
Lost in Abstraction:
Monotonicity in Multi-threaded Programs�

Alexander Kaiser1, Daniel Kroening1, and Thomas Wahl2

1 University of Oxford, United Kingdom
2 Northeastern University, Boston, United States

Abstract. Monotonicity in concurrent systems stipulates that, in any global state,
extant system actions remain executable when new processes are added to the
state. This concept is not only natural and common in multi-threaded software,
but also useful: if every thread’s memory is finite, monotonicity often guaran-
tees the decidability of safety property verification even when the number of
running threads is unknown. In this paper, we show that the act of obtaining
finite-data thread abstractions for model checking can be at odds with mono-
tonicity: Predicate-abstracting certain widely used monotone software results in
non-monotone multi-threaded Boolean programs — the monotonicity is lost in
the abstraction. As a result, well-established sound and complete safety checking
algorithms become inapplicable; in fact, safety checking turns out to be undecid-
able for the obtained class of unbounded-thread Boolean programs. We demon-
strate how the abstract programs can be modified into monotone ones, without
affecting safety properties of the non-monotone abstraction. This significantly
improves earlier approaches of enforcing monotonicity via overapproximations.

1 Introduction

This paper addresses non-recursive procedures executed by multiple threads (e.g. dy-
namically generated, and possibly unbounded in number), which communicate via
shared variables or higher-level mechanisms such as mutexes. OS-level code, includ-
ing Windows, UNIX, and Mac OS device drivers, makes frequent use of such concur-
rency APIs, whose correct use is therefore critical to ensure a reliable programming
environment.

The utility of predicate abstraction as a safety analysis method is known to depend
critically on the choice of predicates: the consequences of a poor choice range from
inferior performance to flat-out unprovability of certain properties. We propose in this
paper an extension of predicate abstraction to multi-threaded programs that enables
reasoning about intricate data relationships, namely

shared-variable: “shared variables s and t are equal”,
single-thread: “local variable l of thread i is less than shared variable s”, and
inter-thread: “local variable l of thread i is less than variable l in all other threads”.

� This work is supported by the Toyota Motor Corporation, NSF grant no. 1253331 and ERC
project 280053.

P. Baldan and D. Gorla (Eds.): CONCUR 2014, LNCS 8704, pp. 141–155, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



142 A. Kaiser, D. Kroening, and T. Wahl

Why such a rich predicate language? For certain concurrent algorithms such as the
widely used ticket busy-wait lock algorithm [4] (the default locking mechanism in the
Linux kernel since 2008; see Fig. 1), the verification of elementary safety properties
requires single- and inter-thread relationships. They are needed to express, for instance,
that a thread holds the minimum ticket value, an inter-thread relationship.

In the main part of the paper, we address the problem of full parameterized (un-
bounded-thread) program verification with respect to our rich predicate language. Such
reasoning requires first that the n-thread abstract program P̂n, obtained by existential
inter-thread predicate abstraction of the n-thread concrete program Pn, is rewritten
into a single template program P̃ to be executed by (any number of) multiple threads.
In order to capture the semantics of these programs in the template P̃, the template
programming language must itself permit variables that refer to the currently executing
or a generic passive thread; we call such programs dual-reference (DR). We describe
how to obtain P̃, namely essentially as an overapproximation of P̂b, for a constant
b that scales linearly with the number of inter-thread predicates used in the predicate
abstraction.

Given the Boolean dual-reference program P̃ , we might now expect the unbounded-
thread replicated program P̃∞ to form a classical well quasi-ordered transition sys-
tem [2], enabling the fully automated, algorithmic safety property verification in the
abstract. This turns out not to be the case: the expressiveness of dual-reference pro-
grams renders parameterized program location reachability undecidable, despite the
finite-domain variables. The root cause is the lack of monotonicity of the transition re-
lation with respect to the standard partial order over the space of unbounded thread
counters. That is, adding passive threads to the source state of a valid transition can
invalidate this transition and in fact block the system. Since the input C programs are,
by contrast, perfectly monotone, we say the monotonicity is lost in the abstraction. As
a result, our abstract programs are in fact not well quasi-ordered.

Inspired by earlier work on monotonic abstractions [3], we address this problem by
restoring the monotonicity using a simple closure operator, which enriches the transi-
tion relation of the abstract program P̃ such that the obtained program P̃m engenders a
monotone (and thus well quasi-ordered) system. The closure operator essentially termi-
nates passive threads that block transitions allowed by other passive threads. In contrast
to those earlier approaches, which enforce (rather than restore) monotonicity in gen-
uinely non-monotone systems, we exploit the fact that the input programs are mono-
tone. As a result, the monotonicity closure P̃m can be shown to be safety-equivalent to
the intermediate program P̃.

To summarize, the central contribution of this paper is a predicate abstraction strat-
egy for unbounded-thread C programs, with respect to the rich language of inter-thread
predicates. This language allows the abstraction to track properties that are essentially
universally quantified over all passive threads. To this end, we first develop such a
strategy for a fixed number of threads. Second, in preparation for extending it to the
unbounded case, we describe how the abstract model, obtained by existential predi-
cate abstraction for a given thread count n, can be expressed as a template program
that can be multiply instantiated. Third, we show a sound and complete algorithm for
reachability analysis for the obtained parameterized Boolean dual-reference programs.



