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Abstract. We consider the class of finite-state programs executed by
an unbounded number of replicated threads communicating via shared
variables. The thread-state reachability problem for this class is essential
in software verification using predicate abstraction. While this problem
is decidable via Petri net coverability analysis, techniques solely based
on coverability suffer from the problem’s exponential-space complexity.
In this paper, we present an alternative method based on a thread-state
cutoff : a number n of threads that suffice to generate all reachable thread
states. We give a condition, verifiable dynamically during reachability
analysis for increasing n, that is sufficient to conclude that n is a cutoff.
We then make the method complete, via a coverability query that is
of low cost in practice. We demonstrate the efficiency of the approach
on Petri net encodings of communication protocols, as well as on non-
recursive Boolean programs run by arbitrarily many parallel threads.

1 Introduction

Concurrent software is gaining tremendous importance due to the shift towards
multi-core computing architectures. The software is executed by parallel threads,
in an asynchronous interleaving fashion. The most prominent and flexible model
of communication between the threads is the use of fully shared variables. This
model is supported by well-known programming APIs, e.g. the POSIX pthread
model and Windows’ WIN32 API. Bugs in programs written for such environ-
ments tend to be subtle and hard to detect by means of testing, strongly moti-
vating formal analysis techniques.

In this paper, we consider the case in which no a-priori bound on the number
n of concurrent threads is known. This scenario is most relevant in practice;
it applies, for example, to a server that spawns additional worker threads in
response to a high work load. We focus here on replicated finite-state programs:
the program itself only allows finitely many configurations, but is executed by
an unknown number of threads, thus generating an unbounded state space. An
important practical instance of this scenario is given by non-recursive concurrent
Boolean programs. Boolean program verification is a bottleneck in the widely-
used predicate abstraction-refinement framework.
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We tackle in this paper the thread-state reachability problem. A thread state
is defined as a valuation of the shared program variables, plus the local state
of one thread. Thread-state reachability is routinely used to encode multi-index
safety properties of systems, such as mutually exclusive access to some resource.

The thread-state reachability problem for replicated finite-state programs is
equivalent in complexity to the coverability problem for Petri nets. The latter
problem is decidable [18], but has an exponential lower space bound [7]. In or-
der to not fall victim to this complexity, the approach presented in this paper
takes advantage of widely accepted empirical evidence that often a small num-
ber of threads suffice to exhibit all relevant behavior that may lead to a bug.
If this number is efficiently computable, the unbounded thread-state reachability
problem reduces to a finite-state exploration problem, for which quite efficient
engines have recently emerged [3].

To be more precise, for every finite-state program P, there is a number c
such that any thread state reachable for some number of threads running P can
in fact be reached given c threads. We call such a number a thread-state cutoff
of P. Previous results on computing cutoffs of a program P tend to either restrict
the communication scheme [12, 17], or yield cutoffs that are polynomial in the
number of states of P [11]. Both types are inapplicable to Boolean program
verification, since concurrent programming APIs rely on very liberal shared-
variable communication, while a Boolean program P typically has millions of
states, rendering even linear-size cutoffs useless.

In contrast to previous solutions, we give in this paper a condition on a num-
ber n whose satisfaction allows us to conclude that n is the cutoff of a program P.
To obtain such a condition, we first show that, if n is not the cutoff, then there
exists a number n′ > n and a thread state reachable in the n′-thread system Pn′

whose reachability requires a particular conducive constellation of several threads
in Pn. If the reachable states in Pn do not permit such a constellation, then n is
indeed the cutoff of P.

We then turn this idea into a complete and tight cutoff detection algorithm.
Completeness is achieved using backward coverability analysis to rule out the
reachability of the thread states identified as candidates for the constellation
mentioned above. We argue that these candidate state are benign, in that back-
ward coverability analysis on them is efficient and does not defeat the original
purpose of avoiding such analysis. Minimality of the cutoff is ensured by apply-
ing the cutoff detection method iteratively to the values n = 1, 2, . . .. Since our
method uses reachability information, we speak of dynamic cutoff detection.

