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A Widening Approach to Multithreaded Program Verification
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Pthread-style multithreaded programs feature rich thread communication mechanisms, such as shared
variables, signals, and broadcasts. In this article, we consider the automated verification of such programs
where an unknown number of threads execute a given finite-data procedure in parallel. Such procedures
are typically obtained as predicate abstractions of recursion-free source code written in C or Java. Many
safety problems over finite-data replicated multithreaded programs are decidable via a reduction to the
coverability problem in certain types of well-ordered infinite-state transition systems. On the other hand, in
full generality, this problem is Ackermann-hard, which seems to rule out efficient algorithmic treatment.

We present a novel, sound, and complete yet empirically efficient solution. Our approach is to judiciously
widen the original set of coverability targets by configurations that involve fewer threads and are thus easier
to decide, and whose exploration may well be sufficient: if they turn out uncoverable, so are the original
targets. To soften the impact of “bad guesses”—configurations that turn out coverable—the exploration is
accompanied by a parallel engine that generates coverable configurations; none of these is ever selected for
widening. Its job being merely to prevent bad widening choices, such an engine need not be complete for
coverability analysis, which enables a range of existing partial (e.g., nonterminating) techniques. We present
extensive experiments on multithreaded C programs, including device driver code from FreeBSD, Solaris,
and Linux distributions. Our approach outperforms existing coverability methods by orders of magnitude.
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1. INTRODUCTION

In anticipation of the prominent role that concurrency is expected to play in future soft-
ware, popular programming languages such as C and Java readily embrace concurrent
programming, via their pthread and thread class APIs, respectively. Communication
among threads is naturally enabled via shared (global-scope) variables and mutexes,
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Fig. 1. Code fragment of a recent implementation of an Apple Bus protocol in the FreeBSD operating system
(file dev/adb/adb_kbd.c), involving kernel thread synchronization via mutexes (mtx_lock/mtx_unlock) and
POSIX-style broadcasts (cv_wait/cv_broadcast).

as well as via nonblocking API constructs such as signals and broadcasts. Much exist-
ing system-level code such as device drivers make use of these mechanisms to protect
shared data and to synchronize thread execution; operating systems such as many Unix
derivatives and Mac OS X directly support them. An example of thread communication
in action is shown in Figure 1.

The correct use of communication mechanisms is largely up to the user. Attempts to
find and reproduce concurrency bugs through conventional program testing are time
consuming, hit-and-miss, and usually result in frustration. In this article, we present
an automated, model checking–based approach to detect failures such as violations
of assertions or mutual-exclusion conditions, or to prove the absence of such failures.
We consider finite-state models (such as obtained via predicate abstraction) of pro-
grams executed by an unknown number of threads, created either on program start
or dynamically during execution. This scenario is most relevant in practice: it cov-
ers workload-aware programs, where the number of worker threads is determined at
runtime.

The difficulty for search-based analysis methods is that such program models give
rise to infinite state spaces. Nevertheless, the detection of the previously mentioned
failure types for such programs has long been known to be decidable, such as by reduc-
tion to the coverability problem for well–quasi-ordered systems [Abdulla et al. 1996].
In program terms, coverability of a particular configuration of threads asks for the
existence of a number n and the reachability of a global state g in the execution of
the finite-state program by n threads such that g contains that thread configuration. A
“thread configuration” can, for instance, be a thread in a particular local state or a pair
of threads simultaneously occupying a location in a given critical code section. Cov-
erability thus allows us to express precisely the types of assertion or synchronization
failures that we are after.

Coverability for the class of well–quasi-ordered systems, which subsumes popu-
lar concurrency models such as various forms of Petri nets, is known to have an
exponential-space lower complexity bound. For example, for plain Petri nets and vec-
tor addition systems, the problem was shown to be complete for exponential space
[Cardoza et al. 1976]. Extensions such as transfer transitions, which allow several
threads to change their local state simultaneously and are used to model broadcasts
in concurrent programs (Figure 1) increase the complexity of the problem further
[Schnoebelen 2010]. These daunting computational costs, and the significance of the
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coverability problem in practical concurrent program verification, have led to a flurry
of activity in crafting solutions viable in practice [Finkel et al. 2002; Geeraerts et al.
2006; Ganty et al. 2006].

In this article, we introduce a new solution to the coverability problem in well–quasi-
ordered systems that shares soundness and completeness with existing methods but
follows a fundamentally different search strategy: before a configuration is selected
for expansion, the set of target elements is widened by its downward closure, thus
adding to the target set many smaller (in the partial configuration order) elements
whose coverability has not yet been decided. The motivation behind this approach is
twofold:

(1) the coverability of smaller elements, which involve fewer threads, is often less
costly to decide, and

(2) uncoverability of smaller elements immediately implies uncoverability of any larger
elements, including the original query target.

The strategy to first settle the coverability of smallest-possible elements, side-stepping
the original query, not only accelerates the search but also makes the search structure
more compact, as we will demonstrate.

“Bad guesses”—that is, elements in the widening that end up coverable, permit
no conclusion about the coverability of the original query elements. In this case, we
backtrack out of the widening: all elements found to be coverable are purged from
the search structure, and the search continues with another smallest-possible and
currently undecided element. Such backtracking can impair the algorithm’s efficiency.
As a countermeasure, the backward search can be assisted by an engine that generates
coverable elements; none of these is ever selected for widening. All we require of such an
engine is that it soundly report coverability of elements. It need not be complete, as its
job is only to accelerate the backward search by flagging coverable configurations early.
An ideal candidate is a Karp-Miller–like forward-directed search for Petri nets with
transfer arcs, which generates (possibly incomplete) coverability information quickly.

Combined with finite-data abstractions, our algorithm is applicable to multithreaded
concurrent programs featuring rich communication mechanisms, including nonblock-
ing forms such as signals and broadcasts, widely used in operating system code. The
efficiency of our method makes it possible to analyze synchronization skeletons of pro-
grams with many thousands of lines of code in a matter of a few seconds, providing
huge benefits over existing coverability techniques.

2. PROBLEM FORMALIZATION

The focus of our discussion is multithreaded programs consisting of a main function
that creates an unbounded number of threads, each of which executes some fixed proce-
dure. The procedure may itself spawn threads dynamically that execute it. This model
subsumes the case of several procedures, each executed by an unbounded number of
threads: such procedures can be merged into one procedure that, in step 1, nonde-
terministically chooses which of the original procedures to execute. The model also
subsumes the case that there are a small constant number of threads (say one server
thread) that execute the same procedure (alongside an unbounded number of other
threads): the combined memory of all of these threads is finite and can be stored in the
shared state space.

We therefore present our program as an (unspecified) number n and a single code
fragment P. The intention is that P represents the code of the procedure whose name
is passed to the thread creation primitive, which is invoked n times by the main thread
on start of the program. We begin this section by sketching a programming language
used to represent P; the emphasis here is on the synchronization mechanisms.
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Fig. 2. Input language syntax (partial).

2.1. Input Language

The syntax of our language is given by the grammar in Figure 2. A code fragment P

consists of (optional) variable declarations and a sequence of (possibly labeled) state-
ments. Variables are of certain finite domains and come in three flavors; 〈ID〉 stands for
a valid identifier. Condition variables are used in synchronization statements described
next. Declared variables must be initialized: init returns a set (to permit nondetermin-
ism) of compile-time computable values of the appropriate type; the semantics of := in
initializations is “select a member of.” Unspecified initial values can be emulated by
choosing init to be the entire domain of the variable.

The significance of shared and local descriptors is explained in Sections 2.2 and
2.3, as is the precise semantics of the statements in our language; the intuition behind
them is as follows:

thread creation: fork 〈LABEL〉 creates a new thread that starts executing at the
statement pointed to by 〈LABEL〉;

synchronization via condition variables: wait c, for some variable c declared
under the keyword cond, blocks a thread until some other thread
executes either signal c (waking up exactly one thread waiting
on c) or broadcast c (waking up all threads waiting on c). The
signal and broadcast calls do not block the executing thread
if no thread is currently waiting on c. We assume there are no
“orphan” synchronization constructs: a program containing wait c
must also contain signal c or broadcast c, and vice versa.

atomic sections: The statement sequence { 〈STMT〉∗ } following the keyword atomic
is executed atomically: when a thread t enters an atomic section, all
other threads are preempted until t leaves that section (typically
by reaching the section’s last statement, although also via jumps;
we disallow jumps/forks into atomic sections).

These primitives allow us to encode the synchronization skeleton of the program shown
in Figure 1. For example, mutexes such as mtx_lock and mtx_unlock are expressed
using Boolean variables and suitable atomic code sections. The cv_wait statement is
encoded using wait, by unlocking the mutex associated with the condition variable
before waiting and reacquiring it afterward.

The nonterminal 〈SEQSTMT〉 in the grammar in Figure 2 represents classical se-
quential statements, such as assignments, conditionals, loops, and (nonrecursive) pro-
cedure calls. Their precise syntax and semantics are immaterial to this article.
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2.2. Thread Transition Systems

We define the semantics of a code fragment P written in the preceding language using
a form of abstract state machine referred to as the thread transition system (TTS).
A TTS is defined over a set T = S × L of thread states, each a pair of a shared and
a local state from finite sets S and L, respectively. Intuitively, the elements of S are
valuations of the shared and cond variables of P, and those of L are valuations of the
local variables. The translation of P into a TTS is explained in detail in Section 2.3.

