
Efficient Coverability Analysis
by Proof Minimization ?

Alexander Kaiser1, Daniel Kroening1, and Thomas Wahl2

1 University of Oxford, United Kingdom
2 Northeastern University, Boston, United States

Abstract. We consider multi-threaded programs with an unbounded number of
threads executing a finite-state, non-recursive procedure. Safety properties of
such programs can be checked via reduction to the coverability problem for well-
structured transition systems (WSTS). In this paper, we present a novel, sound
and complete yet empirically much improved solution to this problem. The key
idea to achieve a compact search structure is to track uncoverability only for min-
imal uncoverable elements, even if these elements are not part of the original cov-
erability query. To this end, our algorithm examines elements in the downward
closure of elements backward-reachable from the initial queries. A downside is
that the algorithm may unnecessarily explore elements that turn out coverable
and thus fail to contribute to the proof minimization. We counter this effect using
a forward search engine that simultaneously generates (a subset of all) coverable
elements, e.g., a generalized Karp-Miller procedure. We demonstrate in extensive
experiments on C programs that our approach targeting minimal uncoverability
proofs outperforms existing techniques by orders of magnitude.

1 Introduction

In anticipation of the prominent role concurrency is predicted to play in future software,
popular systems languages like C and Java readily embrace support for multiple threads
of execution. Communication among threads is naturally enabled via shared variables,
mutexes, but also via non-blocking sleep/wake-up mechanisms. The correct use of these
communication mechanisms is largely up to the user. The inevitable frustration caused
by attempts to find and reproduce concurrency bugs through conventional program test-
ing strongly encourages the use of automated formal techniques.

In this paper, we consider finite-state, non-recursive procedures executed by an un-
specified number of threads. This scenario is highly relevant in practice. For example,
the number of processes concurrently requesting I/O services in an operating system
environment cannot be determined a priori. For settings like this, we are interested in
detecting, or proving the absence of, assertion failures, mutual-exclusion violations, etc.

Despite the arbitrary number of threads, problems of this kind have long been known
to be decidable [2], for instance by reduction to the coverability problem for the rich
class of well-structured transition systems (WSTS) [23, 16]. “Coverability” of an erro-
neous configuration of threads (e.g., violating mutual exclusion) is tantamount to the
existence of a reachable program state exhibiting such an error.
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While decidable, checking coverability for WSTS incurs a high computational cost.
For example, for the subclass of vector addition systems the problem was shown to be
EXPSPACE-complete [6]. Extensions such as transfer transitions, which allow several
threads to change their local state simultaneously and are essential to model broad-
cast primitives and predicate abstractions of broadcast-free programs [10, 9], render the
problem Ackermann-hard [33]. The significance of the coverability problem both as a
theoretical challenge, as well as in practical concurrent program verification, has led to
a flurry of related activity in recent years [29, 2, 21, 20, 3, 25]. The most general solu-
tion to the coverability problem was presented in a paper by Abdulla et al. [2], which
backward-explores states starting from the target state.

In this paper, we introduce a new, sound and complete solution to the coverability
problem in WSTS. In contrast to existing techniques, our method relies on sequences of
many inexpensive uncoverability proofs that build upon one another. We compute such
proofs by searching the downward-closure of states encountered during backward ex-
ploration from the target state for smallest uncoverable members. Elements encountered
during that search that are not currently known to be coverable give rise to “uncover-
ability candidates”. If a candidate proves uncoverable, so are all elements in its upward
closure, which in the end contributes to the decision for the target state. Otherwise, the
coverable candidate is retained to prevent it from being expanded again.

The downside of such a “speculative exploration” is that coverable exploration can-
didates mean wasted effort. This effort can, however, be largely reduced using a simul-
taneously running forward search engine that labels states as coverable and thus pre-
vents them from being explored in the (futile) hope of finding an uncoverability proof.
The key is that such a forward engine acts only as a “catalyst”: it affects the speed of
the overall algorithm, not its result. Thus, we can use incomplete procedures such as
generalizations of the (forward-directed) Karp-Miller algorithm [26, 11, 14].

To summarize, this work makes the following contributions:

– We present a novel approach to coverability checking in WSTS that combines for-
ward propagation of underapproximations with backward propagation of overap-
proximations.

– We provide an implementation (publicly available; see Section 5) that accepts Petri
nets with transfer arcs, and an extension to verifying C programs with unbounded
thread counts in a predicate abstraction-based CEGAR loop [4, 7]. Our algorithm
outperforms the best known coverability approach by orders of magnitude, enabling
the analysis of programs which are out of scope of the previous technology. The
experiments also reveal that our approach is able to guide the search far more ef-
fectively than existing structural invariant heuristics [13, 8].

These improvements are possible thanks to the compactness of the uncoverability proofs
generated during exploration. On our C benchmarks, we observe reductions of up to
95% in the proof size.



2 System Model and Problem Definition

Our algorithms operate on well-structured transition systems (WSTS) [16]. A WSTS
is a transition system equipped with a well-quasi-ordering � on its states that satisfies
the following monotonicity property: for all states u, u′, r, if u′ is a successor of u and
r � u, then there exists a successor r′ of r such that r′ � u′. In other words, � is
a simulation relation for the transition system. A state q is coverable if there exists a
reachable state v such that v � q ; the definition of “reachable (with respect to a set of
initial states)” is standard.