Lost in Abstraction: Monotonicity in Multi-threaded Programs 143

struct Spinlock {
natural s := 1; // ticket being served
natural t := 1; }; // next free ticket

struct Spinlock lock; // shared

void spin_lock() {
natural l := 0; // local

�1: l := fetch_and_add(lock.t);
�2: while (l �= lock.s)

/∗ spin ∗/; }

void spin_unlock() {
�3: lock.s++; }

The ticket algorithm: Shared vari-
able lock has two integer components:
s holds the ticket currently served (or,
if none, the ticket served next), while
t holds the ticket to be served after all
waiting threads have had access.
To request access to the locked region,
a thread atomically retrieves the value
of t and then increments t. The thread
then busy-waits (“spins”) until local
variable l agrees with shared s. To un-
lock, a thread increments s.

See [21] for more intuition.

Fig. 1. Our goal is to verify “unbounded-thread mutual exclusion”: no matter how many threads
try to acquire and release the lock concurrently, no two of them should simultaneously be between
the calls to functions spin_lock and spin_unlock

We overcome the undecidability of the problem by building a monotone closure that
enjoys the same safety properties as the original abstract dual-reference program.

We omit in this paper practical aspects such as predicate discovery, the algorithmic
construction of the abstract programs, and abstraction refinement. In our technical re-
port [21], we provide, however, an extensive appendix, with proofs of all lemmas and
theorems.

2 Inter-Thread Predicate Abstraction

In this section we introduce single- and inter-thread predicates, with respect to which
we then formalize existential predicate abstraction. Except for the extended predicate
language, these concepts are mostly standard and lay the technical foundations for the
contributions of this paper.

2.1 Input Programs and Predicate Language

2.1.1 Asynchronous Programs. An asynchronous program P allows only one thread
at a time to change its local state. We model P , designed for execution by n ≥ 1 con-
current threads, as follows. The variable set V of a program P is partitioned into sets
S and L. The variables in S, called shared, are accessible jointly by all threads, and
those in L, called local, are accessible by the individual thread that owns the variable.
We assume the statements of P are given by a transition formula R over unprimed
(current-state) and primed (next-state) variables, V and V ′ = {v′ : v ∈ V}. Further, the
initial states are characterized by the initial formula I over V. We assume I is express-
ible in a suitable logic for which existential quantification is computable (required later
for the abstraction step).



144 A. Kaiser, D. Kroening, and T. Wahl

As usual, the computation may be controlled by a local program counter pc, and
involve non-recursive function calls. When executed by n threads, P gives rise to n-
thread program states consisting of the valuations of the variables in Vn = S ∪ L1 ∪
. . . Ln, where Li = {li : l ∈ L}. We call a variable set uniformly indexed if its vari-
ables either all have no index, or all have the same index. For a formula f and two
uniformly-indexed variable sets X1 and X2, let f{X1�X2} denote f after replacing
every occurrence of a variable in X1 by the variable in X2 with the same base name, if
any; unreplaced if none. We write f{X1��X2} short for f{X1�X2}{X1

′�X2
′}. As an

example, given S = {s} and L = {l}, we have (l′ = l + s){L��La} = (l′
a = la+s).

Finally, let X
◦= X ′ stand for ∀x ∈ X : x = x′.

The n-thread instantiation Pn is defined for n ≥ 1 as

Pn = (Rn, In) =
(∨n

a=1
(Ra)n,

∧n

a=1
I{L�La}

)
(1)

where (Ra)n :: R{L��La} ∧
∧

p:p�=a
Lp

◦= L′
p . (2)

Formula (Ra)n asserts that the shared variables, and the variables of the active (execut-
ing) thread a are updated according to R, while the local variables of passive threads
p �= a are not modified (p ranges over {1, . . . , n}). A state is initial if all threads are
in a state satisfying I. An n-thread execution is a sequence of n-thread program states
whose first state satisfies In and whose consecutive states are related by Rn. We as-
sume the existence of an error location in P ; an error state is one where some thread
resides in the error location. P is safe if no execution exists that ends in an error state.
Mutex conditions can be checked using a ghost semaphore and redirecting threads to
the error location if they try to access the critical section while the semaphore is set.

2.1.2 Predicate Language. We extend the predicate language from [10] to allow the
use of the passive-thread variables LP = {lP : l ∈ L}, each of which represents a
local variable owned by a generic passive thread. The presence of variables of various
categories gives rise to the following predicate classification.

Definition 1. A predicate Q over S, L and LP is shared if it contains variables from
S only, local if it contains variables from L only, single-thread if it contains variables
from L but not from LP , and inter-thread if it contains variables from L and from LP .

Single- and inter-thread prediactes may contain variables from S. For example, in the
ticket algorithm (Fig. 1), with S = {s, t} and L = {l}, examples of shared, local,
single- and inter-thread predicates are: s = t, l = 5, s = l and l �= lP , respectively.

Semantics. Let Q[1], . . . , Q[m] be m predicates (any class). Predicate Q[i] is evaluated
in a given n-thread state v (n ≥ 2) with respect to a choice of active thread a:

Q[i]a ::
∧

p:p�=a
Q[i]{L�La}{LP �Lp} . (3)

As special cases, for single-thread and shared predicates (no LP variables), we have
Q[i]a = Q[i]{L�La} and Q[i]a = Q[i], resp. We write v |= Q[i]a if Q[i]a holds in



Lost in Abstraction: Monotonicity in Multi-threaded Programs 145

state v. Predicates Q[i] give rise to an abstraction function α, mapping each n-thread
program state v to an m × n bit matrix with entries

α(v)i,a =
{

T if v |= Q[i]a
F otherwise .