Definition 1. A thread transition system (TTS) is a pair (T ,�) such that � ⊆ T × T
is a binary relation on T partitioned into �→ ∪ � ∪ ↪→ ∪ � .

The four parts of the transition relation � represent thread transitions, spawn tran-
sitions, signal transitions, and broadcast transitions, formalized as follows. A TTS
gives rise to a transition system over a set V of multithreaded configurations: for a
positive integer n, let Vn = S × Ln and V = ∪∞

i=1 Vi. We write configurations in the
form v = (s | �1, . . . , �n) ∈ Vn. Configuration v consists of a shared state s, and local
state �i of thread i, for i ∈ {1, . . . , n}. By |v|, we denote the dimension of a configuration
v ∈ V —that is, the number of existing threads (n in the preceding case).

The transition system is then M = (V,�); we have (s | �1, . . . , �n) � (s′ | �′
1, . . . , �

′
n′ )

exactly when one of the following transition conditions holds:

thread transition: n′ = n and there exist (s, �) �→ (s′, �′) ∈ � and i such that
�i = �, �′

i = �′, and for all j �= i, � j = �′
j .

spawn transition: n′ = n + 1 and there exist (s, �) � (s′, �′) ∈ � and i such that
�i = �, for all j < n′, � j = �′

j , and �′
n′ = �′.

signal transition: n′ = n and there exists (s, �) ↪→ (s′, �′) ∈ � such that
(1) for every i, �i = �′

i �= �, or
(2) for some i, �i = �, �′

i = �′, and for all j �= i, � j = �′
j .

broadcast transition: n′ = n and there exists (s, �) � (s′, �′) ∈ � such that for all i,
the following holds: let L = {k ∈ L : (s, �i) � (s′, k) ∈ �}. If
L �= ∅, then �′

i ∈ L, otherwise �′
i = �i.

The dimensions of configurations related by � differ by at most one. Thread and
spawn transitions affect the local state of exactly one thread (in case of spawn: the
new one). They are blocking—in other words, executable only if enabled by a thread
occupying the transition’s source thread state. A signal transition is the nonblocking
version of a thread transition: it affects the local state of at most one thread; if no
enabling thread exists, a signal may still “silently” change the shared state. Given
a thread signal transition (s, A) ↪→ (s′, B), examples of global signal transitions are
(s | B, C, D) � (s′ | B, C, D) and (s | A, C, A) � (s′ | B, C, A), without and with enabled
thread, respectively.

Broadcast transitions are also nonblocking. Moreover, broadcasts with source shared
state s and target shared state s′ can execute simultaneously: the shared state is
updated to s′, and the local state of thread i is updated nondeterministically according
to one of the broadcast transitions of the form (s, �i) � (s′, k) if any, unchanged if
none. As an example, suppose that our program has two thread broadcast transitions
(s, A) � (s′, B) and (s, A) � (s′, C), and no other transitions. An example of a valid
global broadcast transition is (s | B, C, D) � (s′ | B, C, D); this is similar in effect to a
(silent) signal. Another valid example is (s | A, C, A) � (s′ | B, C, C). Participation in a
broadcast is mandatory for threads that are enabled in it: (s | A, C, A) � (s′ | B, C, A) is
not a valid transition.

For simplicity, we omit thread terminating transitions (which for our purposes can
be simulated by directing such a thread to a dead-end local state).
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Fig. 3. A program with three atomic sections (arranged horizontally and labeled 0, 1, 2, respectively). To
simplify presentation, we use a non-Boolean but finite-domain shared variable s. Observe that each thread
can perform only one execution sequence, namely from the initial configuration (0, 0) to (3, 1) to (3, 2), and
finally back to (0, 0). Hence, only configurations with s ∈ {0, 3} are reachable, and the jump instructions goto
0, goto 1, and goto 2 in locations κ = 0, κ = 1, and κ = 2, respectively, are never executed.

Fig. 4. The TTS induced by the program in Figure 3. Valuations of s and κ are shown as (s, κ). The initial
thread state is (0, 0); intermediate states of atomic sections and self-loops are omitted.

Transition system executions. Let TI be a set of initial thread states. The set of initial
configurations is defined as I = {(s | �1, . . . , �n) | n ≥ 0 ∧ (s, �1), . . . , (s, �n) ∈ TI}. As usual,
an execution of transition system M is a (finite or infinite) sequence of configurations,
beginning with an initial one, whose adjacent elements are related by �. Let �∗ denote
the reflexive transitive closure of �. A configuration v is reachable if there exists i ∈ I
such that i �∗ v.

2.3. From Programs to TTS and Infinite-State Transition Systems

From Programs to TTS. A program P written according to the grammar in Figure 2 can
be encoded as a TTS; we sketch this process in this section. A complete example of a
program and the corresponding TTS is given in Figures 3 and 4.

Let Vars = SVars ∪ LVars ∪ CVars be the disjoint sets of variables declared in
P under the keywords shared, local, and cond, respectively. The variables in
SVars ∪ LVars are of type Boolean, whereas a condition variable in CVars takes values
from {sig, bc, idle}, indicating that a signal has been received, or a broadcast has been
received, or neither has been received. Let further κ �∈ Vars be a fresh symbol serving
as the program counter of each thread. A shared state of the TTS is a mapping from
SVars to {0, 1} and from CVars to {sig, bc, idle}. A local state is a mapping from LVars
to {0, 1} and from {κ} to {0, . . . , |P| − 1}, where |P| denotes the number of statements in
P. A thread state thus comprises the values of all variables of P, including the implicit
variable κ, and hence characterizes the state of a single thread executing P.

In an execution of the transition system M derived from the TTS, the local variables
of P are replicated for each thread, whereas the shared and condition variables are
not. The initial thread state set TI of the TTS is defined by the variable initializations
according to Figure 2; in particular, these will satisfy κ = 0—that is, execution starts
in the first program location.
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Fig. 5. Modeling statements wait, signal, and broadcast on a condition variable c. The program (not
shown) encoded by this TTS consists of the five statements given in the second line; κ = 5 marks the end
of the program. Sequential statements are abbreviated as skip. There are no local variables other than the
program counter.

Sequential statements of P translate directly into standard thread transitions in M.
A fork statement translates into a spawn transition, except a spawn transition does
not change the local state of the spawning thread, whereas a forking thread moves to
the next program location. The latter can be enforced in M by treating the spawn and
the move of the spawning thread to the next program location as an atomic section.
Such sections are implemented via fresh Boolean shared lock variables whose value
marks a thread state as inside or outside an atomic section.

There is no transition type in a TTS that directly corresponds to a wait c statement.
We model such as follows (Figure 5 provides an illustration). Thread states whose local
state corresponds to a wait c statement in P (such as at κ = 1 in the figure) can only
be departed via a transition from a shared state satisfying c = sig or c = bc, thus
effectively blocking such transitions until the shared state is set to sig or bc. This
happens via normal thread transitions that correspond to signal c or broadcast c
statements in P, respectively. The fact that multiple threads can be released by a single
broadcast is realized by making the transition out of shared state c = bc itself a TTS
broadcast transition: in Figure 5, any thread waiting in (bc, 1) is released; if none, the
condition variable c is reset to idle without any local state change. As with fork, the
translations of wait/signal broadcast statements must be packed into appropriate
atomic sections.

From TTS to Petri nets and well–quasi-ordered systems. The global transition system M
induced by a TTS is naturally symmetric: all threads execute the same procedure, and
symmetry-breaking constructs such as expressions involving the identity of a thread
are not allowed. This symmetry permits representing M as a machine that counts the
number of occurrences of each local state in a configuration (i.e., essentially a Petri
net). This rewriting of the local thread state system representation into a counter
representation appeared early in German and Sistla [1992] and has been referred to
as counter abstraction since [Pnueli et al. 2002] (although in our context, it is—like its
finite-state counterpart symmetry reduction—an “exact abstraction”).

The types of synchronization constructs permitted in the TTS directly determine
the “Petri net class” of M. More precisely, if we only allow standard thread and spawn
transitions �→ and � in �, system M can be expressed as a (plain) Petri net. If we allow
signal/broadcast transitions �/↪→ in �, then our model coincides in expressiveness
with Petri nets with asynchronous rendezvous/transfer transitions, respectively [Ciardo
1994; Eliëns and de Vink 1992], which are strictly more expressive than plain Petri
nets [Dufourd et al. 1998; Finkel et al. 2006]. We omit proofs of these equivalences in
this article, as they are mostly straightforward.

More generally, the transition system M induced by any TTS is a well–quasi-ordered
system [Abdulla et al. 1996; Finkel and Schnoebelen 2001]. For a transition system
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(V,�) to be well quasi-ordering, two conditions need to be in place [Finkel and
Schnoebelen 2001; Abdulla 2010; Abdulla et al. 1996]:

well quasi-ordering: There exists a relation � on V that is reflexive and transitive
(� is a quasi order), and such that for every infinite sequence
v0, v1, v2, . . . ∈ V ω there exist i, j with i < j and vi � v j .

monotonicity: For all configurations u, u′, r, if u � u′ and u � r, then there
exists r′ such that r � r′ and u′ � r′.

