuta-
tion π . �
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We are now ready to transform the possibly non-monotone abstract DR program P̃ into a monotone abstraction P̃m . Our 
solution is similar in spirit to, but different in effect from, earlier work on monotonic abstractions [3]. The idea is to terminate 
processes that violate universal guards and thus block a transition. Exploiting the monotonicity of the concrete program P , 
we can build a monotone program P̃m that is safe exactly when P̃ is, thus fully preserving soundness and precision of the 
abstraction P̃ .

Definition 9. The non-monotone fragment (NMF) of a DR program with transition relation R̃ is the following formula 
F(R̃) over L̃ × L̃P × L̃′:

F(R̃) :: ¬∃L̃′P : R̃ ∧ ∃L̃P∃L̃′P : R̃ . (23)

The NMF encodes partial assignments (l, lP, l′, −) that cannot be extended to a full assignment satisfying R̃, but such 
that (l, −, l′, −) can be. We observe that Eq. (23) is slightly stronger than the negation of (21): the NMF binds the values 
of the L̃P variables for which a violation of R̃ is possible.

We revisit the two non-monotone instructions from Table 4. The NMF of l, lP := lP, l is l′ �= lP: this clearly can-
not be extended to an assignment satisfying R̃, but when lP is changed to l′ , we can choose l′P = l to satisfy R̃. The 
non-monotone fragment of l := l + lP is l′ ≥ l ∧ l′ �= l + lP .

The NMF can be used to “repair” R̃: the program with transition relation R̃∨F(R̃) is monotone, as we will see shortly. 
This suggests to add transitions (l, lP, l′, l′P) to R̃ that allow arbitrary passive-thread state changes whenever (l, lP, l′)
belongs to the non-monotone fragment, thus lifting the blockade previously caused by some passive threads. The problem 
is of course that such additions will generally modify the program behavior; in particular, an added transition might lead a 
thread directly into an error state that used to be unreachable.

In order to instead obtain a safety-equivalent program, we prevent passive threads that block a transition in P̃ from 
affecting the future execution. This can be realized by redirecting them to an auxiliary sink state. Let �⊥ be a fresh program 
location.

Definition 10. The monotone closure of DR program P̃ = (R̃, Ĩ) is the DR program P̃m = (R̃m, Ĩ) with the transition 
relation R̃m :: R̃ ∨ (F(R̃) ∧ pc′P = �⊥).

Lemma 11. The monotone closure P̃m of a DR program P̃ is monotone.

Proof. Appealing to Theorem 8, we show that R̃m satisfies (21), i.e.

∃L̃P∃L̃′P : R̃m ⇒ ∀L̃P∃L̃′P : R̃m . (24)

We first simplify the following expression occurring on both sides of (24):

∃L̃′P : R̃m = ∃L̃′P : (R̃∨ (¬∃L̃′P : R̃ ∧ ∃L̃P L̃′P : R̃ ∧ pc′P = �⊥))

= ∃L̃′P : R̃∨ (¬∃L̃′P : R̃ ∧ ∃L̃P L̃′P : R̃ ∧ ∃L̃′P : pc′P = �⊥)

= ∃L̃′P : R̃∨ (¬∃L̃′P : R̃ ∧ ∃L̃P L̃′P : R̃)

= ∃L̃′P : R̃∨ ∃L̃P L̃′P : R̃
= ∃L̃P L̃′P : R̃ .

Eq. (24) is now seen to be valid: the above derivation shows that the expression ∃L̃′P : R̃m is semantically independent of 
L̃P variables. Hence the quantifications ∃L̃P and ∀L̃P on both sides of (24) can be omitted, making the two sides equal. �

Sect. 4 so far reports results on arbitrary DR programs. We now return to DR programs P̃ that are obtained via predicate 
abstraction from asynchronous input programs, as described in Sect. 3. It is these types of DR programs for which we can 
guarantee that the monotone closure is not only monotone, but equivalent to P̃ in the sense of safety preservation.

To state this result, we stipulate that the abstract program P̃ inherit the error location from P (predicate abstraction 
preserves control locations). Also note that location �⊥ is “fresh” and hence different from the error location.

