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Consider the following standard induction principle over the natural numbers
(including 0):

P (0) ∧ ∀n (P (n)⇒ P (n + 1)) ⇒ ∀nP (n) . (1)

An alternative is the 2-induction principle:

P (0) ∧ P (1) ∧ ∀n ((P (n) ∧ P (n + 1))⇒ P (n + 2)) ⇒ ∀nP (n) . (2)

We can generalize these principles to k-induction, for k ≥ 1, as follows. Let

Ak :=

(
k−1∧
i=0

P (i)

)
∧ ∀n

((
k−1∧
i=0

P (n + i)

)
⇒ P (n + k)

)
. (3)

The k-induction principle now states:

Ik :: Ak ⇒ ∀nP (n) . (4)

Note that I1 simplifies to the standard induction principle (1), which is hence
also called 1-induction. Similarly, I2 simplifies to 2-induction (2).

In the rest of this document, we discuss the following questions:

1. Is k-induction a valid proof method?

2. Can it provide an advantage over standard induction?

Correctness of k-induction

We justify the k-induction principle using strong induction on n. The strong
induction principle states that the following is valid:

∀n ((∀m < nP (m))⇒ P (n)) ⇒ ∀nP (n) . (5)

To prove k-induction correct, i.e. the validity of Ak ⇒ ∀nP (n), for k ≥ 1,
assume Ak holds. We prove ∀nP (n) using (5) by proving its left-hand side. We
summarize all facts we have: given n,

∀m < nP (m) from left-hand side of (5) (6)∧k−1
i=0 P (i) from Ak (7)

∀n′((
∧k−1

i=0 P (n′ + i))⇒ P (n′ + k)) from Ak (n renamed to n′) (8)
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The proof obligation is P (n), the consequent of the implication in the left-hand
side of (5). We distinguish two cases:

1. k − 1 ≥ n: in that case P (n) follows from (7).

2. k − 1 < n, i.e. k ≤ n: in that case we prove P (n) using (8). Let n′ =

n−k ≥ 0, then P (n′+k) = P (n); it remains to prove that
∧k−1

i=0 P (n′+ i),
which reduces to proving P (n− k) ∧ P (n− k + 1) ∧ . . . ∧ P (n− 1). Since
n− 1 ≥ k − 1, this follows from (7). �

Is k-induction “better” than standard induction?

Suppose Ak holds, for some fixed k. By (4), therefore, P (n) is valid for any n.
This in turn means that Ak in fact holds for every k , as is immediately obvious
from the definition (3). The proof obligations Ak for k-induction, for various k,
are therefore all logically equivalent. How, then, can “true” k-induction (k > 1)
be more useful than standard (1-)induction?

The answer is purely pragmatic: Ak may in practice be easier to prove
than A1: the second conjunct of Ak, the implication, has an antecedent that
gets stronger as k increases, so we have more to work with. In contrast, the
consequent, P (n + k), is always a single instance of P that needs to be proved.
The fact that the first conjunct of Ak, the base cases, also gets stronger as k
increases and thus requires “more proof”, is of little consequence: the arguments
to predicate P are constants.

Let us look at an example. Consider the Fibonacci sequence, defined by

fib(n) =

{
n if n ≤ 1
fib(n− 1) + fib(n− 2) otherwise.

Suppose we want to prove fib(n) ≥ n for n ≥ 5. Induction seems to lend itself!
In classical (1-)induction, one would show that fib(5) = 5 ≥ 5, and would then
try to prove that fib(n) ≥ n implies fib(n+1) ≥ n+1. The term fib(n+1) reduces
to fib(n)+fib(n−1), at which point we are stuck: the induction hypothesis does
not tell us anything about fib(n− 1).

The solution is 2-induction: we first show that fib(5) = 5 ≥ 5 and fib(6) =
8 ≥ 6. This is the first conjunct of Equation (3) for k = 2, the base cases. The
second conjunct requires us to prove that fib(n) ≥ n∧fib(n+ 1) ≥ n+ 1 implies
fib(n+2) ≥ n+2. This follows immediately from fib(n+2) = fib(n+1)+ fib(n)
(and the prerequisite n ≥ 5).
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