(4)

Function α partitions the n-thread program state space via m predicates into 2m×n

equivalence classes. As an example, consider the inter-thread predicates l ≤ lP , l >
lP , and l �= lP for a local variable l, n = 4 and the state v :: (l1, l2, l3, l4) =
(4, 4, 5, 6):

α(v) =

⎛
⎝

T T F F
F F F T
F F T T

⎞
⎠ . (5)

In the matrix, row i ∈ {1, 2, 3} lists the truth of predicate Q[i] for each of the four
threads in the active role. Predicate l ≤ lP captures whether a thread owns the mini-
mum value for local variable l (true for a = 1, 2); l > lP tracks whether a thread owns
the unique maximum value (true for a = 4) ; finally l �= lP captures the uniqueness of
a thread’s copy of l (true for a = 3, 4).

Inter-thread predicates and abstraction. Predicates that reason universally about threads
have been used successfully as targets in (inductive) invariant generation procedures
[5,24]. In this paper we discuss their role in abstractions. The use of these fairly expres-
sive and presumably expensive predicates is not by chance: automated methods that
cannot reason about them [13,10,26] essentially fail for the ticket algorithm in Fig. 1:
for a fixed number of threads that concurrently and repeatedly (e.g. in an infinite loop)
request and release lock ownership, the inter-thread relationships need to be “simulated”
via enumeration, incurring very high time and space requirements, even for a handful
of threads. In the unbounded-thread case, they diverge. This is essentially due to known
limits of thread-modular and Owicki-Gries style proof systems, which do not have ac-
cess to inter-thread predicates [23]. In [21], we show that the number of single-thread
predicates needed to prove correctness of the ticket algorithm depends on n, from which
unprovability in the unbounded case follows.

2.2 Existential Inter-Thread Predicate Abstraction

Embedded into our formalism, the goal of existential predicate abstraction [8,18] is to
derive an abstract program P̂n by treating the equivalence classes induced by Eq. (4) as
abstract states. P̂n thus has m × n Boolean variables:

V̂n =
⋃n

a=1 L̂a =
⋃n

a=1{b[i]a : 1 ≤ i ≤ m} .

Variable b[i]a tracks the truth of predicate Q[i] for active thread a. This is formalized in
(6), relating concrete and abstract n-thread states (valuations of Vn and V̂n, resp.):

Dn ::
m∧

i=1

n∧
a=1

b[i]a ⇔ Q[i]a . (6)



146 A. Kaiser, D. Kroening, and T. Wahl

For a formula f , let f ′ denote f after replacing each variable by its primed version. We

then have P̂n = (R̂n, În) =
(∨n

a=1(R̂a)n, În
)

where

(R̂a)n :: ∃VnV ′
n : (Ra)n ∧ Dn ∧ (Dn)′, (7)

În :: ∃Vn : In ∧ Dn . (8)

As an example, consider the decrement operation l := l − 1 on a local integer
variable l, and the inter-thread predicate l < lP . Using Eq. (7) with n = 2, a =
1, we get 4 abstract transitions, which are listed in Table 1. The table shows that the
abstraction is no longer asynchronous (treating b1 as belonging to thread 1, b2 to thread
2): in the highlighted transition, the executing thread 1 changes (its pc and hence) its
local state, and so does thread 2. By contrast, on the right we have l2 = l′

2 in all rows.
The loss of asynchrony will become relevant in Sect. 3, where we define a suitable
abstract Boolean programming language (which then necessarily must accommodate
non-asynchronous programs).

Table 1. Abstraction (R̂1)2 for stmt. l := l−1 against predicate l < lP (left); concrete witness
transitions, i.e. elements of (R1)2 (right). The highlighted row indicates asynchrony violations.

b1 b2 b′
1 b′

2 l1 l2 l′
1 l′

2

F F T F 1 1 0 1
F T F F 1 0 0 0
F T F T 2 0 1 0
T F T F 1 2 0 2

Proving the ticket algorithm (fixed-thread case). As in any existential abstraction, the
abstract program P̂n overapproximates (the set of executions of) the concrete program
Pn; the former can therefore be used to verify safety of the latter. We illustrate this
using the ticket algorithm (Fig. 1). Consider the predicates Q[1] :: l �= lP , Q[2] :: t >
max(l, lP ), and Q[3] :: s = l. The first two are inter-thread; the third is single-thread.
The predicates assert the uniqueness of a ticket (Q[1]), that the next free ticket is larger
than all tickets currently owned by threads (Q[2]), and that a thread’s ticket is currently
being served (Q[3]). The abstract reachability tree for P̂n and these predicates reveals
that mutual exclusion is satisfied: there is no state with both threads in location �3. The
tree grows exponentially with n.