Theorem 12. Let P be an asynchronous program, and P̃ its parametric predicate abstraction (Corollary 5). Given P̃ ’s monotone 
closure P̃m, (P̃m)n is safe exactly if P̃n is.

Proof. Since R̃⇒ R̃m , if (P̃m)n is safe, so is P̃n . For the converse argument, we assume P̃n is safe and consider a path π
in (P̃m)n , split into segments as follows:

π = t1, . . . , r1 , t2, . . . , r2 , . . . , t j, . . . , r j , . . . (25)
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where the transitions in each segment t j, . . . , r j belong to relation R̃, and the transitions (r j, ti+1) belong to F(R̃) ∧pc′P =
�⊥ .

Call a state safe if there is no path from that state to an error state. State safety is closed under reachability: if state s is 
safe, any state reachable from s is also safe. Moreover, since the asynchronous input program P is monotone, state safety 
is downward-closed for P : if state r is safe in P and s � r then s is also safe. This property also holds for the (possibly 
non-monotone) abstract DR program P̃: let R be the concretization of state r̃ of P̃ , i.e. a set of programs states of input 
program P . Then P̃ ’s overapproximation properties (Sect. 2.3 and Corollary 5) guarantee the safety of states in R , and 
downward-closedness of state safety in P implies the safety of states in the downward closure of R . From the fact that s’s 
concretization is in that closure we conclude s is safe, too.

Using this result we now show that all states along trace π in Eq. (25) are safe. The proof is by induction on the number 
of R̃-segments in π . The initial segment t1, . . . , r1 is a path in P̃n and hence no state in it leads to an error state (P̃n is 
safe). For the inductive step, consider segment ti, . . . , ri and transition (ri, ti+1). By the definition of segments, state ti+1
contains at least one passive thread “stuck” in pc′P = �⊥ . Let r′i be the state obtained from ri by removing stuck threads; 
hence r′i ≺ ri . Since safety is downward-closed in P̃ and ri is safe by the induction hypothesis, r′i is safe, too, and hence all 
states in segment ti+1, . . . , ri+1, by reachability closure. �

Theorem 12 justifies our strategy for reachability analysis of an asynchronous program P : form its parametric predicate 
abstraction P̃ described in Sections 2 and 3, build the monotone closure P̃m , and analyze (P̃m)∞ using any technique for 
monotone systems. Applying this strategy to the ticket algorithm yields a well quasi-ordered transition system of about 
28 local states and 50 transitions (see www.cprover.org/bfc/ticketlock/ticketabs.tts for the full spec). The backward reacha-
bility method described in [20] returns “uncoverable” on this system, confirming that the ticket algorithm ensures mutual 
exclusion, this time for arbitrary thread counts.

As a more compact example, we revisit again the decrement instruction l := l − 1, abstracted against the inter-thread 
predicate Q :: l = lP . The DR template program is:

R̃ :: b= bP ∧ b′ = b′P ∧ (¬b∨¬b′) . (26)

As illustrated near the end of Sect. 4.2, R̃ does not give rise to a monotone system: we have (0, 0) → (1, 1) ∈ R̃2, but the 
R̃3-state (0, 0, 1) > (0, 0) has no successor: b = bP is violated for some passive threads, no matter who is active. The NMF 
¬∃L̃′P : R̃ ∧ ∃L̃P∃L̃′P : R̃ simplifies to b �= bP . The closure operation adds to R̃ all transitions satisfying b �= bP ∧pc′P = �⊥ . 
Now we have for example (0, 0, 1) → (⊥, ⊥, 0) ∈ R̃3 (⊥ = any state satisfying pc′P = �⊥) — the monotonicity is restored.

5. Practical evaluation

We evaluate our approach on a set of 37 non-recursive shared-memory C programs. The experiments are performed on 
a 3 GHz Intel Xeon machine with 20 GB memory, running 64-bit Linux, with a timeout of 30 minutes. We first provide an 
overview of the benchmark set.