Given a TTS and an induced transition system M with configurations V , let � be
defined over V as follows: v = (s | �1, . . . , �n) � v′ = (s′ | �′

1, . . . , �
′
n′ ) whenever

(1) s = s′, and
(2) for each local state symbol � ∈ L, |{i : i ≤ n ∧ �i = �}| ≤ |{i : i ≤ n′ ∧ �′

i = �}|.
That is, v and v′ agree on the shared state, and the multiset of local state occurrences
in v is a subset of the multiset of local state occurrences in v′. It is easy to see that � is
a well quasi-ordering that satisfies the preceding monotonicity property. As usual,

(1) v � v′ stands for v′ � v,
(2) v � v′ stands for v � v′ ∧ v′ �� v, and
(3) v �� v′ stands for v � v′ ∧ v � v′ (“equivalence”).

TTS are a convenient and succinct intermediate notation between our input pro-
gramming language, and infinite-state concurrency models such as Petri nets and
well–quasi-ordered systems, over which the algorithms in this article are presented.
We use TTS instead of Petri nets in illustrations and examples since the former largely
separate the concerns of thread transitions and multithreading and thus compactly
reflect the replicated nature of our programs: a given finite-state procedure is executed
by an indeterminate number of threads. Our implementation, on the other hand, takes
both TTS and Petri nets with transfer arcs as input: many of the benchmarks that we
use in Section 4 are Petri nets of various flavors, and we compare the performance of
our implementation against many Petri net tools.

2.4. Goal of This Work

Given a program P written according to the grammar in Figure 2, let M be the infinite-
state transition system induced by the TTS that in turn is induced by P, as described
previously in this section. Further, let Reach be the set of reachable configurations
of M—that is, Reach = {v ∈ V | ∃i ∈ I : i �∗ v}. We write Cover for the set of cov-
erable configurations of the well–quasi-ordered system (M,�)—in other words, those
“covered” by some reachable configuration:

Cover = {v ∈ V | ∃v′ ∈ Reach : v � v′}.
Cover is an overapproximation of the reachability set whose determination suffices to
exactly decide classical safety properties like program location reachability, program
assertions, mutual exclusion, and so forth. For instance, program location x is reachable
if and only if there exists s ∈ S and a local state � such that �(κ) = x and the one-thread
configuration (s, �) is coverable. Thus, in this article, we investigate the coverability
problem: given a configuration q, determine whether q is coverable.

Decidability and complexity. The coverability problem is decidable for transfer and
rendezvous Petri nets (e.g., Dufourd et al. [1998] and Abdulla et al. [1996]), and more
generally for well–quasi-ordered systems provided some natural conditions on the
computability of the well–quasi-ordering relation hold [Leuschel and Lehmann 2000].
The misery is in the complexity: coverability of transfer Petri nets was shown to be
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Ackermann-complete [Schnoebelen 2010], which means that the complexity grows as
fast as the Ackermann function. If the Petri net is hardwired into the algorithm (the
input consists only of the query), then the complexity subsides gracefully to primi-
tive recursive [Schnoebelen 2010; Figueira et al. 2011]. These daunting complexity
measures have triggered much research on devising practically viable solutions to the
coverability problem.

3. COVERABILITY ANALYSIS BY TARGET SET WIDENING

The method presented in this section pursues a strategy that may seem counterin-
tuitive at first: instead of focusing on the original input configuration q, during its
execution the algorithm builds a hierarchy of elements for which coverability is tested;
configuration q itself may well never be directly investigated. The motivation is that
uncoverability of smaller (in the sense of �) elements, which suffices to prove the
uncoverability of q, is likely to terminate more quickly, as it involves fewer threads.
Our approach thus biases the search algorithm toward proving uncoverability of el-
ements. An external coverability generator, which will typically trade in termination
in favor of efficiency, intervenes in case the search attempts to prove uncoverability of
coverable configurations. In this section, we first briefly review the fundamentals of
coverability analysis in well–quasi-ordered systems [Abdulla 2010], then we illustrate
and formalize the idea sketched earlier, and finally describe our algorithm in detail.

3.1. Review: Backward Coverability Analysis

We write ↑ P for the upward closure {v′ | ∃v ∈ P : v′ � v} of a set P ⊆ V . An ele-
ment v of P is minimal if there is no r ∈ P such that r ≺ v. Two minimal elements
of a set are either incomparable or equivalent; the wqo properties ensure that the
equivalence relation �� has a finite index (otherwise, any selection of representatives
would constitute an infinite sequence of incomparable elements). In general, an equiv-
alence class can be infinite, whereas in our special case an equivalence class contains
the finitely many permutations of a given local state tuple. We denote by min P a fi-
nite set of canonical representatives for each equivalence class of minimal elements
of P. Specifically, for our case of local state tuples, we choose the lexicographically
least among all equivalent minimal elements in the set as representative, such that
min{(0 | 0, 1), (0 | 1, 0)} = {(0 | 0, 1)} and min{(0 | 1, 0)} = {(0 | 1, 0)}. Set P is upward
closed if ↑ P = P; in that case, min P is a minimal subset M of P such that ↑ M = P.
Every upward-closed set P is representable as ↑ min P, for the finite set min P. We
abbreviate ↑{v} by ↑ v. The concept downward closed and the symbol ↓ P are defined
analogously (although, in contrast, not every downward-closed set can be represented
by a finite set of maximal elements).

Given a configuration v ∈ V of a well–quasi-ordered system, the set of predecessors
of elements in its upward closure ↑ v is again upward closed and can therefore be repre-
sented by its minimal elements. We call these minimal elements the cover predecessors
of v and denote them by C-Pre(v):

C-Pre(v) = min
⋃

v′�v

{p ∈ V | p � v′}.

We write p ↪→ v for p ∈ C-Pre(v). Note that the dimensions of a configuration and
its cover predecessors can differ: we will see many examples later where a thread can
enter a particular thread state (s, �), only if another thread “helps,” by setting the
shared state to s. Configuration (s | �) (dimension 1) then has a cover predecessor of
dimension 2.

Algorithm 1 shows a version of the classical backward search for well–quasi-ordered
systems [Abdulla et al. 1996; Abdulla 2010]. Input is a set of initial configurations I ⊆ V
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Fig. 6. Uncoverability proof of the classical backward search. Shown are the configurations in the final set
U computed by Algorithm 1 for the TTS in Figure 4. The target set is {(2 | )}—in other words, we wish to
check whether shared state s = 2 is reachable in the program in Figure 3. Edges denote cover predecessor
relations and are labeled by the inducing thread transition (from Figure 4).

ALGORITHM 1: BC(I, q)
Require: initial conf. set I, query q �∈ I
1: W := {q} ; U := {q}
2: while ∃w ∈ W do
3: W := W \ {w}
4: for all p ∈ C-Pre(w)\ ↑ U do
5: if p ∈ I then
6: return “q ∈ Cover”
7: W := min(W ∪ {p})
8: U := min(U ∪ {p})
9: return “q /∈ Cover”

and a target configuration q /∈ I. The algorithm maintains a set U ⊆ V of minimal
encountered configurations and a work set W ⊆ U of unprocessed configurations. It
successively computes cover predecessors, starting from q, and terminates either by
backward reaching an initial configuration (thus proving coverability of q), or when no
unprocessed vertex remains (thus proving uncoverability; this will happen eventually
since � is a well quasi-ordering).

3.2. Coverability Analysis by Target Set Widening: The Idea

In case Algorithm 1 terminates in line 9, set U contains the minimal configurations
backward reachable from ↑ q—that is, the minimal elements of the set C-Pre∗(q) of
configurations that have a path to an element in ↑ q. Figure 6 shows an example of
minimal backward-reachable configurations computed by Algorithm 1. The uncover-
ability of q follows from the disjointness of C-Pre∗(q) and the initial configurations I;
set C-Pre∗(q) thus serves as an uncoverability proof for the target configuration q.

Instead of computing this set, we can, however, also prove q uncoverable using an
overapproximation of C-Pre∗(q) that is closed under C-Pre and does not intersect with
the initial configurations. The potential benefit of proving uncoverability via such an
overapproximation is that overapproximating C-Pre∗(q) by appropriately pushing down
(“≺”) its minimal elements leads to more compact or, in the limit, minimal uncoverabil-
ity proofs.

Definition 2. An uncoverability proof for q is an upward-closed set UCP of configu-
rations that

(1) contains q;
(2) is closed under preimages, and hence, since upward closed, also under cover preim-

ages; and
(3) is disjoint from the initial configuration set I.
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Further, the uncoverability proof is minimal if

(4) for any r ∈ min UCP and any v ≺ r, v is coverable; and
(5) no proper subset of UCP satisfies the foregoing conditions (1)–(4).

For example, if q is uncoverable, then the upward closure of C-Pre∗(q) is an uncov-
erability proof, as is the set of all uncoverable configurations (i.e., the complement of
the set Cover). Condition (4) of a minimal uncoverability proof UCP states that ev-
ery minimal element of UCP is also a minimal element of the complement of Cover:
min UCP ⊆ min(¬ Cover).

The notion of an uncoverability proof is sound: conditions (1)–(3) imply that all
elements of UCP are uncoverable; in particular, the query configuration q is. The
notion is also complete: our algorithm can always find a minimal uncoverability proof,
provided q is uncoverable.