3 From Existential to Parametric Abstraction

Classical existential abstraction as described in Sect. 2.2 obliterates the symmetry pres-
ent in the concrete concurrent program, which is given as the n-thread instantiation of
a single-thread template P : the abstraction is instead formulated via predicates over the
explicitly expanded n-thread program Rn. As observed in previous work [10], such a



Lost in Abstraction: Monotonicity in Multi-threaded Programs 147

“symmetry-oblivious” approach suffers from poor scalability for fixed-thread verifica-
tion problems. Moreover, parametric reasoning over an unknown number of threads is
impossible since the abstraction (7) directly depends on n.

To overcome these problems, we now derive an overapproximation of P̂n via a
generic program template P̃ that can be instantiated for any n. There is, however, one
obstacle: instantiating a program (such as P) formulated over shared variables and one
copy of the thread-local variables naturally gives rise to asynchronous concurrency. The
programs resulting from inter-thread predicate abstraction are, however, not asynchro-
nous, as we have seen. As a result, we need a more powerful abstract programming
language.

3.1 Dual-Reference Programs

In contrast to asynchronous programs, the variable set Ṽ of a dual-reference (DR) pro-
gram P̃ is partitioned into two sets: L̃, the local variables of the active thread as before,
and L̃P = {lP : l ∈ L̃}. The latter set contains passive-thread variables, which, in-
tuitively, regulate the behavior of non-executing threads. To simplify reasoning about
DR programs, we exclude classical shared variables from the description: they can be
simulated using the active and passive flavors of local variables (see [21]).

The statements of P̃ are given by a transition formula R̃ over Ṽ and Ṽ ′, now poten-
tially including passive-thread variables. Similarly, Ĩ may contain variables from L̃P .
The n-thread instantiation P̃n of a DR program P̃ is defined for n ≥ 2 as

P̃n = (R̃n, Ĩn) =
(∨n

a=1
(R̃a)n,

∨n

a=1
(Ĩa)n

)
(9)

where (R̃a)n ::
∧

p:p�=a
R̃{L̃��L̃a}{L̃P ��L̃p} (10)

(Ĩa)n ::
∧

p:p�=a
Ĩ{L̃�L̃a}{L̃P �L̃p} (11)

Recall that f{X1��X2} denotes index replacement of both current-state and next-state
variables. Eq. (10) encodes the effect of a transition on the active thread a, and n − 1
passive threads p. The conjunction ensures that the transition formula R̃ holds no matter
which thread p �= a takes the role of the passive thread: transitions that “work” only for
select passive threads are rejected.

3.2 Computing an Abstract Dual-Reference Template

From the existential abstraction P̂n we derive a Boolean dual-reference template pro-
gram P̃ such that, for all n, the n-fold instantiation P̃n overapproximates P̂n. The
variables of P̃ are L̃ = {b[i] : 1 ≤ i ≤ m} and L̃P = {b[i]P : 1 ≤ i ≤ m}. Intuitively,
the transitions of P̃ are those that are feasible, for some n, in P̂n, given active thread
1 and passive thread 2. We first compute the set R̃(n) of these transitions for fixed n.
Formally, the components of P̃(n) = (R̃(n), Ĩ(n)) are, for n ≥ 2,

R̃(n) :: ∃L̂3, L̂′
3, . . . , L̂n, L̂′

n : (R̂1)n{L̂1��L̃}{L̂2��L̃P } (12)

Ĩ(n) :: ∃L̂3, . . . , L̂n : În {L̂1�L̃}{L̂2�L̃P } (13)



148 A. Kaiser, D. Kroening, and T. Wahl

We apply this strategy to the earlier example of the decrement statement l := l − 1.
To compute Eq. (12) first with n = 2, we need (R̂1)2, which was enumerated previously
in Table 1. Simplification results in a Boolean DR program with variables b and bP and
transition relation

R̃(2) = (¬b ∧ bP ∧ ¬b′) ∨ (¬bP ∧ b′ ∧ ¬b′
P ) . (14)

Using (14) as the template R̃ in (10) generates existential abstractions of many concrete
decrement transitions; for instance, for n = 2 and a = 1 we get back the transition rela-
tion in Table 1. The question is now: does (14) suffice as a template, i.e. does (R̃(2))n

overapproximate R̂n for all n? The answer is no: the abstract 3-thread transitions shown
in Table 2 are not permitted by (R̃(2))n

for any n, since neither ¬b ∧ bP nor b′ ∧ ¬b′
P

are satisfied for all choices of passive threads (violations highlighted in the table).
We thus increase n to 3, recompute Eq. (12), and obtain

R̃(3) :: R̃(2) ∨ (¬b ∧ ¬bP ∧ ¬b′ ∧ ¬b′
P ) . (15)

The new disjunct accommodates the abstract transitions highlighted in Table 2, which
were missing before.

Table 2. Part of the abstraction (R̂1)3 for stmt. l := l − 1 against predicate l < lP (left);
concrete witness transitions (right). The highlighted elements are inconsistent with (14) as a tem-
plate.

b1 b2 b3 b′
1 b′

2 b′
3 l1 l2 l3 l′

1 l′
2 l′

3

F F F F F F 1 0 0 0 0 0
F F T F F F 1 1 0 0 1 0
F F T F F T 2 1 0 1 1 0

Does (R̃(3))n
overapproximate R̂n for all n? When does the process of increasing

n stop? To answer these questions, we first state the following diagonalization lemma,
which helps us prove the overapproximation property for the template program.