Benchmark description Threads communicate asynchronously through shared memory and synchronize via locks or atomic 
compare-and-swap instructions. We also experimented with monotone input programs that are not asynchronous, featuring 
more complex synchronization primitives such as condition variables and broadcasts.3

For each program, we verify a safety property, specified as an assertion. To measure performance for unbounded-thread 
verification, we chose primarily assertions that hold. (Those that fail usually fail for small thread counts, requiring little 
verification resources.) In total, the programs comprise 4583 lines of code, featuring 2.5 shared and 4.6 local variables on 
average. Five programs use broadcast operations on condition variables. We briefly describe the program benchmarks:

1–10: thread-safe algorithms: atomic counters (1–2); operations to find the maximum element in an array (3–6); con-
current pseudo-random number generators (7–8); stack data structure with concurrent pushes and pops (9–10). 
For each type, we consider a version with Locks, and one with Compare-and-swap primitives (marked -L or -C in 
Table 5, resp.).

11–15: OS code: code from the FreeBSD (11–12), NetBSD (13), and Solaris (14) open-source operating systems that is 
related to RDMA ZFS file system support and interface/system monitoring (multiple kernel threads are simultane-
ously unblocked via condition variables); Linux driver skeleton that mimics concurrent open, close and ioctl calls 
(15).

16–26: mutex algorithms: multiple locks protecting a shared resource (16–18); the ticket algorithm in Fig. 1 (19); clas-
sical algorithms due to Szymanski, Peterson and Dekker (20–22); a readers-writers and timed mutex (23–24); 
high-contention ticket algorithm with proportional back-off (25); test-and-set lock (26).

3 All technical results described in this paper hold in fact for all monotone DR programs; note that the proofs of the key results in Lemma 11 and 
Theorem 12 depend on monotonicity but not on asynchrony. For non-asynchronous input programs the stabilization bound b increases from 2 × (#IT + 1)

to 2 × (2 × #IT + 1), which is the first bound established in the proof of Theorem 4.

http://www.cprover.org/bfc/ticketlock/ticketabs.tts
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27–32: misc: two programs that require single-thread predicates (27–28); threads synchronizing via broadcasts (29); a pro-
gram amenable to thread-modular verification (30); a vulnerability fix from the Mozilla repository (31); a program 
used to illustrate incremental coverability proofs (32).

33–37: pthread: programs using the C POSIX Thread library.

Most programs contain procedures run by an arbitrary number of threads dynamically spawned by the (single) initial thread. 
Exceptions are 20–24 and 31 from [8], which are designed for a fixed thread count of two; the program behavior stabilizes 
for n ≥ 2. These examples do not exploit the power of our approach to deal with unbounded threads.

Implementation We implemented our abstraction method in the verifier monabs. The verifier takes a shared-memory 
program annotated with assertions in the C language, which uses the pthreads library for dynamic thread creation and 
synchronization objects (mutexes and condition variables). Our tool monabs combines medium-precision Cartesian abstrac-
tions [23] (default cube length is 3) and handles function calls by inlining. If the abstractions lack precision, monabs
performs a monotonicity-preserving variant of Das/Dill-style refinement. This is achieved by constraining passive-thread 
variables in the abstraction only if needed, i.e. if the spurious transition is not spurious for all valuations of passive-thread 
variables. Predicate discovery is done in a CEGAR loop: initially the predicate set is empty; the Boolean program represents 
only the control flow. Predicates are then discovered based on spurious counterexamples; basic discovery heuristics are 
sufficient for the benchmarks. Since existing well quasi-ordered system model checkers do not support monotone Boolean 
DR programs, we use an extension of the breach tool [24] as verification back-end.

5.1. Detailed evaluation of monabs

Table 5 gives detailed experimental results. Within 187s and at most 8 abstraction-refinement iterations, monabs suc-
ceeds in certifying correctness of all 34 safe programs for arbitrary thread counts, and reporting counterexamples for the 
three remaining buggy instances Boop, BS-loop and Pthread. As usual, the model-checking time dominates the total run 
time, among the various CEGAR phases. The cost of the monotone closure computation is negligible and not shown.