We experimentally investigate the cutoffs of a large number of Petri net and
Boolean program examples, modeling concurrent systems of various types. We
demonstrate the superiority of our cutoff method over several earlier algorithms
based solely on Petri net coverability. Our experiments showcase the method as
a very promising algorithmic solution to coverability problems for Petri nets,
and as an efficient technique for thread-state reachability analysis in realistic,
if non-recursive, Boolean programs run by arbitrarily many threads.
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2 Basic Definitions

Let P be a program that permits only finitely many configurations. In particular,
P’s variables are of finite range, and the function call graph, if any, of P is
acyclic. An instance of the class of programs P is given by non-recursive Boolean
programs, which are obtained from C programs using predicate abstraction. The
use of Boolean programs as abstractions of C programs was promoted by the
success of the Slam project [1]. We use concurrent Boolean programs in the
experimental evaluation of our approach and refer the reader to [8] for a detailed
description.

Program P gives rise to a family (Mn)∞n=1 of replicated finite-state system
models as follows. P’s variables are declared to be either shared or local. A val-
uation of the shared variables is called a shared state, a valuation of the local
variables is called a local state. Mn is a Kripke structure modeling an n-thread
concurrent program. The states of Mn have the form (s, l1, . . . , ln), where s is a
shared state and li is a local state; we say li is the local state of thread i. Mn’s
execution model is that of interleaved asynchrony. That is, the set of transitions
of Mn is the set of pairs of the form

( (s, l1, . . . , li−1, li, li+1, . . . , ln) , (s′, l1, . . . , li−1, l
′
i, li+1, . . . , ln) ) (1)

such that (s, li) → (s′, l′i) corresponds to a statement in P. Only one thread, i,
can make a step at a time. A step may change the local state of that thread
and the shared state; we call thread i active in the transition. The pair (s, li)
is called the thread state of thread i in global state (s, l1, . . . , ln); a thread state
summarizes the part of the global state that is accessible to a thread. A thread
has neither read nor write access to local variables of other threads. Note that if
a transition changes the shared state of Mn (i.e., s 6= s′), it changes the thread
state of every thread of Mn. Such transitions capture thread communication.

In order to define the thread-state reachability problem considered in this
paper, let T be the (finite) universe of thread states, i.e., pairs of shared and
local variable valuations, irrespective of n. A state (h, l1, . . . , ln) of Mn contains
thread state (s, l) if h = s and, for some i, li = l. Thread state t is reachable in
Mn if there exists a reachable global state of Mn that contains t; reachability of
global states in Mn is defined with respect to some set of initial states as usual.
We denote the set of thread states reachable in Mn by Rn, and the set ∪∞n=1Rn of
thread states reachable for some number of threads by R. Note that, for any n,
Rn ⊆ R ⊆ T ; in particular, these reachability sets are finite. The thread-state
reachability problem is now defined as follows: given P, determine R.

Our model of replicated finite-state system families (Mn)∞n=1 formalizes clas-
sical parameterized systems, where the number of running threads is fixed up-
front but unknown. Our techniques apply equally to systems where the number
of threads can change at runtime. It is quite easy to show that the two models
are equivalent for reachability properties. Further, our techniques extend to the
case of multiple program templates, as in a heterogeneous synchronization prob-
lem with arbitrarily many readers and writers. For simplicity, we focus in the
rest of this paper on the single-template parameterized case formalized above.
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3 Background: Decidability of Thread-State Reachability

The thread-state reachability problem as defined in the previous section is de-
cidable, via a reduction to the coverability problem for vector addition systems
with states (VASS), as follows. A VASS is a finite-state machine whose edges are
labelled with integer vectors of some fixed dimension. A configuration of a VASS
is a pair (q, x) where q is a state and x is a vector of non-negative integers.
There is a transition (q, x)→ (q′, x′) if there is an edge q

v→ q′ in the VASS such
that x′ = x + v; symbol + denotes pointwise addition. Given an initial config-
uration (q0, x0), a configuration (q, x) is reachable if there exists a sequence of
transitions starting at (q0, x0) and ending at (q, x). The coverability problem asks
whether a given configuration (q, x) is covered by the reachable configurations
of the VASS, i.e., whether a configuration (q, x′) is reachable such that x′ ≥ x,
where ≥ is defined pointwise.

Theorem 1 ([18]) The coverability problem for VASS is decidable.