Lemma 2. (P̃(n))n
overapproximates P̂n: For every n ≥ 2 and every a, (R̂a)n ⇒

(R̃(n)a)n and În ⇒ (Ĩ(n)a)n.

We finally give a saturation bound for the sequence (P̃(n)). Along with the diago-
nalization lemma, this allows us to obtain a template program P̃ independent of n, and
enable parametric reasoning in the abstract.

Theorem 3. Let #IT be the number of inter-thread predicates among the Q[i]. Then
the sequence (P̃(n)) stabilizes at b = 4 × #IT + 2, i.e. for n ≥ b, P̃(n) = P̃(b).

Corollary 4 (from L. 2,T. 3). Let P̃ := P̃(b), for b as in Thm. 3. The components of
P̃ are thus (R̃, Ĩ) = (R̃(b), Ĩ(b)). Then, for n ≥ 2, P̃n overapproximates P̂n.



Lost in Abstraction: Monotonicity in Multi-threaded Programs 149

Building a template DR program thus requires instantiating the existentially ab-
stracted transition relation for a number b of threads that is linear in the number of
inter-thread predicates with respect to which to abstraction is built.

As a consequence of losing asynchrony in the abstraction, many existing model
checkers for concurrent software become inapplicable [25,11,12]. For a fixed thread
count n, the problem can be circumvented by forgoing the replicated nature of the con-
current programs, as done in [10] for boom tool: it proves the ticket algorithm correct
up to n = 3, but takes a disappointing 30 minutes. The goal of the following section is
to design an efficient and, more importantly, fully parametric solution.

4 Unbounded-Thread Dual-Reference Programs

The multi-threaded Boolean dual-reference programs P̃n resulting from predicate-ab-
stracting asynchronous programs against inter-thread predicates are symmetric and free
of recursion. The symmetry can be exploited using classical methods that “counterize”
the state space [17]: a global state is encoded as a vector of local-state counters, each of
which records the number of threads currently occupying a particular local state.

These methods are applicable to unbounded thread numbers as well, in which case
the local state counters range over unbounded natural numbers [0, ∞[. The fact that
the abstract program executed by each thread is finite-state now might suggest that
the resulting infinite-state counter systems can be modeled as vector addition systems
(as done in [17]) or, more generally, as well quasi-ordered transition systems [15,1]
(defined below). This would give rise to sound and complete algorithms for local-state
reachability in such programs.

This strategy turns out to be wrong: the full class of Boolean DR programs is expres-
sive enough to render safety checking for an unbounded number of threads undecidable,
despite the finite-domain variables:

Theorem 5. Program location reachability for Boolean DR programs run by an un-
bounded number of threads is undecidable.

The proof reduces the halting problem for 2-counter machines to a reachability problem
for a DR program P̃ . Counter values ci are reduced to numbers of threads in program
locations di of P̃ . A zero-test for counter ci is reduced to testing the absence of any
thread in location di. This condition can be expressed using passive-thread variables,
but not using traditional single-thread local variables. (Details of the proof are in [21].)

Thm. 5 implies that the unbounded-counter systems obtained from asynchronous
programs are in fact not well quasi-ordered. How come? Can this problem be fixed, in
order to permit a complete verification method? If so, at what cost?

4.1 Monotonicity in Dual-Reference Programs

For a transition system (Σ,�) to be well-quasi ordered, we need two conditions to be
in place [15,1,2]:

Well Quasi-Orderedness: There exists a reflexive and transitive binary relation � on
Σ such that for every infinite sequence v, w, . . . of states in Σ there exist i, j with
i < j and vi � vj .



150 A. Kaiser, D. Kroening, and T. Wahl

Monotonicity: For any v, v′, w with v � v′ and v � w there exists w′ such that
w � w′ and v′ � w′.

We apply this definition to the case of dual-reference programs. Representing global
states of the abstract system P̃n defined in Sect. 3 as counter tuples, we can define � as

(n1, . . . , nk) � (n′
1, . . . , n′

k) :: ∀i = 1..k : ni ≤ n′
i

where k is the number of thread-local states. We can now characterize monotonicity of
DR programs as follows:

Lemma 6. Let R̃ be the transition relation of a DR program. Then the infinite-state
transition system ∪∞

n=1R̃n is monotone (with respect to �) exactly if, for all k ≥ 2:

(v, v′) ∈ R̃k ⇒ ∀lk+1 ∃l′
k+1, π :

(〈v, lk+1〉, π(〈v′, l′
k+1〉)) ∈ R̃k+1 . (16)

In (16), the expression ∀lk+1∃l′
k+1 . . . quantifies over valuations of the local variables

of thread k+1. The notation 〈v, lk+1〉 denotes a (k+1)-thread state that agrees with v in
the first k local states and whose last local state is lk+1; similarly 〈v′, l′

k+1〉. Symbol π
denotes a permutation on {1, . . . , k + 1} that acts on states by acting on thread indices,
which effectively reorders thread local states.