Let now (M,�) be a WSTS. We denote by Cover the coverability set, consisting
of all states covered by some reachable state. The coverability problem is: given a state
q ∈ V , determine whether q is coverable.

Thread transition systems. We give an example of a class of WSTS called thread
transition system (TTS) that are motivated by the task of verifying multi-threaded asyn-
chronous software. A TTS is a machine model that gives rise to transition systems equal
in expressiveness to Petri nets [25, 28]. We use TTS in examples throughout this paper.

Let S and L be finite sets of shared and local states, respectively. The elements of
T = S×L are called thread states. Formally, a thread transition system (TTS) is a pair
(T,∆), where ∆ ⊆ T × T models thread transitions. Let V = ∪∞n=0(S × Ln). The
elements of V are called states; we write them in the form (s | l1, . . . , ln). A TTS gives
rise to a transition system M = (V,�) with

(s | l1, . . . , ln) � (s′ | l′1, . . . , l′n)

exactly if, for some i ∈ {1, . . . , n}, (s, li, s
′, l′i) ∈ ∆ and for all j 6= i, lj = l′j . That is,

transitions may affect the shared state, and the local state of exactly one thread in local
state l.

Given sets Is ⊆ S and Il ⊆ L of initial shared and local states, respectively, we
define the set of initial states to be I = Is × (∪∞n=0 I

n
l ). An execution of transition

system M is a finite or infinite sequence of states in V whose adjacent states are related
by �; the first state must be initial. A state is reachable if it appears in some execution.

To show that M is a WSTS, let the covers relation � over V be defined as follows:

(s | l1, . . . , ln) � (s′ | l′1, . . . , l′n)

whenever s = s′ and 〈l1, . . . , ln〉 ⊇ 〈l′1, . . . , l′n′〉, where 〈x〉 denotes the multiset with
the elements from x. Let further v � v′ whenever v � v′ and v 6= v′. If 0 ∈ S
and 0, 1, 2 ∈ L, then for example (0 | 0, 2, 0, 1) � (0 | 2, 0), but (0 | 0, 2, 0, 1) 6�
(0 | 0, 2, 0, 0). Relation � is neither symmetric nor anti-symmetric: states that cover
each other are identical up to permutations of the threads and thus form a classical
thread symmetry equivalence class. Relation � is thus a quasi-order, and in fact a well-
quasi-order (wqo) on V : any infinite sequence v1, v2, . . . of elements from V contains
an increasing pair vi � vj with i < j. It is easy to see that (M,�) fulfills the definition
of a WSTS.
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Fig. 1. Standard and minimal uncoverability proof for target q. Arrows → visualize minimal
predecessor relations, subscripted by the inducing thread transition; note that p → w implies
p ∈ MPre(w). Arrows p� w indicates that there exists some v ∈ MPre(w) such that v � p

3 Compact Backward Reachable Sets

We introduce some basic definitions and sketch the idea underlying our approach. A set
P ⊆ V of states is upward-closed if, for any v ∈ P and any v′, v′ � v implies v′ ∈ P .
We write ↑P for the upward closure of P , i.e., the least upward-closed set that contains
P , and minP for the set of minimal elements of P , i.e., the least subset M of P such
that ↑P = ↑M . Every upward-closed set is representable by its minimal elements, of
which only a finite number exists due to the wqo properties of �. The term and symbol
downward-closed and ↓P are defined analogously.

Let the minimal predecessors of a state v ∈ V , denoted by MPre(v), be all the
minimal states that have a successor covering v:

MPre(v) = min{p ∈ V | ∃v′ ∈ V : p→ v′ ∧ v′ � v} .

Observe that a state p ∈ MPre(v) involves one thread more than v if none of the threads
in v can update the shared state to that of p (we will give an example later on).

Algorithm 1 Bc(q ∈ V )

1: W := {q} ; U := {q}
2: while ∃w ∈W : w ∈ min(U) do
3: W :=W \ {w}
4: for all p ∈ MPre(w) : p /∈ ↑U do
5: if p ∈ I then
6: return “q ∈ Cover”
7: W :=W ∪{p} ; U := U ∪{p}
8: return “q /∈ Cover”

Backward Reachability Algorithm 1
shows a refined version of the classical
backward search for WSTS [2, 1]. Input
is a target state q ∈ V . The algorithm
maintains a set U ⊆ V with vertices that
are labeled and identified with encoun-
tered states, and a work set W ⊆ U of
yet unprocessed vertices.

The algorithm performs an iterative
search over minimal predecessors start-
ing from q. It terminates either by finding an execution leading to a state that covers q,
or when no minimal and unprocessed vertex remains (this eventually happens since �
is a wqo), thus proving the uncoverability of the target state.
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Algorithm 1 Bc(q ∈ V )

1: W := {q} ; U := {q}
2: while ∃w ∈W : w ∈ min(U) do
3: W :=W \ {w}
4: for all p ∈ CPre(w) : p /∈ ↑U do
5: if p ∈ I then
6: return “q ∈ Cover”
7: W :=W ∪{p} ; U := U ∪{p}
8: return “q /∈ Cover”

Backward Reachability Algorithm 1
shows a refined version of the classical
backward search for WSTS [2, 1]. Input
is a target state q ∈ V . The algorithm
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Minimal Uncoverability Proofs Let us assume for the rest of this section that the
target q is uncoverable. In this case Algorithm 1 computes a representation (in terms of
minimal states in U ) of all states that have an emanating execution leading to a state
that covers q. This set, which we denote by Brs, is upward-closed due to monotonicity.