The decision procedure by Karp and Miller [18] builds a rooted tree that
represents the set of covered configurations of a vector addition system. Unfor-
tunately, it operates not even in primitive-recursive space. In response to this
daunting complexity, alternative algorithms exploring well-structured transition
systems (WSTS), of which VASS are an example, have been developed [13, 15].
Their efficiency is handicapped by the EXPSPACE lower bound of the coverabil-
ity problem, the proof of which is attributed to Cardoza, Lipton and Meyer [7].

Replicated finite-state systems as vector addition systems. Using the components
of a vector to count the number of threads in each of the possible local states,
a VASS can simulate a replicated finite-state system: a thread transition (s, l)→
(s′, l′) is represented by a VASS edge s

v→ s′ such that the l-th component of
v is −1, the l′-th component is 1, and all others are 0. A thread state (s, l) of
the program is reachable in the program’s concurrent execution exactly if there
is a reachable VASS configuration (s, x) such that the l-th component of x is at
least 1. By definition, this is the case exactly if the VASS configuration (s, x0)
is covered, where x0 is all-zero except the entry at position l, which is 1. The
latter problem is decidable by Theorem 1. We obtain:

Corollary 2 The thread-state reachability problem for replicated finite-state pro-
grams is decidable.

It can be shown that the VASS coverability problem is, conversely, reducible
to the thread-state reachability problem, in a way that makes the thread state
reachability problem EXPSPACE complete as well. We remark that all reduction
results sketched in this section hold equivalently for Petri nets in place of vector
addition systems. Since the former are of a somewhat greater practical appeal,
we will use Petri nets and their tools as a reference point in the experimental
Section 6 later in this paper.
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4 Thread-State Reachability via Cutoffs

Our computational model, according to which the possible transitions of a thread
are determined only by its local state and the shared state, guarantees the fol-
lowing monotonicity property:

Property 3 Sequence (Rn)∞n=1 is monotone in n: n1 ≤ n2 implies Rn1 ⊆ Rn2 .

This property holds since every path in Mn1 can be extended to a path in Mn2

of the same length by adding n2−n1 thread components to each state along the
path and letting the new threads idle in their initial state.

Sequence (Rn)∞n=1 thus never decreases. Since, on the other hand, the set R
of reachable thread states is finite and Rn ⊆ R for every n, the sequence can
increase only a finite number of times. This implies that, for every finite-state
program P, there is a number c such that any reachable thread state can in fact
be reached given c threads. Such a number is called a (thread-state) cutoff.

Definition 4 A thread-state cutoff (or cutoff for short) for family (Mn)∞n=1

is a number c ∈ N such that, for all n ≥ c, Rn = Rc.

In particular, we have Rc = R. Knowing the cutoff would therefore allow us to
compute the set of reachable thread states using an efficient finite-state model
checker. In order to turn this possibility into a viable alternative to coverability
methods, we not only have to find means of computing the cutoff efficiently. We
also need the minimum cutoff c0 to be small enough that a model checker can
compute Rc0 with reasonable resources.

The minimum cutoff of a finite-state program can in principle be arbitrarily
large: given a number c, consider the following program with a shared variable
s ∈ {0, . . . , c}, initially 0.

0: s := s + 1 (mod c+1)
1: if s = c: error

This program has a minimum cutoff of c. There is, however, widely accepted
(although, to our knowledge, rarely documented) empirical evidence that, in
“typical” parameterized programs, a small number of threads suffice to exhibit
all relevant behavior that may lead to a bug. We will be able to gauge the
precision of this claim in the experimental Section 6 at the end of the paper. For
now, we return to our main objective: determining cutoffs efficiently in practice.

5 Determining Thread-State Cutoffs

Emerson and Kahlon present several results for statically obtained cutoffs that
are linear in the size of the program template (such as a Kripke model of a
Boolean program) [11]. While valuable in establishing the decidability of certain
fragments of the parameterized model checking problem, such cutoffs are unlikely
to be of practical value in our context, since they are often not tight and in fact
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Fig. 1. (a) An intermediate plateau; (b) a strictly monotone thread state sequence

vastly overapproximate the minimum number of threads needed to reach all
reachable thread states.