Asynchronous programs are trivially monotone (and DR): Eq. (16) is satisfied by
choosing l′

k+1 := lk+1 and π the identity. Table 3 shows instructions found in non-asyn-
chronous programs that destroy monotonicity, and why. For example, the swap instruc-
tion in the first row gives rise to a DR program with a 2-thread transition (0, 0, 0, 0) ∈
R̃2. Choosing l3 = 1 in (16) requires the existence of a transition in R̃3 of the form
(l1, l2, l3, l′

1, l′
2, l′

3) = (0, 0, 1, π(0, 0, l′
3)), which is impossible: by equations (9)

and (10), there must exist a ∈ {1, 2, 3} such that for {p, q} = {1, 2, 3} \ {a}, both “a
swaps with p” and “a swaps with q” hold, i.e.

l′
p = la ∧ l′

a = lp ∧ l′
q = la ∧ l′

a = lq ,

which is equivalent to l′
a = lp = lq ∧ la = l′

p = l′
q. It is easy to see that this formula

is inconsistent with the partial assignment (0, 0, 1, π(0, 0, l′
3)), no matter what l′

3.
More interesting for us is the fact that asynchronous programs (= our input lan-

guage) are monotone, while their parametric predicate abstractions may not be; this
demonstrates that the monotonicity is in fact lost in the abstraction. Consider again the
decrement instruction l := l − 1, but this time abstracted against the inter-thread pred-
icate Q :: l = lP . Parametric abstraction results in the two-thread and three-thread
template instantiations

R̃2 = (¬b1 ∨ ¬b′
1) ∧ b1 = b2 ∧ b′

1 = b′
2

R̃3 = (¬b1 ∨ ¬b′
1) ∧ b1 = b2 = b3 ∧ b′

1 = b′
2 = b′

3 .

Consider the transition (0, 0) → (1, 1) ∈ R̃2 and the three-thread state w = (0, 0, 1) �
(0, 0) : w clearly has no successor in R̃3 (it is in fact inconsistent), violating mono-
tonicity. We discuss in Sect. 4.2 what happens to the decrement instruction with respect
to predicate l < lP .



Lost in Abstraction: Monotonicity in Multi-threaded Programs 151

Table 3. Each row shows a single-instruction program, whether the program gives rise to a mono-
tone system and, if not, an assignment that violates Eq. (17). (Some of these programs are not
finite-state.)

Dual-reference program Monotonicity

instruction variables mon.? assgn. violating (17)

l, lP := lP , l l ∈ B no l = 0, l′ = 1
l, lP := l + 1, lP − 1 l ∈ N yes

lP := lP + l l ∈ N yes
l := l + lP l ∈ N no l = l′ = 1

lP := c l, c ∈ N yes

4.2 Restoring Monotonicity in the Abstraction

Our goal is now to restore the monotonicity that was lost in the parametric abstraction.
The standard covering relation � defined over local state counter tuples turns mono-
tone and Boolean DR programs into instances of well quasi-ordered transition systems.
Program location reachability is then decidable, even for unbounded threads.

In order to do so, we first derive a sufficient condition for monotonicity that can be
checked locally over R̃, as follows.

Theorem 7. Let R̃ be the transition relation of a DR program. Then the infinite-state
transition system ∪∞

n=1R̃n is monotone if the following formula over L̃ × L̃′ is valid:

∃L̃P L̃′
P : R̃ ⇒ ∀L̃P ∃L̃′

P : R̃ . (17)

Unlike the monotonicity characterization given in Lemma 6, Eq. (17) is formulated
only about the template program R̃. It suggests that, if R̃ holds for some valuation of
its passive-thread variables, then no matter how we replace the current-state passive-
thread variables L̃P , we can find next-state passive-thread variables L̃′

P such that R̃
still holds. This is true for asynchronous programs, since here L̃P = ∅. It fails for the
swap instruction in the first row of Table 3: the instruction gives rise to the DR program
R̃ :: l′ = lP ∧ l′

P = l. The assignment on the right in the table satisfies R̃, but if lP

is changed to 0, R̃ is violated no matter what value is assigned to l′
P .

We are now ready to modify the possibly non-monotone abstract DR program P̃
into a new, monotone abstraction P̃m. Our solution is similar in spirit to, but different
in effect from, earlier work on monotonic abstractions [3], which proposes to delete
processes that violate universal guards and thus block a transition. This results in an
overappoximation of the original system and thus possibly spuriously reachable error
states. By contrast, exploiting the monotonicity of the concrete program P , we can build
a monotone program P̃m that is safe exactly when P̃ is, thus fully preserving soundness
and precision of the abstraction P̃.

Definition 8. The non-monotone fragment (NMF) of a DR program with transition
relation R̃ is the formula over L̃ × L̃P × L̃′:

F(R̃) :: ¬∃L̃′
P : R̃ ∧ ∃L̃P L̃′

P : R̃ . (18)



152 A. Kaiser, D. Kroening, and T. Wahl

The NMF encodes partial assignments (l, lP , l′) that cannot be extended, via any l′
P ,

to a full assignment satisfying R̃, but can be extended for some valuation of L̃P other
than lP . We revisit the two non-monotone instructions from Table 3. The NMF of
l, lP := lP , l is l′ �= lP : this clearly cannot be extended to an assignment satisfying
R̃, but when lP is changed to l′, we can choose l′

P = l to satisfy R̃. The non-
monotone fragment of l := l + lP is l′ ≥ l ∧ l′ �= l + lP .

Eq. (18) is slightly stronger than the negation of (17): the NMF binds the values of
the L̃P variables for which a violation of R̃ is possible. It can be used to “repair” R̃:

Lemma 9. For a DR program with transition relation R̃, the program with transition
relation R̃ ∨ F(R̃) is monotone.