In contrast to the set C-Pre∗(q), which is unique for a given q, multiple minimal
uncoverability proofs may exist. Moreover, the upward closure of C-Pre∗(q) and the
complement of Cover do not in general represent minimal uncoverability proofs. We
illustrate these claims with an example. Consider the well–quasi-ordered system with
states {i, q, x1, x2}; i and q are the initial and query states, respectively. The ordering
� is the reflexive closure of {(x1, q), (x2, q)}. Further, the system has no transitions
(hence, condition (2) holds trivially). Query q is therefore uncoverable. There are four
uncoverability proofs of this fact:

—↑{q} = {q} is the upward closure of C-Pre∗(q); it violates condition (4) for v ∈ {x1, x2}
and r = q and hence is not minimal.

—↑{x1} = {x1, q} and ↑{x2} = {x2, q} both satisfy conditions (4) (vacuously) and (5), and
are therefore minimal uncoverability proofs for q.

—↑{x1, x2} = {x1, x2, q} is the complement of Cover; it satisfies (4) but violates (5) by the
previous item.

Uncoverability proof construction. The idea underlying our widening approach is that
“cover predecessors of smaller elements are smaller” (an observation that also appears
in Abdulla [2010]).

LEMMA 3. For configurations r, r′, v′, if r is a cover predecessor of r′ and v′ � r′, then
there exists a cover predecessor v of v′ such that v � r.

PROOF. Let C1 = {w | w ↪→ v′} and C2 = (↓ r) ∩ C1. The latter set is nonempty,
since r ∈ C2. Therefore, let v be a minimal element of C2. Then v ∈ ↓ r, so v � r. In
addition, v ∈ C1. It remains to be shown that v is a minimal element of C1, since then
v ∈ C-Pre(v′).

To this end, let w ∈ C1 be arbitrary. If w ≺ v, then w � r, hence w ∈ ↓ r, hence w ∈ C2.
This is not possible, however, since v (supposedly � w) is a minimal element of C2.
Thus, w �≺ v. Since w ∈ C1 was arbitrary, it follows that v is minimal in C1.

The lemma suggests that before expanding an element, we first select smaller el-
ements for expansion; the resulting cover predecessors will be smaller as well. Since
smaller elements have fewer (cover) predecessors, this leads to earlier termination
along the path and thus faster decisions.

We can observe the impact of these observations on the performance of Algorithm 1
by using the program in Figure 4. Let the query target be (2 | ), as we want to determine
whether shared state 2 is reachable. Figure 7 sketches the search process.

We start at target q = (2 | ). Before expanding it into cover predecessors, we check
whether a widening candidate exists. As this is not the case (↓ q = {q}), we proceed by
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Fig. 7. Minimal uncoverability proof construction. The initial configuration set is given by {(0 | 0i) : i ∈ N}.
We write t ↪��� v if p ↪→ v for some p � t. The (initially singleton) set of coverability targets is widened
on-the-fly by so far undecided elements of the downward closure of encountered configurations (indicated via
edges ↪���). If an element turns out coverable, we backtrack and mark it and other coverable configurations
so that they are not reselected for widening.

Fig. 8. Minimal uncoverability proof. Configurations in the widened node are set in bold.

obtaining cover predecessor (1 | 2), which covers (1 | ), a widening candidate. From (1 | ),
we obtain cover predecessor (0 | 2), which covers (0 | ). The latter configuration is not
considered for expansion, as it is initial and hence coverable. Thus, we expand (0 | 2)
to obtain (3 | 2, 2), which covers (3 | ); the latter becomes a new candidate configuration
and is expanded. We now find that (3 | ) is coverable, with initial cover predecessor
(0 | 0). We thus have to cancel the backward search from (3 | ) and mark it as coverable.
Similarly, trying to add (3 | 2) as a candidate fails, since its cover predecessor (3 | 1) is
coverable.

The algorithm thus resorts to expanding (3 | 2, 2) to (3 | 1, 2). All three configurations
strictly covered by (3 | 1, 2) have previously been shown coverable and are thus not
added to the node set. The same is true for its predecessor (3 | 1, 1), which is hence
expanded to (0 | 0, 1); the latter configuration strictly covers (0 | 1). The only cover pre-
decessor of (0 | 1) is (3 | 1, 2), which is not new, so the search terminates: the query is
uncoverable.

Figure 8 shows the uncoverability proof that is actually generated for the example of
Figure 4 and target (2 | ). Configuration (2 | ) is expanded to (1 | 2) followed by widening
to (1 | ). Comparing this proof with that in Figure 6, we observe reductions in the
number of minimal configurations (9 vs. 7), in the longest traversed path (7 vs. 6), and
in the maximum thread count (3 vs. 2). The uncoverability proof is even minimal: every
proper subset is not an uncoverability proof, and every state that is strictly covered by
one of the seven states in Figure 8 turns out to be coverable.

We can think of the cancellation of the backward search from a configuration that
turns out coverable as backtracking out of the widening: the algorithm made a bad
choice that needs to be rolled back. By contrast, if the termination condition is satisfied
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for a configuration v obtained by widening p (such as for configuration (0 | 1) earlier),
v ∈ ↓ p, we do not need to go back to the prewidening query configuration p: any cover
predecessor of p is also a cover predecessor of v and would thus have been “caught”
while expanding v.

In Section 4, we present experimental evidence showing the potential of compressing
the proof size by target set widening in practice: for our concurrent C program bench-
marks, we observed reductions in the numbers of proof nodes, in the longest traversed
paths, and in the maximum thread counts across the proofs by 95%, 67%, and 50%,
respectively.

3.3. Coverability Analysis by Target Set Widening: The Algorithm

We now present our algorithm in detail. It features all data structures used in
Algorithm 1, namely a set U ⊆ V with vertices that represent encountered config-
urations, and a work set W ⊆ U of unprocessed vertices. In contrast to Algorithm 1, we
organize the elements of U into a forest, with candidate vertices as roots, and nodes
discovered as cover predecessors of each candidate forming the tree underneath the
root. The idea is that whenever a node turns out coverable, so are all its cover suc-
cessors, including the widening candidate at the root. This candidate therefore was a
bad choice and should never have been expanded in the first place. Our algorithm thus
prunes the entire tree rooted at that candidate. It identifies the tree to prune using a
function ζ that maps each node to the root of its containing tree.

More precisely, the algorithm maintains

(1) a set E of directed edges between vertices: E ⊆ U × U ,
(2) a downward-closed set D ⊂ U of configurations, and
(3) a mapping ζ : U → U .

We write u ↪→E r for (u, r) ∈ E and ↪→∗
E for the reflexive transitive closure of ↪→E.

Intuitively, E stores cover predecessor edges that were expanded: ↪→E⊆↪→.1 The set D
stores states that were shown to be coverable and hence is an underapproximation of
the coverability set: D ⊆ Cover.

For a vertex r, ζ (p) = r indicates that p was encountered in the wake of expanding r
backward, and r is either the query q or a widening candidate and was thus added to U
during target set widening. We have ζ (v) = v precisely for candidate vertices v; other
vertices are called predecessor vertices. Graph structure (U, E) gives rise to paths from
predecessor vertices to candidate vertices.

We illustrate these definitions using the graph in Figure 7. The set U contains
nine elements: q = (2 | ) is the query candidate vertex, (1 | ) and (0 | 1) are widening
candidates, and (1 | 2), (0 | 2), (3 | 2, 2), (3 | 1, 2), (3 | 1, 1), and (0 | 0, 1) are predecessor
vertices; (1 | 2) and (0 | 0, 1) are nonminimal in U . (All other vertices in the figure
have turned out coverable and have been removed from U .) Solid harpoon arrows
determine the edges in the set E. The mapping ζ induces three partitions, one for
each of the candidate vertices (2 | ), (1 | ), and (0 | 1) (with two, six and one element(s),
respectively); for example, (1 | 2) was encountered after backward expanding (2 | ), and
hence ζ (1 | 2) = (2 | ). The set D is ↓{(3 | 1), (3 | 2)} ∪ I with I = {(0 | 0i) : i ∈ N}, witnessing
failed widening attempts, which slow down the algorithm. (We discuss in Section 3.5
how we remedy this problem.)

The algorithm takes a set of initial states I and a noninitial target q /∈ I as input
and maintains the invariant that the subgraph of (U, E) over vertices from the same
partition forms a tree, with the candidate vertex as root. Each tree represents an

1In figures, we omit the subscript E on harpoon arrows.
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Fig. 9. Backtracking. (a) A partitioned graph structure with three candidate vertices, s, r, and t, each with
a single cover predecessor (primed states) in its partition. The partition underneath r is to be pruned, but
edge r′ ↪→E s′ is {r}-conflicting. (b) The structure obtained after calling Backtrack({r}). Node r′ now belongs
to s’s partition, and r has been pruned.

attempt to prove the corresponding candidate uncoverable. The algorithm consists of
three routines: Widen tries to add new candidate vertices, Backtrack prunes partitions
whose candidate vertex proved coverable, and CAT is the main routine.

Widening. The Widen routine takes a vertex u and tries to widen the node set by an
element in ↓ u. More precisely, if the set C(u) = (↓ u) \ ({u} ∪ D) of candidate elements is
nonempty, we select a minimal element r from it; note that candidates must not come
from the set D of elements known to be coverable. If r is new (r /∈ U ), it is inserted in
the work and vertex sets; we set ζ (r) := r. Otherwise, r’s new role as candidate vertex
and partition root must be acknowledged: the graph is repartitioned by modifying ζ for
all vertices in the subtree with root r—that is, the set

�(r) = {s ∈ U | s ↪→∗
E r ∧ ζ (s) = ζ (r)}.