Instead of computing this set precisely we can, however, also prove the target state
uncoverable by any overapproximation Brs] of this set that still enjoys disjointness
from the initial states. The crux is, given that upward-closed sets are represented by
their minimal elements, overapproximating these sets by adding smaller (“�”) elements
leads to fewer and smaller minimal elements, hence to a more succinct representation.
The following lemma reveals how to exploit this property and settle the uncoverability
more efficiently.

Lemma 1 Let v and v′ be two states such that v′ � v. Then for all m ∈ CPre(v) there
exists m′ ∈ CPre(v′) such that m′ � m.

The proof of Lemma 1 is straightforward. Applied to Algorithm 1 this property gener-
alizes to paths of arbitrary length through the search: the smaller the covering predeces-
sors we examine in Line 4, the shorter the paths we need to explore.

Definition 2 An uncoverability proof for an element q is an upward-closed set of states
Brs] such that q ∈ Brs], Brs] ⊇ CPre(Brs]), and Brs] ∩ I = ∅. An uncoverability proof
Brs] for q is minimal if minBrs] ⊆ min(V \ Cover), and every upward-closed subset
X ⊂ Brs] is not an uncoverability proof for q.

Minimal uncoverability proofs thus consist solely of smallest uncoverable states and
cannot be reduced by removing the upward-closure of some of its minimal states. Note
that multiple minimal uncoverability proofs may exist.

Bearing Lemma 1 in mind, we observe that minimal uncoverability proofs are an
interesting means for proving the uncoverability of target q, as they minimize the max-
imum length of paths Algorithm 1 needs to traverse.

Example. To illustrate this idea, let us consider the TTS with shared and local states
0, . . . , 3 and thread transitions t1 = (2, 2, 3, 0), t2 = (0, 2, 2, 0), t3 = (1, 2, 0, 0), t4 =
(1, 1, 1, 2), and t5 = (0, 0, 1, 1); the initial shared and local state sets are Is = Il = {0}.
Assume we wish to check whether shared state 3 can be reached, i.e., the target is (3 | ).
Figure 1 (left) depicts the minimal states of the corresponding set Brs computed by
Algorithm 1. If we search, however, the downward-closure of encountered states for
smallest uncoverable members, we obtain the minimal uncoverability proof shown on
the right: the covering predecessors (2 | 2) and (0 | 0, 1, 2) give rise to candidate (2 | )
and (0 | 1), respectively. Comparing both uncoverability proofs, we observe reductions
in various dimensions: the number of minimal states drops from 9 to 7, the longest
traversed path from 7 to 6, and the maximum thread count from 3 to 2. �

In Section 5 we present experimental evidence that show the potential for compress-
ing the proof size along these dimensions in practice: for our concurrent C program
benchmarks we observed reductions by 95%, 67%, and 50%, respectively. This po-
tential is the key for the efficiency of our approach.



4 Minimal Uncoverability Proof Algorithm

In this section, we develop our approach to compute minimal uncoverability proofs. An
obstacle is the determination of “helpful” candidates. We begin by illustrating it on the
TTS from the previous example; we omit non-minimal states for sake of brevity.

Example. Again, we start from target (3 | ). However, before exploring covering pre-
decessors, we check whether a helpful candidate for a smaller state exists. Since this
is not the case (no smaller state exists), we proceed as usual and obtain predecessor
(2 | 2) which gives rise to candidate (2 | ). If we find a path showing (2 | ) coverable,
we will withdraw the candidate and proceed with the former state as usual. From (2 | )
we encounter predecessor (0 | 2); although (0 | 2) strictly covers (0 | ), we do not cre-
ate a corresponding candidate as it is initial. However, for its predecessor (1 | 2, 2) in
turn we do so, and create candidate (1 | ). Further exploring this state we obtain path
(0 | 0) → (1 | ), proving the candidate’s coverability. We withdraw the candidate and
mark the downward-closure of all states along the execution as coverable, so that these
elements are not expanded again. With path (0 | 0) → (1 | 1) → (1 | 2) the next can-
didate proof attempt also fails. From the original predecessor (1 | 2, 2) we arrive at
(1 | 1, 2), of which we can rule out the existence of smaller uncoverable states from the
collected coverability results; the same holds for the next predecessor (1 | 1, 1). We fi-
nally arrive at predecessor (0 | 0, 1) and create the candidate (0 | 1). Since no new (w.r.t.
↑) predecessor exists, we terminate with the tree shown in Figure 1 on the right. �

4.1 Backward-constructed Minimal Proofs

In addition to the data structures used by Algorithm 1, namely a set U ⊆ V with
vertices that are labeled and identified with encountered states, and a work set W ⊆ U
of unprocessed vertices, our algorithm maintains

i) a set E storing (directed) edges between vertices, E ⊆ U × U ;
ii) a mapping ζ associating each vertex with a unique vertex, ζ : U → U ;

iii) a downward-closed set D storing collected coverability results, D ⊆ V .