We propose in this paper a dynamic method to determine the cutoff. That is,
instead of pre-computing the cutoff for the family, we detect it during the reach-
ability analysis on the systems Mn, for increasing values of n. Our first contribu-
tion will be a condition that, based on certain observations on the reachability
result obtained for Mn, allows us to conclude that we do not need to increase
n further. Such a method has the potential of finding cutoffs that are orders of
magnitude smaller than those computed by the static techniques.

5.1 Thread-State Sequences with Plateaus

Consider the thread-state sequence (Rn)∞n=1 and a value m at which the sequence
plateaus, i.e. Rm = Rm−1. It is tempting to conclude that a cutoff has been found
when this happens. This temptation is fallacious, however, as the sequence of
reached thread states may resume growth for thread counts exceeding m, even
after several steps of plateauing.

Definition 5 Value m is a plateau endpoint of (Rn) if Rm−1 = Rm $ Rm+1.

This situation is depicted in Figure 1 (a). The fallacious argument mentioned
above would only be valid if every thread-state sequence was strictly monotone
up to the minimum cutoff c, as shown in Figure 1 (b). A system with an inter-
mediate plateau is induced by the finite-state program given in Figure 2. It can
be synthesized into a four-line Boolean program with three shared variables.

Let us investigate the somewhat unintuitive phenomenon of intermediate
plateaus more closely. Recall that if a transition changes the shared state of the
program, the thread state of every thread is affected. As a result, a thread that
is not itself active in the transition may reach a new thread state. We say that
such a thread state is reached passively.

This situation is shown in Figure 3 (a). Thread i is active and changes, in
addition to its local state, the shared state from r to s (solid line). As a side
effect, thread state (s, hj) is reached passively (dashed line). Note that the local
state of thread j remains at hj . Figure 3 (b) is a special case of (a) where threads
i and j happen to reside in the same local state hi = hj before i executes.

6



(a)

`

s

(0, 0) (0, 1) (0, 2) (0, 3)

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 1) (3, 2) (3, 3)

(4, 0) (4, 1) (4, 2) (4, 3)

(b)

n Rn

1 {(0, 0), (1, 1)}
2 R1 ∪ {(1, 0), (2, 1)}
3 R2 ∪ {(0, 1), (0, 2), (2, 0), (3, 1)}
4 R3 ∪ {(1, 2), (3, 0)}
5 R4 ∪ {(2, 2)}
6 R5 ∪ {(3, 2), (4, 1), (4, 3)}
7 R6 ∪ {(4, 0)}
8 R7 → plateau endpoint
9 R8 ∪ {(4, 2)} → cutoff

Fig. 2. (a) A finite-state program over variables (s, `) with initial state (0, 0);
(b) the thread-state sequence induced by (a), exhibiting a plateau of length 1.

Returning to the issue of intermediate plateaus: one can show that, if m is
a plateau endpoint, there exists a thread state in Rm+1 \ Rm that is reached
passively. We will see next that in fact a much stronger statement holds.

5.2 A Sufficient Cutoff Condition

Equipped with the considerations from Section 5.1, we can now derive a suffi-
cient cutoff condition for thread-state reachability. Technically, we will establish
instead a necessary condition for m not being a cutoff. The following lemma is
the crucial insight.

Lemma 6 Suppose m is not a cutoff for family (Mn)∞n=1. Let m′ = min{n :
Rn ) Rm}, and let t be a thread state in Rm′ \Rm with minimum distance from
the initial state set. Then t is reached passively.

Proof . Let i be the thread active during the global transition of Mm′ when t is
first reached. We have to show that t is not reached by thread i.