All vertices in r’s subtree are removed from their old partition and form a new partition
with r as root: we set ζ (s) := r for all s ∈ �(r). For the example in Figure 7, the Widen
routine is successfully called four times, with vertices (1 | 2), (3 | 2, 2), (3 | 2, 2) again (D
has changed in the meantime), and (0 | 0, 1) as input.

Note that in the definition of the Widen routine, we assume that the downward
closure of a finite set is finite (which ensures that the candidates set C(·) is finite). This
is guaranteed for the well–quasi-ordered systems induced by TTS according to Section 2
and generally for Petri nets, Broadcast protocols, and Lossy counter machines.

Backtracking. The Backtrack routine (Algorithm 2) prunes partitions represented by
candidate vertices from a set P; this happens whenever some vertex in such a partition
is found coverable. An obstacle is that some edges may point from the partition to
be removed into another partition. Such edges (and the adjacent vertices) must be
preserved, since otherwise paths generated by the other partition are destroyed.

Definition 4. Given a set P of candidate vertices, an edge (r, s) ∈ E is called P-
conflicting if ζ (r) ∈ P and ζ (s) /∈ P.

The Backtrack routine first resolves all conflicts (lines 1–3): for a conflicting edge r ↪→E s,
we reassociate vertices in �(r) to ζ (s). Remaining vertices and edges of partitions in P
can now be pruned (lines 4–7). It suffices to prune edges ending in ζ (r): edges starting
from ζ (r) are pruned when their target vertices are processed; note that after resolving
P-conflicts, those target vertices also have their roots in P. Figure 9 illustrates both
steps. In the example in Figure 7, routine Backtrack is called on candidate vertices (3 | )
and (3 | 2): the former is pruned alone, whereas the latter is pruned along with its cover
predecessor (3 | 1) (in both cases, no P-conflicting edges exist).
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ALGORITHM 2: Backtrack(P)
Require: Set P with configurations to be removed, P ⊆ ζ (U )
1: for all (r, s) ∈ E such that (r, s) is P-conflicting do
2: for all t ∈� (r) do
3: ζ (t) := ζ (s)
4: for all r ∈ U : ζ (r) ∈ P do
5: W := W \ {r} ; U := U \ {r}
6: for all (t, r) ∈ E do
7: E := E \ {(t, r)}

Main routine. We introduce some terminology. A configuration v is u-minimal if it
covers none of the vertices in u’s partition, nor any immediate predecessor of such a
vertex (the predecessors may lie outside of this partition).

Definition 5. Let v ∈ V and u ∈ ζ (U ). State v is u-minimal if v �� u and for all
s, s′ ∈ U such that s ↪→E s′ and ζ (s′) = u, we have v �� s.

A set is lower successor closed if it is closed both under ↪→E successors and downward.

Definition 6. Let X ⊆ V . Set X is lower successor closed if for every p ∈ X, all vertices
in ↓ p and all ↪→E successors of p belong to X.

We write � v for the least lower–successor-closed set containing v. This set is obtained
by closing {v} downward and under ↪→E successors until fixed point. The point of this
definition is that if v is coverable, so is every vertex in � v: the set Cover is lower
successor closed.

Algorithm 3 shows the main routine CAT (for Coverability Analysis via Target set
widening). Input is a set I of initial configurations (downward closed by definition) and
a noninitial target query q �∈ I. At the outset, W and U contain one candidate vertex,
the target q. The set D of elements found coverable contains the initial configurations,
the set E of edges is empty, and ζ maps q to itself (line 1). Then we try to widen the
target set by elements smaller than q.

The algorithm terminates with “q uncoverable” if no minimal unprocessed vertex
remains. Otherwise, it selects and removes a minimal such vertex w. The for loop
in line 6 now steps through all cover predecessors p of w that are ζ (w)-minimal and
processes them as follows:

Line 7 If p is in D, then p and all elements in � p are known to be coverable. We
will now distinguish.

Lines 8–9 If the query q is among the elements in � p, it is coverable; the algorithm
terminates.

Lines 10–15 If q is not among the elements in � p, then the search must go on. We add
all of � p to D and invoke the Backtrack routine to remove partitions of
coverable candidate vertices. Since this may remove candidate vertices of
remaining predecessor vertices, we have to ensure that their downward
closure is further searched for candidates. We therefore create new min-
imal candidate vertices (lines 13 and 14). The break instruction then
skips forward to the next iteration of the while loop (line 3). As a con-
sequence of backtracking, unprocessed vertices that were previously not
minimal may now be.

Lines 16–20 If p is not in D and hence not currently known to be coverable, then the
graph is expanded. If p is new (line 18), then we add it to our work and
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ALGORITHM 3: CAT (I, q): Coverability Analysis by Target Set Widening
Require: Set I of initial configurations, query target q �∈ I
1: W := {q} ; U := {q} ; D := I ; E := ∅ ; ζ : q �→ q
2: Widen(q)
3: while W ∩ min U �= ∅ do
4: select w ∈ W ∩ min U
5: W := W \ {w}
6: for all p ∈ C-Pre(w): p is ζ (w)minimal do
7: if p ∈ D then
8: if q∈�p then
9: return “q coverable”
10: else
11: D := D ∪ � p
12: Backtrack (ζ (� p))
13: for all u ∈ min U do
14: Widen(u)
15: break // exit the for all loop and go to next iteration of while in line 3
16: else
17: E := E ∪ {(p, w)}
18: if p �∈ U then
19: W := W ∪ {p} ; U := U ∪ {p} ; ζ (p) := (w)
20: Widen(p)
21: return “q uncoverable”

undecided lists and add it as predecessor vertex to w’s partition. We also
call the Widen routine to (try to) add smaller target elements.

3.4. Coverability Analysis by Target Set Widening: Correctness and Efficiency

We prove our target set widening algorithm correct, study its time complexity, and give
a preview of its compact operation. We begin with a classical termination + partial
correctness argument.

Algorithm 3 manipulates a node set U by adding elements to it in line 19 and during
widening, but also by pruning elements from it during backtracking. As a result, set U
does not grow monotonically. We will first prove termination of a variant of Algorithm 3
without backtracking.

Therefore, let Algorithm 3′ be the same as Algorithm 3, except that line 12 is replaced
by skip.

THEOREM 7. Algorithm 3′ terminates on all inputs.

We first show the following property.

LEMMA 8. Line 4 of Algorithm 3′ never selects an element twice during the run of the
algorithm.

PROOF. In this proof, we write “∈t” for “element of, at time t”.
Let w be an element selected in line 4, say at time t0; we show that it will never be

selected again. In line 5, w is removed from W . Since line 4 selects from W ∩ min U ,
element w needs to be added back into W, say at time t1 > t0, before it can be selected
a second time.

Element w can be added to W in line 19, or during widening. In both cases, only
elements not in U are added to W . Since w ∈0 U (in fact, w ∈0 min U ), and—in
Algorithm 3′—elements are never removed from U , we have w ∈1 U , so the addition of
w to W at time t1 is not possible.
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Now the proof of Theorem 7. The only loop that could cause nontermination is the
while loop in line 3. We show that the set min U will eventually be depleted, termi-
nating the loop.

Consider the sequence p1, p2, . . . of elements p added to U (keep in mind that in
Algorithm 3′, these are never removed from U ). Let J = { j ∈ N|¬(∃i : i < j ∧ pi � pj)}.
The elements pj with j ∈ J constitute a “bad” sequence of configurations: one that
never increases. Since (V,�) is a well quasi-ordering, J is finite, and since 1 ∈ J, it is
also nonempty.

Therefore, let j = max J. After adding element pj , only elements pk (k > j) that
satisfy pk � pi for at least one previously added element pi (i < k) are added to U . We
now distinguish:

(1) If there exists i < k such that pk � pi, then min U is not changed by the addition of
pk: pk is guaranteed not to be a minimal element of U .

(2) Otherwise, we have, for all i < k, pk �� pi. By the definition of �, this means that for
all i < k, pk �� pi ∨ pi � pk. Now pick i < k such that pk � pi (existence guaranteed
since k > j). For this i, we have pk �� pi. This in turn implies that pi ∈ min U :
otherwise, there would exist pr ∈ U with pr ≺ pi � pk, contradicting the condition
leading to case (2). Element pk is thus equivalent to (��) some minimal element
(pi) of U .

The addition of elements pk to U thus either does not modify min U (1), or at most
modifies min U by adding elements to min U whose local state vector is a permutation
of the local state vector of some existing element of min U (2). The latter can happen
only finitely many times, as there are only finitely many permutations of elements in
min U . Eventually, min U therefore stops changing. By Lemma 8, the while loop in
line 3 of Algorithm 3′ eventually terminates.

COROLLARY 9. Algorithm 3 terminates on all inputs.

PROOF. We need to determine the impact (on termination) of the backtracking.
Algorithm 2 mostly removes elements that are also contained in D, namely all elements
in � p ⊆ D, for some p ∈ D (cf. line 12). Set D grows monotonically: elements are never
removed from it. Further, elements in D are never added to U ; this is guaranteed both
in line 19 and in the calls to the widening routine. As a result, the elements in D that
fall victim to pruning during backtracking will never be added into U again, so pruning
these elements can only accelerate termination.