As already indicated in Figure 1, we write u → r for (u, r) ∈ E, and →∗ for the
reflexive transitive closure of→. We call a vertex u ∈ U candidate vertex if ζ(u) = u,
and predecessor vertex otherwise. A path of (U,E) is a finite sequence of vertices from
U whose adjacent vertices are related by→; the last state must be a candidate vertex.
The mapping ζ (extended to sets X by ζ(X) = {ζ(x)|x ∈ X}) clusters the vertices
into | ζ(U)| partitions, one per candidate vertex (vertices that are associated with that
candidate vertex). The set D stores states that were shown to be coverable.

The algorithm takes a target q as input and ensures at all times that restricting the
partitioned graph (U,E, ζ) to any equivalence class of vertices with the same associated
candidate vertex, say u, forms a tree with u as root, and all other vertices being prede-
cessor vertices. Each tree represents an attempt to prove the corresponding candidate
(as done by Algorithm 1 for input u). Edges and the mapping ζ enable the withdrawal
of unhelpful candidates in a way that preserves parts of their partition that are shared
with remaining candidates.
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Fig. 2. Effect of routine Backtrack in the presence of candidate vertices s, r and t, each with a
single primed predecessor vertex in their partition; the partition of candidate vertex r we wish to
remove is highlighted, and the single conflicting edge is marked with “◦” (left). After the call, the
partition of r is removed and its former predecessor vertex r′ is associated with s (right)

The algorithm consists of three routines: Enlarge creates a new candidate vertex,
Backtrack removes partitions of candidates, and Mcov is the main routine.

Enlargement routine The Enlarge routine takes a candidate u we wish to add as input.
If u is a new vertex (u /∈ U ), it is inserted in the work and vertex set. In all cases, the
graph is repartitioned by adjusting ζ and associating every vertex in the set

Λ(u) = {r ∈ U |u = r ∨ (r →∗ u ∧ ζ(r) = ζ(u))}

with u. This repartitioning (observe u ∈ Λ(u)) ensures that r ∈ Λ(u) now entails
ζ(r) = u. The graph thus contains the new candidate vertex u, with a partition in the
shape of a tree.

Algorithm 2 Backtrack(P ⊆ ζ(U))

1: while ∃(r, s) ∈ E : (r, s) is P -confl. do
2: for all t ∈ Λ(r) do
3: ζ(t) := ζ(s)
4: for all r ∈ U : ζ(r) ∈ P do
5: W :=W \ {r} ; U := U \ {r}
6: for all (t, r) ∈ E do
7: E := E \ {(t, r)}

Backtracking routine The purpose of
the Backtrack routine, shown in Algo-
rithm 2, is to remove unhelpful candidate
vertices P ⊆ ζ(U) and their partitions.
An obstacle is that paths u →∗ r /∈ P
to remaining candidate vertices may have
segments in partitions that will be re-
moved (paths can traverse multiple par-
titions). To ensure soundness, we need to
preserve them.

Definition 3 Consider a set P of candidate vertices. An edge (r, s) ∈ E is called P -
conflicting if ζ(r) ∈ P and ζ(s) /∈ P .

Hence, P -conflicting edges induce segments of the above kind. To preserve them, we
exhaustively resolve conflicts in a first step (Lines 1–3): for a conflicting edge, say
r → s, we do this by reassociating vertices in Λ(r) to ζ(s).

Once all conflicts are resolved and thus r → s and ζ(r) ∈ P entails ζ(s) ∈ P ,
remaining vertices and edges of partitions in P are removed in Lines 4–7. Figure 2
sketches both steps.

Fig. 2. Effect of routine Backtrack in the presence of candidate vertices s, r and t, each with a
single primed predecessor vertex in their partition; the partition of candidate vertex r we wish to
remove is highlighted, and the single conflicting edge is marked with “◦” (left). After the call, the
partition of r is removed and its former predecessor vertex r′ is associated with s (right)

The algorithm consists of three routines: Enlarge creates a new candidate vertex,
Backtrack removes partitions of candidates, and Mcov is the main routine.

Enlargement routine The Enlarge routine takes a candidate u we wish to add as input.
If u is a new vertex (u /∈ U ), it is inserted in the work and vertex set. In all cases, the
graph is repartitioned by adjusting ζ and associating every vertex in the set

Λ(u) = {r ∈ U |u = r ∨ (r →∗ u ∧ ζ(r) = ζ(u))}

with u. This repartitioning (observe u ∈ Λ(u)) ensures that r ∈ Λ(u) now entails
ζ(r) = u. The graph thus contains the new candidate vertex u, with a partition in the
shape of a tree.

Algorithm 2 Backtrack(P ⊆ ζ(U))

1: while ∃(r, s) ∈ E : (r, s) is P -confl. do
2: for all t ∈ Λ(r) do
3: ζ(t) := ζ(s)
4: for all r ∈ U : ζ(r) ∈ P do
5: W :=W \ {r} ; U := U \ {r}
6: for all (t, r) ∈ E do
7: E := E \ {(t, r)}

Backtracking routine The purpose of
the Backtrack routine, shown in Algo-
rithm 2, is to remove unhelpful candidate
vertices P ⊆ ζ(U) and their partitions.
An obstacle is that paths u →∗ r /∈ P
to remaining candidate vertices may have
segments in partitions that will be re-
moved (paths can traverse multiple par-
titions). To ensure soundness, we need to
preserve them.