To this end, let t1 → t2 be the thread transition executed by thread i that
causes t to be reached by some thread; we prove t 6= t2. Transition t1 → t2
happens in Mm′ , so t1 ∈ Rm′ . Since t1 has shorter distance to the initial state

(a) ji

(r, hi) (r, hj)

(s, li) (s, hj)

(b)

(r, hj)

(s, li)

ji

(s, hj)

Fig. 3. (a) The general and (b) a special case of reaching thread state (s, hj) passively
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set than t2 and thus than t, we conclude t1 6∈ Rm′ \ Rm, thus t1 ∈ Rm. This in
turn implies t2 ∈ Rm, since the set Rm is closed under thread transitions: any
path in Mm to a state containing t1 can be extended, via t1 → t2, to a path in
Mm to a state containing t2. Since t 6∈ Rm, it follows t2 6= t. �

We can exploit this lemma as follows to derive a necessary is-not-the-cutoff
condition. If m is not the cutoff, then the first new thread state encountered for
n > m is in fact reached passively. The ability to reach a thread state passively
requires a constellation of reachable thread states as shown in Figure 3 (a),
where the new thread state is denoted (s, hj). We now observe that the thread
states (r, hi), (r, hj) and (s, li) mentioned in the figure are all members of the
current reachability set Rm. To see this, note that (r, hi) and (r, hj) are reached
before (s, hj). Since (s, hj) has minimum distance, among all new thread states,
we conclude that (r, hi) and (r, hj) are not new and are thus elements of Rm.
Thread state (s, li) is an element of Rm since it is a direct successor of (r, hi). We
summarize: if m is not the cutoff, there exist three thread states (r, hi), (r, hj)
and (s, li) in Rm such that

• (r, hi)→ (s, li) is a valid thread transition according to P, and (2)
• (s, hj) 6∈ Rm . (3)

We call thread states (r, hi), (r, hj) and (s, li) in Rm with these properties a
candidate triple. If no candidate triple can be found, no thread state can possibly
be reached passively in the future. Together with Lemma 6, we obtain:

Corollary 7 Suppose no candidate triple exists in Rm. Then m is a cutoff for
family (Mn)∞n=1.

We refer to the check of absence of candidates as the cutoff test. Unlike Lemma 6,
the test conditions depend only on the program P and on Mm. The downside is
that the cutoff test is incomplete for cutoff detection. To see this, consider the
finite-state program over the state space {0, 1, 2}×{0, 1} with initial state (0, 0)
and the two transitions

(0, 0)→ (1, 1) and (1, 1)→ (2, 0) .

This program induces a parameterized family (Mn)∞n=1 where the cutoff test fails
for every n: the candidate triple (1, 1), (1, 1), (2, 0) never vanishes. (The triple
happens to be of the special form of Figure 3 (b).) We will fix this problem in
the following section.

5.3 Sound, Complete and Tight Cutoff Detection

The cutoff test ignores that, in order to give rise to the new thread state (s, hj),
the candidate triple must be realizable: there must exist an n and a global state
reachable in Mn that contains both (r, hi) and (r, hj). In the example in Sec-
tion 5.2, no two threads can simultaneously enter a state of the form (−, 1).
It turns out that realizability of candidate triples precisely characterizes cutoffs:
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Theorem 8 Thread count m is a cutoff for family (Mn)∞n=1 exactly if Rm

contains no realizable candidate triples.

Proof . (i) If m is a cutoff and the candidate thread states (r, hi) and (r, hj)
are, for some n ≥ m, simultaneously reachable, then thread state (s, lj) becomes
reachable when Mn is analyzed. Since (s, lj) 6∈ Rm by equation (3), (s, lj) is new,
contradicting the stipulation that m is a cutoff.

(ii) If m is not a cutoff, then, by Lemma 6, there exists a passive thread
transition that reaches a thread state unreachable in Mm. As shown in the proof
of that lemma, the three thread states participating in the reaching of the new
thread state all belong to Rm and thus form a candidate triple. For the passive
transition to actually happen (the lemma proves that it does), the thread states
(r, hi) and (r, hj) must be simultaneously reachable. So there exists at least one
realizable candidate triple. �

Simultaneous reachability of (r, hi) and (r, hj) in the family (Mn)∞n=1 cannot
be checked by looking only at Rm. We will use backward coverability analysis
for this step. The candidates represent a minimal set of thread states whose
unrealizability guarantees the cutoff property. This minimality gives rise to the
hope that candidates can be reachability-checked more efficiently than arbitrary
thread states. We measure the cost of this check in detail in Section 6, using the
Mist tool set [13] as the coverability engine.