Lemma 9 suggests to add artificial transitions to P̃ that allow arbitrary passive-thread
changes in states of the non-monotone fragment, thus lifting the blockade previously
caused by some passive threads. While this technique restores monotonicity, the prob-
lem is of course that such arbitrary changes will generally modify the program behavior;
in particular, an added transition may lead a thread directly into an error state that used
to be unreachable.

In order to instead obtain a safety-equivalent program, we prevent passive threads
that block a transition in P̃n from affecting the future execution. This can be realized
by redirecting them to an auxiliary sink state. Let �⊥ be a fresh program label.

Definition 10. The monotone closure of DR program P̃ = (R̃, Ĩ) is the DR program
P̃m = (R̃m, Ĩ) with the transition relation R̃m :: R̃ ∨ (F(R̃) ∧ (pc′

P = �⊥)) .

This extension of the transition relation has the following effects: (i) for any program
state, if any passive thread can make a move, so can all, ensuring monotonicity, (ii) the
added moves do not affect the safety of the program, and (iii) transitions that were
previously possible are retained, so no behavior is removed. The following theorem
summarizes these claims:

Theorem 11. Let P be an asynchronous program, and P̃ its parametric abstraction.
The monotone closure P̃m of P̃ is monotone. Further, (P̃m)n

is safe exactly if P̃n is.

Thm. 11 justifies our strategy for reachability analysis of an asynchronous pro-
gram P : form its parametric predicate abstraction P̃ described in Sections 2 and 3,
build the monotone closure P̃m, and analyze (P̃m)∞ using any technique for mono-
tone systems.

Proving the parameterized ticket algorithm. Applying this strategy to the ticket
algorithm yields a well quasi-ordered transition system for which the backward reach-
ability method described in [1] returns “uncoverable”, confirming that the ticket algo-
rithm guarantees mutual exclusion, this time for arbitrary thread counts. We remind
the reader that the ticket algorithm is challenging for existing techniques: cream [19],
slab [11] and symmpa [10] handle only a fixed number of threads, and the resource re-
quirements of these algorithms grow rapidly; none of them can handle even a handful
of threads. The recent approach from [14] generates polynomial-size proofs, but again
only for fixed thread counts.



Lost in Abstraction: Monotonicity in Multi-threaded Programs 153

5 Comparison with Related Work

Existing approaches for verifying asynchronous shared-memory programs typically do
not exploit the monotone structure that source-level multi-threaded programs often
naturally exhibit [20,7,9,26,19,10,12,14]. For example, the constraint-based approach
in [19], implemented in cream, generates Owicki-Gries and rely-guarantee type proofs.
It uses predicate abstraction in a CEGAR loop to generate environment invariants for
fixed thread counts, whereas our approach directly checks the interleaved state space
and exploits monotonicity. Whenever possible, cream generates thread-modular proofs
by prioritizing predicates that do not refer to the local variables of other threads.

A CEGAR approach for fixed-thread symmetric concurrent programs has been imple-
mented in symmpa [10]. It uses predicate abstraction to generate a Boolean Broadcast
program (a special case of DR program). Their approach cannot reason about relation-
ships between local variables across threads, which is crucial for verifying algorithms
such as the ticket lock. Nevertheless, even the restricted predicate language of [10] can
give rise to non-asynchronous programs. As a result, their technique cannot be extended
to unbounded thread counts with well quasi-ordered systems technology.

Recent work on data flow graph representations of fixed-thread concurrent programs
has been applied to safety property verification [14]. The inductive data flow graphs
can serve as succinct correctness proofs for safety properties; for the ticket example
they generate correctness proofs of size quadratic in n. Similar to [14], the technique
in [12] uses data flow graphs to compute invariants of concurrent programs with un-
bounded threads (implemented in duet). In contrast to our approach, which uses an
expressive predicate language, duet constructs proofs from relationships between ei-
ther solely shared or solely local variables. These are insufficient for many benchmarks
such as the parameterized ticket algorithm.

Predicates that, like our inter-thread predicates, reason over all participating pro-
cesses/threads have been used extensively in invariant generation methods [5,16,22].
As a recent example, an approach that relies on abstract interpretation instead of model
checking is [24]. Starting with a set of candidate invariants (assertions), the approach
builds a reflective abstraction, from which invariants of the concrete system are ob-
tained in a fixed point process. These approaches and ours share the insight that complex
relationships over all threads may be required to prove easy-to-state properties such as
mutual exclusion. They differ fundamentally in the way these relationships are used: ab-
straction with respect to a given set Q of quantified predicates determines the strongest
invariant expressible as a Boolean formula over the set Q; the result is unlikely to be
expressible in the language that defines Q. Future work will investigate how invariant
generation procedures can be used towards predicate discovery in our technique.