Definition 3 Consider a set P of candidate vertices. An edge (r, s) ∈ E is called P -
conflicting if ζ(r) ∈ P and ζ(s) /∈ P .

Hence, P -conflicting edges induce segments of the above kind. To preserve them, we
exhaustively resolve conflicts in a first step (Lines 1–3): for a conflicting edge, say
r → s, we do this by reassociating vertices in Λ(r) to ζ(s).

Once all conflicts are resolved and thus r → s and ζ(r) ∈ P entails ζ(s) ∈ P ,
remaining vertices and edges of partitions in P are removed in Lines 4–7. Figure 2
sketches both steps.



Algorithm 3 Minimal Uncoverability Proof Algorithm: Mcov(q ∈ V )

1: W := {q} ; U := {q} ; D := I ; E := ∅ ; ζ : q 7→ q
2: select n ∈ min C(q) ; Enlarge(n) // create candidate vertex
3: while ∃w ∈W : w ∈ min(U) do
4: W :=W \ {w}
5: for all p ∈ CPre(w): p is ζ(w)-minimal do
6: if p /∈ D then
7: E := E ∪{(p, w)}
8: if p 6∈ U then
9: W :=W ∪{p} ; U := U ∪{p} ; ζ(p) := w // add covering predecessor

10: select n ∈ min C(p) ; Enlarge(n) // create candidate vertex
11: else if q /∈ � p then
12: D := D∪ � p // mark coverable states
13: Backtrack(ζ(� p)) // call backtrack routine
14: while ∃u ∈ min(U)∩↑P do
15: select n ∈ min C(u) ; Enlarge(n)
16: break // skip forward to next iteration of while
17: else
18: return “q ∈ Cover”
19: return “q /∈ Cover”

Main routine We introduce some terminology:

Definition 4 Let v ∈ V , and u ∈ ζ(U). State v is u-minimal if v 6� u and for all
s, s′ ∈ U such that s→ s′ and ζ(s′) = u, we have v 6� s.

That is, state v is u-minimal if it covers neither the candidate vertex u nor any prede-
cessor vertex in u’s partition (observe that a predecessor vertex may yet belong to a
partition other than ζ(u)).

Definition 5 Let P ⊆ V . P is lower successor-closed if, for any p ∈ P and any v,
(p→ v ∨ p � v) entails v ∈ P .

That is, a lower successor-closed set is both “successor-closed” (where successors are
formed according to→) and downward-closed. We write � v for the least lower succes-
sor-closed set containing v. This set is obtained by closing {v} under→ successors and
downward until fixpoint. The point of this definition is that, if v is coverable, so is every
vertex in � v: coverability itself is closed under→ successors and downward.

Algorithm 3 shows the main routine, Mcov, of our approach. The algorithm works
as follows. Initially W and U contain one candidate vertex (target q), D is the set of
initial states, the set E of edges is empty, and ζ associates q to itself (Line 1). If target
q gives rise to a candidate we create a minimal candidate vertex (Line 2). The set of
potential candidates C(p) ⊆ V is given by

C(p) = {v ∈ V |v ≺ p and v /∈ D}.

The set contains all the states that are strictly covered by p but not yet marked cov-
erable. If p = (0 | 0, 0, 1), and D = {(0 | ), (0 | 0), (0 | 1)}, then for example C(p) =
{(0 | 0, 1), (0 | 0, 0)}. We tacitly assume that Line 2 has no side-effect if C(p) = ∅.



The algorithm now picks and removes a minimal and unprocessed vertex w from
the work set, or returns “q 6∈ Cover” (Line 19) if no such vertex remains. In the former
case, the for loop in Line 5 steps through all covering predecessors p of w that are
ζ(w)-minimal and processes them as follows:

Lines 6–10 If p is not currently known to be coverable, then the graph is expanded. If
p is a new vertex (p 6∈ U , Line 8), then we ensure that p will be processed when it
turns minimal among the vertices by adding it as predecessor vertex tow’s partition.
Finally, we call the Enlarge routine to create new minimal candidate vertices.

Lines 11–16 If p is found to be coverable but not q, we add � p (which is coverable
as well) to D and invoke the Backtrack routine to remove partitions of coverable
candidate vertices. Since this may remove candidate vertices of remaining prede-
cessor vertices, we have to ensure that their downward-closure is further searched
for minimal, yet helpful candidates. We therefore create new minimal candidate
vertices (Lines 14–15). Again, we tacitly assume that Line 15 has no side-effect
if C(p) = ∅. Then, the break instruction skips forward to the next iteration of
the while loop. As a consequence of backtracking, unprocessed vertices that were
previously not minimal may now be.

Lines 17–18 Otherwise we return “q ∈ Cover”, since the coverability of target q has
been settled (in the affirmative).