Shared and single-thread predicates were needed to succeed in 28 of the 37 cases, and inter-thread predicates for the 
two ticket algorithms. Roughly half of the benchmarks exhibit abstractions that are “truly DR”, i.e. they permit no asyn-
chronous encoding. As a consequence, existing model checkers for concurrent software are inapplicable. In five of these 
cases (marked in the Cnd? column), passive-thread variable updates are used in the input program to model broadcast oper-
ations. These are then passed on to the abstraction via local predicates. For the other 11, originally asynchronous programs, 
asynchrony is lost after inter- or single-thread predicates are discovered during refinement: programs with IT �= 0, and pro-
grams with ST > L. Only 5 programs whose abstraction is “truly DR” turned out monotone; the majority, namely 11, require
the application of the closure operation from Definition 10 in order to be passed to the back-end model checker (recall that 
loss of monotonicity is possible even without any inter-thread predicates). Single-thread predicates of the form s = l are, 
e.g., required to track the success of the compare-and-swap primitive for programs Inc-C, MaxSimp-C and MaxOpt-C.

The results also demonstrate the appropriateness of our predicate language: banning any one of the predicate types 
supported by our approach renders some of our C programs unprovable.

5.2. Comparison with symmpa and cream

Existing tools for programs with unbounded threads, such as duet, are insufficient for our benchmarks (Sect. 6 has 
details). Instead, we compare against four recent fixed-thread approaches and measure at which point the search for mono-
tone, unbounded-thread proofs pays off compared to checking increasing constant thread counts. Our points of comparison 
are:

symmpa ([9]): predicate abstraction for fixed threads.
cream-mono ([25,26]): cream with monolithic proofs.
cream-rely ([8,26]): cream with rely-guarantee proofs.
cream-owicki ([25,26]): cream with Owicki–Gries proofs.

Front-end capabilities of cream and symmpa are similar to that of monabs, facilitating a comparison. Neither cream nor 
symmpa support broadcasts, as used by 5 of our benchmarks; we instead apply them to broadcast-free overapproximations.

Fig. 4 plots the fraction of programs checked successfully by different methods for given thread numbers. Each sub-
figure shows five curves: one for monabs and unbounded thread count (n =∞), and four corresponding to the respective 
fixed-thread tool with n = 2, . . . , 5 concurrent threads: an entry of the form (k, t) gives the time t it took to solve the k
easiest (for the given method) of the C programs. The results show that our unbounded approach quickly outperforms each 
of the fixed-thread verifiers, even for very small thread counts. For symmpa and cream the proof time grows exponentially 
with the thread count. The single timeout for symmpa with n = 2 is for the high-contention variant of the ticket algorithm 
(Ticket-Hc): symmpa is unable to track the uniqueness of a ticket, and as a result times out while attempting to enumerate 
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?, program safe? (● = “yes”); SP, ST , L, IT = # of shared, 
ction, refinement, model checking; Total = total time.

and times (in sec.) Total

Mon? Abs Ref Chk

❍ .7 .1 .4 1.2
❍ 4.0 .1 174.5 187.1
❍ .1 .0 .2 .3
❍ .5 .0 .6 1.1
❍ .4 .1 .5 1.1
❍ 1.9 .1 2.4 4.6
– .0 .0 .2 .3
– .0 .0 .1 .1
– .0 .0 .2 .2
– .0 .0 .2 .2
● .0 .0 4.8 4.8
● .0 .0 1.8 1.8
● .0 .0 81.7 81.7
● .0 .0 2.3 2.4
– .0 .1 .7 .9
– .7 .2 2.3 3.6
– 1.4 .2 1.5 3.3
– .2 .1 .5 .9
❍ .2 .1 3.9 4.2
– .0 .0 .3 .3
– .0 .0 .3 .4
– .0 .0 .2 .3
– .0 .0 .4 .5
– .0 .0 .3 .3
❍ .2 .0 5.1 5.3
❍ .2 .0 1.5 2.1
● .9 .1 2.5 4.1
❍ .1 .0 .2 .3
❍ .0 .0 .0 .1
– .0 .0 .1 .1
– .0 .0 .3 .4
– .0 .0 .1 .1
– 7.3 .0 7.3 14.7
– .0 .0 .1 .1
– .0 .0 .1 .1
– .5 .2 1.0 1.8
– .1 .0 .6 .7
Table 5
Benchmark characteristics and results — S , L = # of shared, local vars; LOC = lines of code; Mtx?, Cnd?, Safe? = mutexes present?, condition variables
single-thread, local, inter-thread predicates; Its = # of CEGAR iterations; DR?, Mon? = abstractions truly DR?, monotone?; Abs, Ref , Chk = time for abstra