The idea of “making” systems monotone, in order to enable wqo-based reasoning,
was pioneered in earlier work [6,3]. Bingham and Hu deal with guards that require
universal quantification over thread indices, by transforming such systems into Broad-
cast protocols. This is achieved by replacing conjunctively guarded actions by transi-
tions that, instead of checking a universal condition, execute it assuming that any thread
not satisfying it “resigns”. This happens via a designated local state that isolates such
threads from participation in future the computation. The same idea was further devel-
oped by Abdulla et al. in the context of monotonic abstractions. Our solution to the loss



154 A. Kaiser, D. Kroening, and T. Wahl

of monotonicity was in some way inspired by these works, but differs in two crucial
aspects: first, our concrete input systems are asynchronous and thus monotone, so our
incentive to preserve monotonicity in the abstract is strong. Second, exploiting the in-
put monotonicity, we can achieve a monotonic abstraction that is safety-equivalent to
the non-monotone abstraction and thus not merely an error-preserving approximation.
This is essential, to avoid spurious counterexamples in addition to those unavoidably
introduced by the predicate abstraction.

6 Concluding Remarks

We have presented in this paper a comprehensive verification method for arbitrarily-
threaded asynchronous shared-variable programs. Our method is based on predicate
abstraction and permits expressive universally quantified inter-thread predicates, which
track relationships such as “my ticket number is the smallest, among all threads”. Such
predicates are required to verify, via predicate abstraction, some widely used algorithms
like the ticket lock. We found that the abstractions with respect to these predicates
result in non-monotone finite-data replicated programs, for which reachability is in fact
undecidable. To fix this problem, we strengthened the earlier method of monotonic
abstractions such that it does not introduce spurious errors into the abstraction.

We view the treatment of monotonicity as the major contribution of this work. Pro-
gram design often naturally gives rise to “monotone concurrency”, where adding com-
ponents cannot disable existing actions, up to component symmetry. Abstractions that
interfere with this feature are limited in usefulness. Our paper shows how the feature
can be inexpensively restored, allowing such abstraction methods and powerful infinite-
state verification methods to coexist peacefully.

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. B. Symb. Log. (2010)
2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems of infinite-

state systems. In: LICS (1996)
3. Abdulla, P.A., Delzanno, G., Rezine, A.: Monotonic abstraction in parameterized verifica-

tion. ENTCS (2008)
4. Andrews, G.R.: Concurrent programming: principles and practice. Benjamin-Cummings

Publishing Co., Inc., Redwood City (1991)
5. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with automat-

ically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001.
LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

6. Bingham, J.D., Hu, A.J.: Empirically efficient verification for a class of infinite-state systems.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 77–92. Springer,
Heidelberg (2005)

7. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-passing
C programs with recursive calls. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

8. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. In: TOPLAS
(1994)



Lost in Abstraction: Monotonicity in Multi-threaded Programs 155

9. Cook, B., Kroening, D., Sharygina, N.: Verification of Boolean programs with unbounded
thread creation. Theoretical Comput. Sci. (2007)

10. Donaldson, A.F., Kaiser, A., Kroening, D., Tautschnig, M., Wahl, T.: Counterexample-guided
abstraction refinement for symmetric concurrent programs. In: FMSD (2012)

11. Dräger, K., Kupriyanov, A., Finkbeiner, B., Wehrheim, H.: SLAB: A certifying model
checker for infinite-state concurrent systems. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 271–274. Springer, Heidelberg (2010)

12. Farzan, A., Kincaid, Z.: Verification of parameterized concurrent programs by modular
reasoning about data and control. In: POPL (2012)

13. Farzan, A., Kincaid, Z.: DUET: Static analysis for unbounded parallelism. In: Sharygina, N.,
Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 191–196. Springer, Heidelberg (2013)

14. Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: POPL (2013)
15. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical

Comput. Sci. (2001)
16. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL,

pp. 191–202. ACM (2002)
17. German, S., Sistla, P.: Reasoning about systems with many processes. JACM (1992)
18. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)

CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
19. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for verifying

multi-threaded programs. In: POPL (2011)
20. Henzinger, T., Jhala, R., Majumdar, R.: Race checking by context inference. In: PLDI (2004)
21. Kaiser, A., Kroening, D., Wahl, T.: Lost in abstraction: Monotonicity in multi-threaded pro-

grams (extended technical report). CoRR (2014)
22. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstraction.

In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281. Springer,
Heidelberg (2004)

23. Malkis, A.: Cartesian Abstraction and Verification of Multithreaded Programs. PhD thesis,
Albert-Ludwigs-Universität Freiburg (2010)

24. Sanchez, A., Sankaranarayanan, S., Sánchez, C., Chang, B.-Y.E.: Invariant generation for
parametrized systems using self-reflection. In: Miné, A., Schmidt, D. (eds.) SAS 2012.
LNCS, vol. 7460, pp. 146–163. Springer, Heidelberg (2012)

25. La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concurrent pro-
grams using linear interfaces. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 629–644. Springer, Heidelberg (2010)

26. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking concurrent
Linux device drivers. In: ASE (2007)


	Lost in Abstraction: Monotonicity in Multi-threaded Programs
	1 Introduction
	2 Inter-Thread Predicate Abstraction
	2.1 Input Programs and Predicate Language
	2.2 Existential Inter-Thread Predicate Abstraction

	3 From Existential to Parametric Abstraction
	3.1 Dual-Reference Programs
	3.2 Computing an Abstract Dual-Reference Template

	4 Unbounded-Thread Dual-Reference Programs
	4.1 Monotonicity in Dual-Reference Programs
	4.2 RestoringMonotonicity in the Abstraction

	5 Comparison with Related Work
	6 Concluding Remarks
	References