On the other hand, Algorithm 2 may also remove some element s �∈ D, whose cov-
erability has not been decided yet. Element s’s root, in contrast, does belong to D: in
line 12 of Algorithm 2, we have ζ (� p) ⊆ � p, and all elements in � p were added to D in
line 11. Root ζ (s), which is removed in the same call to Algorithm 2, will thus never be
added to U again. When and if s later reappears in U , it must therefore be associated
with another root node (s may itself be a root at that time). Element s can therefore
be removed from and reintroduced into U only finitely many times, namely at most
whenever we add query elements during widening, which happens finitely often.

Intuitively, pruning and reintroducing an element s �∈ D causes finite delay of the
termination of the algorithm but keeps the search graph compact.

We continue by proving partial correctness.

THEOREM 10. If control reaches line 9 in Algorithm 3, the query target q is coverable.

PROOF. We show that D ⊆ Cover is an invariant of the algorithm. The theorem
then follows: in line 9, we have p ∈ D (hence, p ∈ Cover) and q ∈ � p ⊆ Cover (since
p ∈ Cover, and coverability is closed under ↪→E successors and downward).
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We prove D ⊆ Cover by induction over the number of modifications made to D
in line 11. Before any such modifications, we have, as per line 1, D = I ⊆ Cover.
Now assume that D ⊆ Cover. In line 11, we have p ∈ D, and hence p ∈ Cover by
the induction hypothesis. Again, by the preceding closure property of coverability, we
obtain D′ = D∪ � p ⊆ Cover, which completes the step.

THEOREM 11. If control reaches line 21 in Algorithm 3, the query target q is
uncoverable.

PROOF. We show that if control reaches line 21, the upward-closed set ↑Ufin is an
uncoverability proof for q (Definition 2) for the final value Ufin of variable U at line 21.
The fact that q is uncoverable then follows immediately by that definition: all elements
of Ufin are uncoverable.

We prove the first three conditions of Definition 2:

Condition (1): ↑Ufin contains q, in fact q ∈ Ufin ⊆ ↑Ufin: q is added to U in line 1, and
the call to backtrack (the only chance for q to be removed) is guarded
by the condition q �∈ � p (line 10), which implies that q = ζ (q) �∈ ζ (� p),
so q is never removed.

Condition (2): ↑Ufin is closed under preimages:
(a) We show the following: cover predecessors of elements of min Ufin

are in Ufin: C-Pre(min Ufin) ⊆ Ufin:
Suppose that w ∈ min Ufin, hence w ∈ Ufin. At the time in which
w was added to U , it was also added to W (this is true in line
19 and for all calls to the widening routine). When the algorithm
terminates in line 21, we have W ∩ min Ufin = ∅. Hence, w was, at
some point, removed from W but not from U , which only happens
in line 5, following which w’s cover predecessors p are processed.

If p �∈ D (and new to U ), it is added to U . If p ∈ D and q ∈ � p,
then the algorithm terminates in line 9; this case does not apply
to Theorem 11. If let p ∈ D and q �∈ � p (line 10), then p is not
added to U , but we backtrack: we also remove the successor w, so
the closure property is preserved.

(b) Now let (i) w ∈ ↑Ufin and (ii) p � w; we show p ∈ ↑Ufin:
Due to (i), there exists v ∈ Ufin such that v � w. Further, let
t ∈ min Ufin such that t � v. Due to (ii), there exists o ∈ C-Pre(w)
such that o � p. Applying Lemma 3 to o, w, and t(� w) tells us
that there exists m ∈ C-Pre(t) such that m � o. By (a), we conclude
m ∈ Ufin. Since p � m, we also have p ∈ ↑Ufin.

Condition (3): ↑Ufin is disjoint from the initial configuration set I: we first show
Ufin ∩ I = ∅:
(a) By Algorithm 3′s precondition, q �∈ I. Hence, U0 ∩ I = ∅, for the

initial value U0 = {q} of U .
(b) Only elements not in D are ever added to U (this is true in line 19

and for all calls to the widening routine); since I ⊆ D is an invari-
ant of the algorithm, such additions exclude initial configurations.

Now let y ∈ ↑Ufin—that is, there exists x ∈ Ufin with y � x. Since
Ufin ∩ I = ∅, x �∈ I. This implies y �∈ I, since I is downward closed. As
a result, ↑Ufin ∩ I = ∅.

Space efficiency. We give a preview of our algorithm’s compact operation by com-
paring the widening and backtracking strategy to the classical backward exploration
without it (a comprehensive empirical evaluation of the algorithm, including runtime
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Fig. 10. Impact of widening on the number of iterations and graph vertices. The target set widening strategy
reduces the iteration count for the Apple Bus protocol benchmark from 24,212 to 2,310, with a maximum of
3,943 explored vertices compared to 23,472

performance, is presented in Section 4). The example at hand concerns a mutual exclu-
sion property for an implementation of an Apple Bus protocol in the FreeBSD operating
system (benchmark FREEBSD-AK; a code fragment was shown earlier in Figure 1).

Figure 10 plots the size of U on the vertical axis against the iterations of the main
while loop. The backtracking nature of the widening approach is evident from the fact
that the curve occasionally drops, namely whenever candidates with large partitions
in their backward expansion were found to be coverable and pruned.

Algorithm 3 computes uncoverability proofs that satisfy minimality requirement (4)
of Definition 2: for v �∈ U and r ∈ U , if v ≺ r then v is coverable. To see this, note first
that r ∈ U, and v ≺ r implies that at some point during the run of the algorithm, v
was explored and therefore an element of U : the Widen routine is called eagerly on
the entire downward closure of encountered configurations such as r. Since at the end
v �∈ U , configuration v was removed some time thereafter. This only happens in the
Backtrack routine and only to elements found coverable.

Our current implementation does not satisfy requirement (5) of Definition 2, stating
that the uncoverability proof be “least”: no proper subset satisfies conditions (1)–(4) of
that definition. It is easy to enforce this requirement by adding redundancy checks to
the set U at certain points where the algorithm modifies it. This of course affects the
runtime of the algorithm adversely; we found that the benefit in reduced proof size
does not compensate for this effect.

3.5. Trimming the Node Set: Discarding Nonminimal Elements

Compared to the classical backward search Algorithm 1, our coverability algorithm
has an apparent blemish: it regularly keeps nonminimal elements in the node set U ,
which is therefore not as compact as it could be. As an example, we revisit the proof
construction shown in Figure 7. When configuration (3 | 2, 2) is reached as a cover
predecessor of another element, widening identifies configuration (3 | ) as a candidate
and adds it to U . At this point, the node set contains the nonminimal element (3 | 2, 2).
This element is not discarded at this time (as is done in line 8 in Algorithm 1). The
reason is that elements nonminimal at discovery time may become minimal later, when
smaller elements have been identified as coverable and are pruned. That is exactly what
happens in Figure 7: both widening candidates (3 | ) and (later) (3 | 2) eventually turn
out coverable, are pruned, and (3 | 2, 2) is part of the final uncoverability proof as a
minimal element (Figure 8).
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An alternative to keeping nonminimal elements in U is to maintain a list L of the
vertices in the order they were encountered. Knowledge of the processing order allows
us to identify elements v that were encountered after an element r that is about to be
pruned. If v was nonminimal at discovery time, it will have been discarded from U by
an algorithm that restricts U to contain minimal elements. Given list L, we can now
revive v, by adding it to the node and work sets U and W .

With this modification, we can ensure that U contains minimal elements only: when-
ever a new element p is to be added to U , we replace U by min(U ∪ {p}). In particular,
this means that for each call Widen(u) that successfully identifies undecided candi-
dates smaller than u, u is in fact removed from U , since it is no longer minimal. In
agreement with the classical backward search Algorithm 1, this algorithm only keeps
minimal vertices in U—that is, it maintains the invariant min U = U . Note that the
list L (containing many nonminimal configurations) will be depleted on termination,
whereas U contains the (now minimal) nodes that constitute the uncoverability proof
(if q is uncoverable). The number of stored nodes can therefore be expected to be
smaller on termination than with Algorithm 3. We call this version the lean variant of
Algorithm 3.

In contrast to Algorithm 1, the lean variant suffers multiply from bad widening
choices: the bad candidates have to be pruned, along with all nodes encountered after
expanding them. Moreover, unexpanded vertices encountered after vertices that have
just been pruned need to be revived. The benefit of the lean variant over the original
Algorithm 1 therefore decreases with an increasing number of bad candidate choices.
The incentive to avoid candidates that are in fact coverable is thus particularly high
for this variant.

External coverability results. The determination of what elements are coverable is, of
course, the ultimate goal of our algorithm, so we cannot rely on such information when
deciding whether to add a potential widening candidate. If, however, we happen to
know that a particular element is coverable, we will not add it to the candidate set.
Such incidental information can come from an external source. We call such a source a
coverability oracle.

We require that a coverability oracle be sound in reporting coverable configurations.
The oracle and Algorithm 3 run in parallel and synchronize via the set D: the oracle
populates this set with coverable elements. Receiving such updates, Algorithm 3 ter-
minates if the input query belongs to D or otherwise invokes the Backtrack routine on
now known-to-be-coverable candidate vertices in regular intervals to restore disjoint-
ness of the sets U and D. Should the algorithm ever accidentally choose an unreported
coverable element for expansion, it will eventually prune such element once correctly
classified.