Example. We continue with the example from the beginning of this section. In this case
routine Enlarge is called four times: predecessor vertices (2 | 2), (1 | 2, 2), and (0 | 0, 1)
give rise to candidates (2 | ), (1 | ) (and after its removal to (1 | 2)), and (0 | 1), respec-
tively. Routine Backtrack is called once after candidate vertices (1 | 2) and (1 | 2, 2)
turn out unhelpful. The mapping ζ shown in Figure 1 on the right has three partitions,
one for each of the candidate vertices (3 | ), (2 | ), and (0 | 1). The collected coverabil-
ity results are D = ↓{(0 | 0), (1 | 1), (1 | 2)}, and the mapping ζ is: ζ(u) = (2 | ) if
u ∈ {(0 | 2), (1 | 2, 2), (1 | 1, 2), (1 | 1, 1)}, and ζ(u) = u if u ∈ {(3 | ), (2 | ), (0 | 1)}. �

Due to the finiteness of downward closures (we create a finite number of candidate
vertices) the algorithm eventually terminates. Completeness follows from that of Algo-
rithm 1, and the fact that we only remove conflicting edges during backtracking. When
Mcov terminates for an uncoverable target q, the remaining minimal nodes represent an
uncoverability proof for q: Brs] = ↑U (cmp. Definition 2).

In its current form Algorithm 3 computes uncoverability proofs with the property
minBrs] ⊆ min(V \Cover), but not necessarily minimal ones. This is attributed to two
factors. First, if a covering predecessor gives rise to a candidate and we later remove
this predecessor, then a created uncoverability candidate may turn irrelevant for the
coverability of target q. Second, when we add a candidate vertex that is incomparable
to existing candidate vertices, this may still turn some of the latter irrelevant as well. In
order to obtain truly minimal uncoverability proofs, we remove candidate vertices that
are no longer needed during calls to Backtrack, and after every call to Enlarge.



4.2 Balancing the Search via Supplementary Coverability Results

If candidates are chosen unwisely, the search may incur extra work to identify and
eliminate the coverable elements. To reduce this overhead, we have to prevent unhelpful
candidates from being created. In its current form, Algorithm 3 does so by incorporating
collected coverability results when it creates a new candidate. These coverability results
may also, however, come from any external source, which we call a coverability oracle.
A coverability oracle a) needs to report states that are provably coverable and should
thus reasonably search in a forward direction; b) is not required to find all coverable
states: creating some unhelpful candidates does not harm the search.

This flexibility allows us to use any underapproximating forward-directed search:
a standard or random reachability analysis works just as well as generalizations of the
Karp-Miller procedure to broadcast synchronization [11], which are known not to guar-
antee termination for WSTS.

We finally remark: since detecting coverable elements is one of the main goals of
Algorithm 3, the coverability results reported by the coverability oracle directly ben-
efit the algorithm itself. The coverability oracle and Algorithm 3 run in parallel and
synchronize via the set D: the coverability oracle populates this set while maintaining
D ⊆ Cover. Receiving such updates, Algorithm 3 terminates if q ∈ D, or otherwise
invokes the Backtrack routine on now known-to-be-coverable candidate vertices in reg-
ular intervals to restore the invariant D∩U = ∅.

5 Experimental Evaluation

In this section, we evaluate our algorithms on 21 concurrent C programs. The programs
feature a diverse set of communication primitives, such as shared variables, mutexes,
condition variables and broadcasts. For each benchmark, we consider verification of a
safety property, specified via an assertion. The C programs, ranging from 40 to 1000
lines of code, are:

1–4 broadcast-based code from FreeBSD, NetBSD and Solaris that is related to RDMA
ZFS file system support and interface/system monitoring;

5–9 programs using several basic language features and the pthread library;
10–12 programs using multiple locks to control access to a shared resource;
13,14 blocking and non-blocking pseudo-random number generators [31, 10];
15 a program used in [17] to illustrate thread-modular model checking [24];
16,17 lock-based and lock-free stack described in [31], supporting concurrent pushes

and pops (adapted from an IBM implementation) [10];
18,19 a Linux driver skeleton and a Mozilla vulnerability fix [27, 24];
20,21 algorithms to establish mutual exclusion [24].

We implemented our Mcov routine (Algorithm 3) for TTSs and transfer Petri nets in
our tool BREACH, equipped with a generalization of the Karp-Miller procedure (GKM)
as coverability oracle; our tool (we used v1.0) and all benchmarks are available online
at www.cprover.org/bfc. The oracle reports coverability results to a data pool our Mcov
routine taps into at regular intervals; both run in parallel. In order to measure the impact