Program Characteristics Predicates CEGAR phases

S L LOC Mtx? Cnd? Safe? SP ST L IT Its DR?

1/Inc-L

th
re

ad
-s

af
e

al
go

ri
th

m
s

2 1 46 ● ❍ ● 2 2 1 0 4 ●

2/Inc-C 1 3 57 ❍ ❍ ● 0 5 4 0 8 ●

3/MaxSimp-L 3 3 59 ● ❍ ● 1 1 0 0 2 ●

4/MaxSimp-C 2 5 79 ❍ ❍ ● 0 3 2 0 3 ●

5/MaxOpt-L 3 4 69 ● ❍ ● 1 2 1 0 2 ●

6/MaxOpt-C 2 6 86 ● ❍ ● 0 4 3 0 3 ●

7/PrngSimp-L 2 4 63 ● ❍ ● 2 2 2 0 4 ❍

8/PrngSimp-C 1 5 95 ❍ ❍ ● 0 2 2 0 2 ❍

9/Stack-L 4 2 79 ● ❍ ● 2 1 1 0 3 ❍

10/Stack-C 3 3 89 ❍ ❍ ● 1 2 2 0 3 ❍

11/BSD-ak2

O
S

co
de

1 7 516 ● ● ● 1 1 1 0 1 ●

12/BSD-ra2 2 21 413 ● ● ● 1 1 0 0 1 ●

13/NetBSD-sp2 1 28 1045 ● ● ● 2 1 1 0 1 ●

14/Solaris-sm2 1 56 616 ● ● ● 4 1 1 0 1 ●

15/Boop 5 2 89 ❍ ❍ ❍ 5 2 2 0 8 ❍

16/Double-1

m
ut

ex
al

go
ri

th
m

s

3 0 70 ● ❍ ● 8 0 0 0 7 ❍

17/Double-2 3 0 73 ● ❍ ● 7 0 0 0 7 ❍

18/Double-3 3 0 66 ● ❍ ● 5 0 0 0 5 ❍

19/Ticket 3 1 46 ❍ ❍ ● 0 1 0 2 4 ●

20/Szymanski 3 0 54 ❍ ❍ ● 4 0 0 0 4 ❍

21/Peterson 4 0 37 ❍ ❍ ● 6 0 0 0 6 ❍

22/Dekker 4 0 50 ❍ ❍ ● 4 0 0 0 4 ❍

23/RW-lock 4 0 58 ❍ ❍ ● 5 0 0 0 6 ❍

24/Timed-mutex 5 0 63 ❍ ❍ ● 5 0 0 0 4 ❍

25/Ticket-Hc 3 1 61 ❍ ❍ ● 0 1 0 2 4 ●

26/Tas-L 2 2 58 ❍ ❍ ● 4 2 1 0 4 ●

27/UnverEx

m
is

c

2 1 25 ❍ ❍ ● 4 2 0 0 6 ●

28/MixedAsgn 1 1 16 ❍ ❍ ● 0 2 1 0 3 ●

29/Cv-Var 1 1 14 ❍ ● ● 1 1 1 0 1 ●

30/Spin 2 0 37 ● ❍ ● 2 0 0 0 2 ❍

31/Mozilla-Vf 4 3 82 ● ❍ ● 5 0 0 0 6 ❍

32/MinUCP-ex 1 0 80 ❍ ❍ ● 2 0 0 0 2 ❍

33/BS-loop

pt
hr

ea
d

pr
og

.