The fact that we only require sound reporting permits coverability oracles of vary-
ing degrees of incompleteness: nonterminating procedures are as eligible as partial
algorithms that “overlook” some coverable elements. Typical oracles will perform a
forward-directed search, such as a random or enumerative reachability analysis like
BOOM [Basler et al. 2009], or generalizations of the Karp-Miller procedure [Karp and
Miller 1969] to broadcast synchronization. In our experiments, we use a version of
Karp-Miller that never accelerates across broadcast transitions: the backward traver-
sal used to find opportunities for acceleration simply stops on encountering broadcasts.
As a result, this version of the procedure is sound for broadcasts but may not terminate.

By contrast, the standard Karp-Miller procedure is not suitable as an oracle, since—
in the presence of broadcasts—it may return an overapproximation of the set of
coverable configurations. This can be observed for the TTS on the left of Figure 11;
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Fig. 11. Karp-Miller overapproximates for broadcasts. (a) TTS with initial thread state (0, 0) and broadcast
transition t3. (b) The corresponding Karp-Miller tree, which contains omega configuration (0 | 0ω, 1ω, 2ω)
(gray) and thus falsely reports (0 | 2, 2) as coverable.

Fig. 12. Benefiting from external coverability results. Algorithm 3 without and with support by a gener-
alization of the Karp-Miller procedure as oracle (cf. Figure 10). The oracle significantly reduces the work
related to coverable candidates, both in terms of iteration count and maximum graph size.

the corresponding Karp-Miller tree is shown on the right. The acceleration that yields
(0 | 0ω, 1ω, 2ω) introduces imprecision: due to the broadcast transition, only one thread
can reside in local state � = 2 at any time, which the algorithm misses. As a re-
sult, it falsely reports, for example, that configuration (0 | 2, 2) is coverable. Receiving
this false report, Algorithm 3 would remove this configuration from U and fail to
expand it.

It is clear that a coverability oracle is beneficial whether or not the algorithm en-
forces minimality of elements in U (the oracle is just more direly needed if it does).
In our experimental section, we therefore present results not only for Algorithm 3,
called CAT, and its lean variant with oracle, called CATLEAN+OR, but also for Algo-
rithm 3 equipped with an oracle, called CAT+OR. Figure 12 presents a preview of how
Algorithm 3 benefits from an oracle, reusing the Apple Bus protocol benchmark. The
plot reveals a significant reduction in work related to coverable candidates. The oracle
reports roughly 90% of the coverable candidates ahead of our approach without oracle.
These observations indicate that while forward directed search may not be complete
for checking programs with arbitrary thread numbers, it is good at reporting coverable
configurations rapidly, which in the context of our algorithm is all that is needed.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 4, Article 14, Publication date: October 2014.



14:22 A. Kaiser et al.

Table I. Benchmark Characteristics

id/Program S L LOC Mtx Cnd Safe id/Program S L LOC Mtx Cnd Safe
1/PRNGSIMP-L 2 4 63 13/PETERSON 4 0 37
2/PRNGSIMP-C 1 5 95 14/SZYMANSKI 3 0 54
3/STACK-L 4 2 79 15/DEKKER 4 0 50
4/STACK-C 3 3 89 16/RW-LOCK 4 0 58
5/BSD-AK 1 7 516 17/TIMED-MUTEX 5 0 63
6/BSD-RA 2 21 413 18/BS-LOOP 0 6 24
7/NETBSD-SP 1 28 1045 19/COND 1 3 56
8/SOLARIS-SM 1 56 616 20/S-LOOP 5 0 60
9/BOOP 5 2 89 21/FUNC-P 2 1 67
10/DOUBLE-1 3 0 70 22/PTHREAD 5 0 85
11/DOUBLE-2 3 0 73 23/MINUCP-EX 1 0 80
12/DOUBLE-3 3 0 66 24/MOZILLA-VF 4 3 82

25/SPIN 2 0 37
Note: S, number of shared vars; L, number of local vars; LOC, number of lines of code. In columns Mtx
and Cnd, a black disc indicates “has mutexes” or “has condition variables for broadcast synchronization,”
respectively.

4. EXPERIMENTAL EVALUATION

4.1. Benchmarks and Experimental Setup

In this section, we evaluate Algorithm 3 (Section 3.3) and its lean variant (Section 3.5)
with and without widening on 25 concurrent C programs, in which threads synchro-
nize via locks, or in a lock-free manner via atomic compare-and-swap instructions,
and broadcasts. For each benchmark, we consider a safety property specified via an
assertion. In total, the programs comprise roughly 4,000 lines of code, featuring three
shared and six local variables on average; Table I enumerates statistical data for each
program individually.

We provide a brief description of the programs (most are used in our prior work
[Donaldson et al. 2011] or in Gupta et al. [2011b]):

1–4: Thread-safe algorithms. Concurrent pseudo–random number generators and
stack data structures (both from Goetz et al. [2006]; the latter are adapted
from IBM implementations). For each type, we consider a blocking version
that uses mutexes and a lock-free variant with compare-and-swap primitives
(indicated by the suffix L and C, respectively).

5–9: OS code. Implementation of an Apple Bus protocol in FreeBSD (see Fig-
ure 1), the operating system code related to the RDMA ZFS file system
support and interface/system monitoring (obtained from svn.freebsd.org and
src.opensolaris.org; all use Mesa style condition variables), and a Linux driver
skeleton.

10–17: Mutex algorithms. Programs where multiple locks control access to a shared
resource and classical mutex algorithms [Gupta et al. 2011b].

18–22: Pthread programs. Several programs that use the C POSIX Threads library.
23–25: Miscellaneous. The program in Figure 3 used to illustrate our minimal uncov-

erability proof construction, a program from Donaldson et al. [2012], a fix for a
concurrency bug in Mozilla [Lu et al. 2008], and a program used in Flanagan
and Qadeer [2003].

Almost all programs are parametric—that is, their procedures are executed by an
arbitrary number of threads. Exceptions are programs 13 through 17 and 24, taken
from Gupta et al. [2011a], which are designed for a fixed thread count (of two). These
examples do not even exploit the strength of our unbounded-thread approach.
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Implementation. We implemented Algorithm 3 and its lean variant for TTSs and
transfer Petri nets in our tool BREACH, equipped with a generalization of the Karp-
Miller procedure as coverability oracle. Our tool (v1.0 implements the original, and
v2.0 the lean variant) is available at www.cprover.org/bfc. The backward search runs
in parallel with the oracle, which reports coverability results to a shared data pool
that the backward search taps into at regular intervals. To measure the impact of
our approach, the oracle can be deactivated, turning BREACH into the refined version
of the classical backward search (Algorithm 1). As a trade-off between efficiency and
proof compaction, we do not add candidate vertices that involve two threads or more.
To apply BREACH to the C programs, we extended the abstract language interface of
the C software model checker SATABS to TTS. SATABS implements the CEGAR loop
based on a symmetry-aware predicate-abstraction technique [Donaldson et al. 2011]
and handles function calls (nonrecursive) by inlining. All experiments are performed on
a 3GHz Intel Xeon machine with 20GB memory, running 64-bit Linux, with a timeout
of 30 minutes.

Our evaluation is carried out in two steps: (1) we compare against several coverability
checkers for (extended) Petri nets (Section 4.2), and (2) we compare against the recent
software verifier CREAM [Gupta et al. 2011a, 2011b] (Section 4.3), which generates rely-
guarantee and Owicki-Gries type proofs.2

4.2. Comparison with Coverability Checkers

The SATABS verifier requires 59 CEGAR iterations until the (TTS) abstractions for the
25 programs stabilize; for example, 3 iterations are necessary to prove the program in
Figure 3 correct (MINUCP-EX). The obtained abstractions feature up to 34,880 thread
states (for FUNC-P) and 746,770 transitions (for DOUBLE-2). Figure 13 plots the total
model checking runtimes (scaled logarithmically) for all methods. The curves in the
graph correspond to the following checkers (∗ indicates that the tool supports transfer
transitions):

CAT∗: Our Algorithm 3 with no coverability oracle (v1.0)
CAT+OR∗: Our Algorithm 3 equipped with the coverability oracle (v1.0)

CATLEAN+OR∗: Lean variant of Algorithm 3 (Section 3.5) with oracle (v2.0)
PETR-BC∗: Backward search with several heuristics (v0.1) [Meyer and Strazny

2010]
BC∗: Backward reachability analysis [Abdulla et al. 1996; Abdulla 2010]

(Algorithm 1)
EEC-AR: Forward analysis with enumerative refinement (v1.03) [Geeraerts et al.

2006]
CSC-KM: A refined Karp-Miller procedure (v0.1) [Geeraerts et al. 2007]

IIC: Incremental, inductive coverability algorithm [Kloos et al. 2013]
TINA-KM: The classic Karp-Miller tree construction (v3.0) [Berthomieu and

Vernadat 2009]
IST-BC∗: Standard backward reachability analysis (v1.03) [Ganty et al. 2007]
TSI-AR: A variant of EEC-AR with backward refinement (v1.03) [Ganty et al.