Classical approaches Our new approach
C Programs Final TTS GKM BC MCOV MCOV/GKM
id/Name |T | |∆| Time Iter. Time Iter. Time Iter. Time
1/BSD-ABDD 82 288 MO 23476 19.1 328 0.1 184 0.0
2/BSD-RDMA-ADDR 101 304 1.6 12479 7.6 295 0.1 146 0.0
3/NETBSD-SYSMON-PWR 291 704 MO – TO 124 0.1 126 0.0
4/SOLARIS-SPACE-MAP 539 992 MO 10348 5.8 3412 2.2 2834 1.0
5/BS-LOOP 11616 20485 0.1 1483 1.5 1049 1.1 – 0.1
6/COND 280 1045 0.0 809 0.2 4660 88.4 – 0.0
7/FUNCTION-POINTER 9216 746770 MO – TO – TO 23139 592.0
8/S-LOOP 516 2813 0.0 3567 1.5 1567 1.4 – 0.5
9/PTHREAD 17920 135300 MO – TO 70841 1521.0 51265 189.7
10/DOUBLE-LOCK1 34880 233025 MO – TO – MO 90488 1146.5
11/DOUBLE-LOCK2 17216 114752 MO – TO – MO 46012 285.9
12/DOUBLE-LOCK3 3264 19250 MO – TO 24161 75.8 9514 14.5
13/PRNG (NON-BL.) 142 954 MO 191 0.0 4791 6.9 64 0.0
14/PRNG 788 5650 MO – TO – TO 9168 33.9
15/SPIN2003 188 984 0.0 6436 1.7 699 0.2 – 0.1
16/STACK (NON-BL.) 352 2550 MO 34046 133.7 18603 128.6 8249 12.5
17/STACK 648 3626 MO 35500 38.7 7616 20.2 2723 2.3
18/BOOP 7488 25929 0.0 1446 7.8 10776 361.1 – 0.1
19/MOZILLA-VUL.-FIXED 1648 8050 0.0 77053 84.2 3723 4.3 – 1.7
20/PETERSON 2048 8988 0.0 22951 15.5 2373 2.3 – 1.2
21/SZYMANSKI 8448 35896 0.1 – TO 9597 35.8 – 11.0

Table 1. Comparison of classical coverability approaches to our MCOV algorithm; buggy bench-
marks in bold, run times in seconds, or TO (MO) in case the time (memory) limit is hit

of our new approach, the oracle can be deactivated, turning BREACH into the refined
version of the classical backward search (Algorithm 1). Due to efficiency limitations
of the underlying data structures, we do not add candidate vertices that involve two
threads or more (which we found to be a good trade-off between efficiency and proof
minimization). To apply BREACH to the C programs, we extended the abstract language
interface of the C software model checker SATABS to TTS. SATABS implements the
CEGAR loop based on a symmetry-aware predicate-abstraction technique [10], and
handles function calls by inlining. All experiments are performed on a 3GHz Intel Xeon
machine with 20 GB memory, running 64-bit Linux, with a timeout of 30 minutes.

Evaluation Table 1 presents results for various configurations of our implementation.
Columns on the left show the benchmark id and name, and the total number of thread
states and transitions emerged in the last, and always most expensive, CEGAR iteration.
Remaining columns show details for:

GKM: Our coverability oracle (stand-alone);
BC: Refined version of the classical backward algorithm (Algorithm 1);
MCOV: Our MCOV algorithm (Algorithm 3);
MCOV/GKM: The MCOV algorithm equipped with the coverability oracle GKM.

For each approach we show the total model checking run time, and in addition for
backward-directed algorithms the number of iterations.

The results demonstrate that our new approach outperforms the classical algorithms:
MCOV/GKM solves all 21 programs, and MCOV 17 instances, compared to 13 and 9
for the classical backward algorithm and the coverability oracle, respectively. Compar-
ing the results for BC and MCOV clearly shows that the uncoverability proofs the latter
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Fig. 3. Cactus plot on the 21 multi-threaded C programs comparing our MCOV and MCOV/GKM

approaches to various existing ones; due to broadcasts, the limit for tools marked with * is k = 17

generates are much smaller. This is reflected by a strict decrease of the iteration count
in 17 cases. In the majority of cases, this improvement manifests in the running time:
MCOV outperforms BC on 13 programs (often significantly), compared to 4 the other
way around. Furthermore, the results for MCOV/GKM show that the coverability oracle
can substantially reduce the cost of unhelpful candidates, showing their synergies (ob-
serve that running GKM and BC stand-alone in parallel is not helpful). As a result, the
positive effect is amplified: compared to BC, the iteration count strictly decreases on all
programs.

To measure the difference between standard and minimal uncoverability proofs, we
removed the bound on candidate vertices (in return for longer runtimes). In this setup,
we observed the following reductions (averaged): the the longest traversed path drops
from 28 to 14 (-50%), the threads included in the proof from 6 to 2 (-67%), and the
proof size in terms of minimal states from 22518 to 1222 (-95%). While the classical
backward-approach includes up to eight threads in a proof, our approach always gener-
ates minimal uncoverability proofs which involve no more than two threads. With the
bound on candidate vertices mentioned above and used for Table 1, the reductions are
only marginally smaller (e.g., the previous thread number increases by one).

Comparison There exist a number of other approaches to the coverability problem.
We compare to the following tools (all available online):

IST-BC: Classical backward search using interval sharing-trees (v1.0.3) [18];
PETR-BC: Refined backward search with structural invariants (v0.1) [29, 30];
TINA-KM: Karp-Miller procedure (v3.0.0) [5];
CSC-KM: Refined Karp-Miller procedure using interval sharing-trees (v0.1) [22];
EEC-AR: Pure forward algorithm with enumerative refinement (v1.0.3) [21];
TSI-AR: Variant of [21] using backward underapprox. for refinement (v1.0.3) [19].
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in 17 cases. In the majority of cases, this improvement manifests in the running time:
MCOV outperforms BC on 13 programs (often significantly), compared to 4 the other
way around. Furthermore, the results for MCOV/GKM show that the coverability oracle
can substantially reduce the cost of unhelpful candidates, showing their synergies (ob-
serve that running GKM and BC stand-alone in parallel is not helpful). As a result, the
positive effect is amplified: compared to BC, the iteration count strictly decreases on all
programs.