0 6 24 ❍ ❍ ❍ 0 7 7 0 1 ❍

34/Cond 1 3 56 ● ❍ ● 0 2 2 0 2 ❍

35/S-Loop 5 0 60 ● ❍ ● 3 0 0 0 3 ❍

36/Func-P 2 1 67 ● ❍ ● 2 4 4 0 6 ❍

37/Pthread 5 0 85 ● ❍ ❍ 6 0 0 0 6 ❍
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Fig. 4. Comparison with fixed-thread tools — Cactus plots comparing monabs with four recent fixed-thread proof methods.

Table 6
Comparison with existing methods — Input features: ∞, CV, SM, ASST = unbounded threads, condition 
variables, shared-memory, assertions; variable relationship in the generated proofs: SP, ST, IT = shared, single-
thread, inter-thread; Output: CEX, ¬FP, TA(n) = counterexamples, absence of false positives, asymptotic run 
time for the ticket algorithm.

Verifier Input Relationships Output

∞ CV SM ASST SP ST IT CEX ¬FP TA(n)

cream [8,25] ❍ ❍ ● ● ● ● ● ● ● expon.
symmpa [9] ❍ ❍ ● ● ● ● ❍ ● ● expon.
iDFG (unimpl.) [11] ❍ ❍ ● ● ● ● ● ● ● quadr.
duet [10] ● ❍ ● ● ● ❍ ❍ ❍ ❍ false pos.
boppo/satabs [6] ● ❍ ● ● ● ❍ ❍ ● ❍ N/A
ddv/satabs [7] ❍ ❍ ● ● ● ❍ ❍ ● ● N/A
blast [4] ❍ ❍ ● ❍ N/A N/A N/A ● ● N/A
magic [5] ❍ ❍ ❍ ● N/A N/A N/A ● ● N/A

monabs (this work) ● ● ● ● ● ● ● ● ● constant

the possible ticket values. For the simpler variant, where every thread acquires and releases the lock only once (Ticket), 
symmpa succeeds for up to 3 threads.

The complete set of benchmark programs used in this section is available online, at www.cprover.org/bfc. Our tool 
monabs is tightly integrated into the satabs verifier (www.cprover.org/satabs). For information on the novel satabs features, 
and on using breach as model-checker back-end, visit www.cprover.org/bfc.

6. Comparison with related work

Algorithmic solutions for verifying safety properties of multi-threaded programs have been intensively studied. We survey 
work related to concurrent program verification in general, and monotonicity in particular.

Existing approaches for verifying asynchronous shared-memory programs typically do not exploit the monotone structure 
that source-level multi-threaded programs often naturally exhibit [4–11]. Table 6 provides a feature comparison of our work 
with these methods. For example, the constraint-based approach in [8], implemented in cream, generates Owicki–Gries and 
rely-guarantee type proofs. It uses predicate abstraction in a CEGAR loop to generate environment invariants for fixed thread 
counts, whereas our approach directly checks the interleaved state space and exploits monotonicity. Whenever possible, 
cream generates thread-modular proofs by prioritizing predicates that do not refer to the local variables of other threads. 
For the parametric benchmarks we used in Sect. 5, however, this was never successful.

http://www.cprover.org/bfc
http://www.cprover.org/satabs
http://www.cprover.org/bfc
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A CEGAR approach for fixed-thread symmetric concurrent programs has been implemented in symmpa [9]. It uses pred-
icate abstraction to generate a Boolean broadcast program (a special case of DR program). Their approach cannot reason 
about relationships between local variables across threads, which is crucial for verifying the ticket lock algorithm. Nev-
ertheless, even the restricted predicate language of [9] can give rise to non-asynchronous programs. (This possibility is 
acknowledged but not addressed in [9].) As a result, their technique cannot be extended to unbounded thread counts with 
well quasi-ordered systems techniques.