Putting the cutoff test and this analysis together, we obtain Algorithm 1 for
cutoff detection. The algorithm maintains the invariant that, at entry to the loop
in Line 2, the reachability set Rn is guaranteed to have been computed, for the
current value of n. In Line 2, the algorithm starts two computational threads
in parallel. The first, A, computes the candidate triples for Rn. If any of them
is realizable, which is checked using backward coverability analysis, we know by
Theorem 8 that n is not a cutoff. The thread aborts, and control proceeds to
Line 3. If no triple is realizable (or there are no candidates), we return that n is
the cutoff; this terminates the algorithm.

The second thread, B, computes the next reachability set Rn+1, using a
finite-state forward search. This is done in parallel with the candidate check
since, as soon as we know that Rn+1 ) Rn, we can abort the candidate check in
thread A: we know that n is not the cutoff. If Rn+1 = Rn, thread B terminates
normally.

In Line 3, the main thread synchronizes the computation by waiting for the
termination (or abortion) of A and B. This is crucial since the set Rn+1 needs
to be available in the next round. We then increase n and re-enter the loop. Note
that if the backward analysis in round n reveals that some triple T is realizable,
we do not know for which value n′ > n this will happen. As a result, intermediate
plateaus of the sequence (Rn)∞n=1 cannot be short-circuited.

Correctness. Termination of the algorithm follows immediately from Theorem 8:
Suppose n is the cutoff. Then any candidate triples in Rn are not realizable, so
thread A returns “cutoff n”. Note that Rn+1 = Rn, so thread B does not
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Algorithm 1 Cutoff detection
Input: system family (Mn)∞n=1

1: n := 1; compute R1 // finite-state

2: A:

compute set Cn of cand. triples
if ∃ T ∈ Cn: T realizable

abort A
return “cutoff n”

˛̨̨̨
˛̨̨
˛̨̨̨
˛̨̨ B:

compute Rn+1 // finite-state
if Rn+1 ) Rn

abort A

3: sync(A,B)
4: n := n + 1; goto 2

abort A. Theorem 8 similarly guarantees partial correctness. The combination
of termination and partial correctness guarantees that Algorithm 1 returns in
fact the minimum cutoff c0: it does not terminate for n < c0, by the partial
correctness. It never reaches n > c0, since it terminates for n = c0.

Implementation. We illustrate how to compute candidate triples (first step of
thread A in Algorithm 1). First note that conditions (2) and (3) on the candi-
dates (r, hi), (r, hj) and (s, li) imply all of the following:

– r 6= s (since (r, hj) ∈ Rm, but (s, hj) 6∈ Rm)
– li 6= hj (since (s, li) ∈ Rm, but (s, hj) 6∈ Rm)
– (r, hi), (r, hj) are not simultaneously reachable in Mm

(since otherwise (s, hj) ∈ Rm, passively)

To compute the candidates, we iterate over pairs of thread states (r, hi), (r, hj)
in Rm that are not simultaneously reachable in Mm (this information is taken
from the reachable global states set of Mm), and select successor thread state
(s, li) by consulting the program text under the additional constraints that r 6= s
and li 6= hj . The remaining condition (s, hj) 6∈ Rm can be tested efficiently, say
by storing Rm in a sorted container or a hash table.

6 Experimental Evaluation

We implemented two variants of Algorithm 1. The first is our Petri net coverabil-
ity checker, eCUT, which we tested on 23 Petri nets examples from diverse pro-
gramming domains. The second is our symbolic thread-state reachability checker
for Boolean programs, sCUT, which we tested on 852 Boolean programs, gener-
ated from Linux device driver code. The Petri nets induce relatively small state
spaces, but exhibit challenging concurrent behavior. In contrast, the Boolean
programs induce huge state spaces, but exhibit rather simple concurrency. All
experiments were performed on a 16GB/3GHz Intel Xeon machine running the
64-bit variant of Linux 2.6 with a 45min timeout.
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Benchmark S L T
P

fw
P

bw eCUT c |Rc| |Cc| Result

Readwrite 24 14 33 0.01 0.2 0.2 9 198 29 safe

Mesh2x2 35 33 71 0.6 0.01 0.8 9 844 40 safe

Multip. 20 19 45 0.1 0.8 0.9 8 257 10 safe

Pncsa 37 32 73 1.4 0.1 1.5 7 860 122 unsafe

Fms 26 23 49 0.6 1.2 1.6 12 361 5 safe

Bh250 507 254 1,009 0.6 6.0 6.7 3 1,768 31,875 safe

Mesh3x2 55 53 115 277.4 1.2 278.6 13 2,228 67 safe

Kanban 29 17 49 – – – – – – mem-out

Table 1. Results of eCUT on Petri net benchmarks. S, L, T : # shared states, local
states, thread transitions;