To measure the difference between standard and minimal uncoverability proofs, we
removed the bound on candidate vertices (in return for longer runtimes). In this setup,
we observed the following reductions (averaged): the the longest traversed path drops
from 28 to 14 (-50%), the threads included in the proof from 6 to 2 (-67%), and the
proof size in terms of minimal states from 22518 to 1222 (-95%). While the classical
backward-approach includes up to eight threads in a proof, our approach always gener-
ates minimal uncoverability proofs which involve no more than two threads. With the
bound on candidate vertices mentioned above and used for Table 1, the reductions are
only marginally smaller (e.g., the previous thread number increases by one).

Comparison There exist a number of other approaches to the coverability problem.
We compare to the following tools (all available online):

IST-BC: Classical backward search using interval sharing-trees (v1.0.3) [18];
PETR-BC: Refined backward search with structural invariants (v0.1) [29, 30];
TINA-KM: Karp-Miller procedure (v3.0.0) [5];
CSC-KM: Refined Karp-Miller procedure using interval sharing-trees (v0.1) [22];
EEC-AR: Pure forward algorithm with enumerative refinement (v1.0.3) [21];
TSI-AR: Variant of [21] using backward underapprox. for refinement (v1.0.3) [19].

Only IST-BC and PETR-BC support broadcast primitives. In order to allow for a mean-
ingful comparison, we translated abstract TTS templates generated by SATABS into
(transfer) Petri nets and replaced the model checker back-end.



Figure 3 depicts total model checking run times (scaled logarithmically) for all
methods as “cactus plot”: the horizontal axis represents the number of programs the
respective method could successfully handle, and the vertical axis the time needed to
solve this number if they were ran in parallel. The results demonstrate significant im-
provements over all previous methods: only MCOV/GKM is able to solve all 21 pro-
grams, followed by MCOV stand-alone (17), PETR-BC (15), BC (13), EEC-AR (11),
TINA-KM and CSC-KM (9), IST-BC (7), and TSI-AR (1).

The improvement over the best previous approach (PETR-BC) shows that our new
approach is able to guide the search more effectively than structural invariant heuristics,
which are know to often yield invariants that are irrelevant to the safety property or too
imprecise [15]. The inferior performance of our underlying classical backward algo-
rithm (BC) to PETR-BC indicates that the observed improvements are not just owed to
clever implementation, but rather the result of our novel approach.

6 Related Work

Algorithmic solutions to coverability analysis were first proposed for vector addition
systems in a landmark paper by Karp and Miller [26]. The solution constructs a pseudo-
reachability tree by forward exploration and replaces newly discovered states that are
strictly greater than predecessors by their limit. It has a non-primitive recursive worst-
case complexity [32]. The purpose there was mainly to show decidability of the cover-
ability problem for VASes and the equivalent Petri nets. The technique is implemented
in the tool TINA-KM [5]. It cannot be extended to broadcast primitives [12]. An im-
provements of this procedure that computes minimal coverability sets is [22].

To afford more flexibility in modeling parametrized programs, various algorithms
were later proposed for WSTS, originally in a pure backward fashion [2], which was
implemented in the tools IST-BC and PETR-BC [29], later as forward exploration [14,
34]. The paradigm presented in [21] (and implemented in the tool EEC-AR) is also a
pure forward algorithm; it constructs abstractions of increasing precision. In contrast to
the paradigm of EEC-AR, the implementation itself does not support broadcasts. Other
approaches are the backward and forward unfolding algorithms from [3] and [25].

Solutions combining forward and backward exploration are rare; we are only aware
of the methods described in [15] and [19]. The authors of [15] propose to use a CSC-
KM-like approach to compute overapproximations of the coverability set, which are
then used in a subsequent backward exploration to prune the search space. Our experi-
mental results demonstrate, however, that this approach cannot cope with programs of
the sizes we consider. In [19], the authors combine overapproximations computed in
a forward fashion, which are refined by using backward underapproximations; the ap-
proach is implemented in the tool TSI-AR. On an abstract level, our algorithm can be
seen as the dual of this approach. To the best of our knowledge, our approach is the first
to combine forward propagation of underapproximations with backward propagation
of overapproximations to the coverability problem in WSTS.



7 Conclusion

We introduced a new approach to the coverability problem in WSTS. The novelty of
our algorithm is the way it proves uncoverable instances via a sequence of many inex-
pensive uncoverability proofs. Our algorithm can be used to check assertion failures,
mutual exclusion violations and many other properties for parametrized programs com-
municating via mutexes, shared variables or common concurrency primitives such as
broadcasts.

We demonstrated in extensive experiments on large benchmarks, generated by the
software model checker SATABS from C programs, that our algorithm outperforms the
best known coverability approach by orders of magnitude, enabling the verification of
programs which are out of scope of the previous technology. The experiments also
reveal that our approach is able to guide the search far more effectively than existing
structural invariant heuristics [13, 8]. We conclude from our experiments that programs
tend to feature minimal uncoverability proofs with fewer and smaller minimal elements
compared to those targeted by existing methods.

The ideas we have presented, supported by the simplicity of their implementation,
are naturally applicable to coverability methods in general. We believe, for example,
that while our method outperforms techniques based on structural net invariants, even
more practical benefit is achievable by combining these strategies.
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