Recent work on data flow graph representations of fixed-thread concurrent programs has been applied to safety property 
verification [11]. The inductive data flow graphs can serve as succinct correctness proofs for safety properties; for the ticket 
example they generate correctness proofs of size quadratic in n. Similar to [11], the technique in [10] uses data flow graphs 
to compute invariants of concurrent programs with unbounded threads (implemented in duet). In contrast to monabs, duet
constructs proofs from relationships between either solely shared or solely local variables. These are insufficient for most 
benchmarks we used in Sect. 5.

The ticket lock algorithm is unbounded both in the number of participating threads, and in the domain of program 
variables; a program class targeted in early work by Bozzano and Delzanno [27]. They present a sound symbolic backward 
search method that does not rely on monotonicity of the input programs and thus is not guaranteed to terminate. An 
abstraction can guarantee termination at the cost of overapproximation; a refinement loop can presumably re-introduce 
non-termination issues. The technique works well for the ticket algorithm, but has apparently not been applied to other 
programs; an implementation is not available.

Predicates that, like our inter-thread predicates, reason over all participating processes/threads have been used exten-
sively in invariant generation methods [28–30]. As a recent example, an approach that relies on abstract interpretation 
instead of model checking is [31]. Starting with a set of candidate invariants (assertions), the approach builds a reflective 
abstraction, from which invariants of the concrete system are obtained in a fixed point process. These approaches and ours 
share the insight that complex relationships over all threads may be required to prove easy-to-state properties such as mu-
tual exclusion. They differ fundamentally in the way these relationships are used: abstraction with respect to a given set Q
of quantified predicates determines the strongest invariant expressible as a Boolean formula over the set Q; the result is 
unlikely to be expressible in the language that defines Q.

The monotonicity property of asynchronous (and other) programs is often exploited in infinite-state search algorithms 
to ensure termination. In the absence of monotonicity, an option is to detect cutoffs [32], i.e. bounds on the number of 
processes sufficient to guarantee correctness for the unbounded case. The option of “making” systems monotone was pio-
neered in earlier work [33,3]. Bingham and Hu deal with guards that require universal quantification over thread indices, 
by transforming such systems into broadcast protocols. This is achieved by replacing conjunctively guarded actions by tran-
sitions that, instead of checking a universal condition, execute it assuming that any thread not satisfying it “resigns”. This 
happens via a designated local state that isolates such threads from participation in the future computation. The same idea 
was further developed by Abdulla et al. in the context of monotonic abstractions. Our solution to the loss of monotonicity 
was in some way inspired by these works, but differs in two crucial aspects: first, our concrete input systems are asyn-
chronous and thus monotone, so our incentive to preserve monotonicity in the abstract is strong. Second, exploiting the 
input monotonicity, we can achieve a monotonic abstraction that is safety-equivalent to the non-monotone abstraction and 
thus not merely an error-preserving approximation. This is essential, to avoid spurious counterexamples in addition to those 
unavoidably introduced by the predicate abstraction.

7. Concluding remarks

We presented in this paper a comprehensive verification method for arbitrarily-threaded asynchronous shared-variable 
programs. Our method is based on predicate abstraction and permits expressive universally quantified inter-thread predi-
cates, which track relationships such as “my ticket number is the smallest among all threads”. Such predicates are required 
to verify, via predicate abstraction, the widely used ticket lock algorithm. We found that the abstractions with respect to 
these predicates result replicated Boolean programs lacking monotonicity, a property often relied upon during infinite-state 
system verification. To fix this problem, we strengthened the earlier method of monotonic abstractions such that it does not 
introduce spurious errors into the abstraction. We have implemented our technique in the monabs verifier and experimen-
tally demonstrated the efficiency of our unbounded-thread analysis compared to several earlier methods, both unbounded 
and fixed-thread.

We view the treatment of monotonicity as the major contribution of this work. Program design often naturally gives rise 
to “monotone concurrency”, where adding passive components cannot disable existing actions. Abstractions that interfere 
with this feature are limited in usefulness. Our paper shows how the feature can be inexpensively restored, allowing such 
abstraction methods and powerful infinite-state verification methods to coexist peacefully.
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