P
fw ,

P
bw , eCUT: time for forward searches, backward

searches, total eCUT runtime in seconds; c: cutoff (if unsafe: #threads until error);
|Rc|/|Cc|: # reachable thread states/# candidate triples at bound c.

6.1 Petri net coverability

Our coverability checker eCUT forward-computes an explicit-state representa-
tion of the sets Rn, and uses the backward search engine of the Mist toolset
to check candidates for reachability. We evaluate eCUT using 5 bounded and
18 unbounded Petri nets, ranging from concurrent production systems and com-
munication protocols to broadcast protocols. Each net is transformed into a
replicated finite-state system. Transitions are split into sequences of thread tran-
sitions using fresh intermediate shared states. Given p places and t transitions,
this required p + 1 local states, 1.2t shared states and 2.2t thread transitions
on average. The original coverability property translates into the reachability of
a suitable thread state. All examples and correctness properties are from [13]
and [4].

Within 5min or much less, eCUT succeeds on 22 examples (21 safe, 1 un-
safe), and memory-outs on 1. Table 1 shows details of the analysis; we omit
instances with runtimes below 0.2s and only show the most challenging from [4],
namely Bh250. The Kanban example has a cutoff beyond 20; our implementation
reaches the memory limit after 10min and more than 6 · 107 explored states in
round n = 15. In these examples, neither the finite-state forward nor the back-
ward search dominate the overall runtime, advocating the use of a combination
of both.

Comparison with other algorithms. We compare our implementation with four
algorithms implemented in the Petri net coverability tool set Mist [13]: a pure
backward search (BW) (the same we use to check candidates), and three abstrac-
tion refinement schemes. The latter combine infinite-state forward and backward
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search, using abstractions that minimize the number of predicates used to encode
places (TSI, EEC) or the dimensionality of the Petri net (IC4PN).

Figure 4 shows the number of instances the different algorithms can solve
within 45min/16GB: eCUT performs best, solving 22 instances, followed by
EEC (20), BW (17), TSI (15) and IC4PN (12). Besides solving most instances,
eCUT does so fastest in most cases (one exception is Kanban, which only BW
and TSI can handle), proving it generally more robust than the other tools.

1000
ECUT
EEC
BW
TSI

time (s)

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

TSI
IC4PN

#solved

Fig. 4. Comparison of eCUT and the algorithms EEC, BW, TSI and IC4PN for the
23 Petri net benchmarks. Entry (n, t), for a number n and a time t, indicates that it
took time t to solve the n easiest instances for the algorithm indicated by the curve.

6.2 Boolean Program Reachability

Our reachability checker sCUT computes the sets Rn using the symbolic model
checker Boom [3]. Since there is no symbolic backward search engine able to han-
dle Boolean programs of the size we consider, we simplify Algorithm 1: thread A
merely checks whether there are any candidates; if they don’t (seem to) vanish
for any n, we consider the run a timeout.

We evaluate our implementation of sCUT using 852 Boolean programs. The
programs stem from Linux device driver code and were embedded into a concur-
rent test environment using the DDVerify tool [19]. The programs feature on
average about 1000 program locations and 9 shared and 18 local variables. We
are not aware of any other tool that can perform even finite-state reachability
of concurrent Boolean programs of this size. We therefore only present results
obtained with our tool.

Table 2 shows analysis results grouped by their cutoff. sCUT succeeds in
798 of the cases (94%); the remaining 54 examples time out (6%). In all safe
examples, the cutoff test alone is sufficient: all candidates disappear eventually.
We see that for a vast majority of the examples, the cutoffs are indeed very small
and easily within the performance limits of Boom.
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#P Sh Lcs Loc sCUT c Safe Unsafe t/o

773 17 8 1170 0.1 1 407 366 0

17 21 22 1139 0.8 2 3 14 0

8 13 26 1131 72.3 3 8 0 0

54 18 31 1267 874.0 ? – – 54

Table 2. Results of sCUT for the Boolean program benchmarks, grouped by cutoffs.
#P: # of programs in group; Sh, Lcs, Loc: avg. # shared variables, local variables,
program locations; sCUT: avg. sCUT runtime; c: cutoff/#threads until error (? =
unknown); t/o: # timeouts.