2009]

Our methods based on widening achieve significantly better results compared to
existing methods. The improvement of about two orders of magnitude over the best
previous method, PETR-BC, which in turn is roughly two orders of magnitude faster than

2Available at software.imdea.org/∼pierreganty; www.ulb.ac.be/di/verif/ggeeraer/CSC.html; petruchio.infor
matik.uni-oldenburg.de; http://projects.laas.fr/tina; and www.model.in.tum.de/∼popeea/research/threader.
html.
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Fig. 13. Comparison for CEGAR abstractions. A Cactus plot compares our implementation of the target
set widening algorithm in the BREACH tool with existing coverability methods. An entry of the form (k, t)
for some curve shows the time t it took to solve the k easiest—for the method associated with that curve—
predicate-abstracted C programs (the order thus varies across methods). Four benchmarks feature transfer
transitions, namely those obtained from programs with condition variables (cf. Table I). Tools supporting
transfers are marked with an asterisk (∗). The curves for the other tools start at k = 5, skipping the four
transfer benchmarks.

the remaining methods, shows that our widening approach has far more impact than,
for example, structural invariant heuristics. Particularly for program abstractions, we
found that statically precomputed overapproximations tend to be irrelevant for the
safety property or too imprecise, underpinning the claim made in Finkel et al. [2002].
On the other hand, the inferiority of the pure backward analysis BC compared to
PETR-BC indicates that the observed improvements are a consequence of our widening
technique.

To measure the difference between standard and minimal uncoverability proofs, we
removed the self-imposed upper bound on the number of threads in candidate vertices.
In this setup, we observed the following reductions (averaged): the length of the longest
traversed path goes down from 28 to 14 (−50%), the thread count appearing in the proof
from 6 to 2 (−67%), and the number of minimal configurations (= proof size) from 22,518
to 1,222 (−95%). Although the classical backward approach involves up to eight threads
in a proof, our approach generates a minimal uncoverability proofs with three threads
for MINUCP-EX (cf. Figure 7) and proofs with no more than two threads for the other 24
programs. The bound on the thread dimension in candidate vertices mentioned earlier
diminishes these improvements somewhat but marginally (we enforced the bound for
the results in Figure 13, as it results in much reduced runtimes).

4.3. Comparison with CREAM

We evaluate the scalability of our methods against the recent verifier CREAM, which
exploits the compositional nature of many programs [Gupta et al. 2011a, 2011b].
Front-end capabilities of CREAM are similar to that of SATABS, facilitating comparison
of both.3 We therefore compare the performance of CREAM and SATABS on the 25 bench-
mark programs described in Section 4.1. We emphasize that CREAM is not optimized for

3A notable difference is that CREAM supports neither pointers nor broadcasts and approximates numeric C
types via exact arithmetic. To apply CREAM to benchmarks 5 through 8, we use overapproximations that do
not affect the verification outcome.
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Fig. 14. Cactus plots comparing runtimes of SATABS with BREACH as model checker for the 25 programs and
unbounded threads with CREAM for a given number of threads.

parametric systems but is still one of the few available verifiers operating directly on
multithreaded C programs.

Figure 14 plots the fraction of programs checked successfully by different methods
for different thread numbers. Again, the y-axes are on a logarithmic scale. The four
subfigures correspond to CREAM with monolithic, Owicki-Gries [Owicki 1975], and rely-
guarantee [Jones 1983] style reasoning, respectively, and SATABS with BREACH as model
checker. Our approach (unbounded thread count) performs significantly better than
the CREAM verifier (fixed thread count), for which time and space used for the proofs
usually grow exponentially in the number of threads.

5. RELATED WORK

Algorithmic solutions to coverability analysis were first proposed for vector addition
systems in a landmark paper by Karp and Miller [1969] (implemented in TINA-KM

[Berthomieu and Vernadat 2009]). The solution constructs a pseudoreachability tree
by forward exploration and replaces newly discovered configurations that are strictly
greater than predecessors using an infinity measure. The approach has nonprimitive
recursive worst-case complexity [Rackoff 1978]. Due to the undecidability of the place-
boundedness problem [Dufourd et al. 1998], extensions to broadcast operations are
inevitably incomplete. An example is the Covering Graph procedure from Emerson and
Namjoshi [1998], which was shown to fail to terminate on certain systems [Esparza
et al. 1999]. An improvement of the Karp-Miller procedure that computes minimal
coverability sets is Geeraerts et al. [2007] (implemented in CSC-KM), and the Karp
and Miller algorithm with pruning from Reynier and Servais [2011] (not available
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online). An approach that constructs compact yet not necessarily minimal coverability
sets is Valmari and Hansen [2012]. Their algorithm prioritizes unexplored states with
larger thread numbers to speed up convergence (not available online). We experimented
with various selection heuristics for the Karp-Miller–like coverability oracle. In our
setup, treating configurations with smallest thread numbers performed best by far.
One explanation is that dealing with such configurations is algorithmically easier, and
that our widening algorithm does not benefit from large configurations being reported
by the oracle. In our experiments, the largest thread count that appeared in a standard
uncoverability proof is six.

To afford more flexibility in modeling parameterized programs, various algorithms
were later proposed for well–quasi-ordered systems, originally in a pure backward
fashion [Abdulla et al. 1996] (implemented in IST-BC and PETR-BC [Meyer and Strazny
2010]), later as forward exploration [Finkel and Goubault-Larrecq 2009; Zufferey et al.
2012], or as a backward and forward unfolding algorithm [Abdulla et al. 2004]. The
paradigm presented in Geeraerts et al. [2006] is also a pure forward algorithm; it
constructs abstractions of increasing precision (implemented in EEC-AR). The recent
approach from Abdulla et al. [2013] is based on cutoffs and exploits the fact that
analyzing a small number of threads is often sufficient to expose errors (not available
online). It performs parameterized verification by inspecting a small set of instances of
a system to show correctness. Such an approach has two drawbacks. First, it is likely to
fail when systems require the inspection of large thread numbers. Second, performance
degrades when many transitions do not affect the correctness of a property, such as
those induced by detached processes that operated on a disjoint set of shared variables.
As an example, their approach fails for the Kanban system from [Ganty et al. n.d.],
whereas Karp-Miller–like approaches (including our coverability oracle) report the
error almost instantaneously.

Solutions combining forward and backward exploration are rare; we are only aware
of the methods described in Finkel et al. [2002] and Ganty et al. [2006], as well as
the very recent approach from Kloos et al. [2013]. Finkel et al. [2002] propose to use
a CSC-KM–like approach to compute overapproximations of the coverability set, which
are then used in a subsequent backward exploration to prune the search space. Our
experimental results reported in Section 4.2 demonstrate, however, that this approach
cannot cope with programs of the sizes that we consider, simply because their com-
putation is too expensive. Ganty et al. [2006] combine overapproximations computed
in a forward fashion, which are refined by using backward underapproximations (im-
plemented in TSI-AR). On an abstract level, our algorithm can be seen as the dual of
this approach. Interestingly, performance-wise TSI-AR cannot benefit from this simi-
larity; TSI-AR performed worst in our experimental comparison. Finally, the algorithm
in Kloos et al. [2013] (implemented in IIC) computes an inductive invariant by main-
taining a list of overapproximations of forward-reachable states, and strengthening
them (in a backward manner) using counterexamples to inductiveness. Note that our
uncoverability proofs introduced in Definition 2 are inductive proofs of the backward
nonreachability of the initial states from q.

Other work that, like ours, takes parameterized system-level software as input in-
cludes earlier work on multithreaded Java programs [Delzanno et al. 2002], which in
fact uses a set of communication primitives and derived semantics very similar to ours,
and rewrites them into multitransfer Petri nets using a form of counterabstraction.
Our earlier cutoff-based approach [Kaiser et al. 2010] combines finite-state forward ex-
ploration with infinite-state backward exploration. Recent work [Farzan and Kincaid
2012; Farzan et al. 2013] over dataflow graph representations of parameterized con-
current programs has been applied to safety property verification. These methods do
not explore, in a model checking fashion, replicated finite-state procedures but instead
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aim to find (possibly inductive) program invariants. Interestingly, Farzan et al. [2013]
shows that their notion of inductive dataflow graphs can serve as succinct correctness
proofs for safety properties, much like the minimal uncoverability proofs our algorithm
tries to find. We will leave the precise relationship between this very recent work
and ours for future investigation. We have compared with PETR-BC, EEC-AR, CSC-KM,
TINA-KM, IST-BC, TSI-AR, and IIC in Section 4.2.

6. CONCLUSION

We introduced a new approach to the coverability problem in well–quasi-ordered sys-
tems. The novelty of our algorithm is the way in which it identifies and compactly
represents the uncoverable elements backward reachable from a given query target
by widening the target set by elements whose backward expansion can be expected to
terminate quickly. Far from being a mere infinite state machine coverability checker,
our algorithm can be used to check assertion failures, mutual exclusion violations,
and many other properties for parameterized programs communicating via realistic
primitives such as mutexes, shared variables, or broadcasts.

We demonstrated in extensive experiments on large benchmarks, generated by the
software model checker SATABS from C programs, that our algorithm outperforms
the best-known previous coverability approaches by orders of magnitude, enabling
the verification of programs that to date were out of the scope of existing technology.

Although our concrete implementation of these ideas has proven to be very success-
ful and efficient in solving real verification problems, the purpose of this article is
also to propose our search organization and the cooperation between the backward and
forward components of the algorithm as a new general paradigm for tackling coverabil-
ity problems. Instances of this paradigm may independently combine well with other
efficiency improvements, such as those based on structural net invariants.
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