7 Related Work

There is a vast amount of literature on tackling reachability analysis for concur-
rent software, with or without recursion. We focus on work related to the use of
cutoffs, and work related to Petri nets. We believe our work to be the first to
combine finite-state forward search, cutoff detection and infinite-state backward
coverability analysis in a symbiotic manner.

Cutoffs: Much of the work on verifying concurrent programs using cutoffs re-
stricts communication [6, 12]. For example, small constant-size cutoffs are known
for ring networks communicating only by token passing [12], and for multi-
threaded programs communicating only using locks [17]. These results fail to
hold, however, with general shared-variable concurrency, as we consider it. On
the other hand, [11] permits communication via guards over shared local vari-
ables, but gives rise to cutoffs that are linear in the number of states of the
program P being replicated. Such cutoffs are unacceptable for us, as P may have
millions of states.

Bingham presents a technique for coverability that seems closest to our
work [4, 5]. Standard finite-state BDD techniques are used to compute, for an
instance of size n and in a backward fashion, the set of states that have a path to
some set U of “bad” states. If the initial state set is intersected, we have encoun-
tered an error. Otherwise, n is increased until some convergence criterion is met.
Unfortunately, the method is applied to only one (parametric) Petri net. Also,
Bingham does not disclose the experimental values of n at which his algorithm
terminates, which might give a clue as to the general scalability of the approach
— we have found the cutoff of Bingham’s Petri net Bh250 to be very small (see
Table 1).

Petri nets: Many data structures and algorithms have been proposed for their
efficient analysis and coverability checking [15, 10]. Most of these algorithms
suffer, however, from an intractable number of vector elements after the trans-
lation from (Boolean) programs: one per local program state. Recent work by
Raskin et al. has attempted to address the dimensionality problem using an
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abstraction refinement loop [14], where abstract models of the Petri net under
investigation are of lower dimension than the original.

Tools: There are several tools available for the analysis of Petri nets [16]. The
Mist tool set [13] implements the Expand, Enlarge and Check algorithms due to
Geeraerts et al. [15]. Furthermore, Petri net/VASS analysis has been applied to
Java programs [9] and Boolean programs [2]. These tools compile their input into
an explicit-state representation of the underlying program, which may result in
a net with a high number of places. Our experiments indicate that, for the case
of Boolean program verification, a symbolic representation is essential.

8 Conclusion

We set out to solve the thread-state reachability problem for replicated finite-
state programs efficiently. Our proposal is to exploit the (guaranteed) existence of
thread-state cutoffs, by analyzing the programs for increasing numbers of thread
counts. We have presented a sufficient (but not necessary) condition under which
the current thread count is a cutoff, so that no larger thread counts need to
be considered. We have shown how to make the algorithm complete, using a
backward coverability analysis to rule out the reachability of certain candidate
thread states that were identified to potentially lead to new thread states. The
algorithm returns the set of reachable thread state and the minimum cutoff of
the given parameterized family.

We have empirically demonstrated, on a large selection of benchmarks, that
cutoffs tend to be small enough in practice to allow our incremental technique to
beat various methods based solely on coverability algorithms. Our technique is
useful both for general Petri net coverability analysis, and specifically for thread-
state reachability analysis in non-recursive Boolean programs run by arbitrarily
many threads.

Our method can be seen as an opportunity to shift the burden in solving
the parameterized verification problem from heavy-weight unbounded tools to
lighter-weight bounded concurrency model checkers. This is of utmost value, since
efficient bounded tools have recently become available, such as Boom, that can
solve reachability queries for non-trivial thread counts.

Future work includes the application of our method to extended types of
Petri nets, such as transfer nets, which allow richer inter-thread communication,
such as broadcasts (an example is S. German’s protocol used in [5]).
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