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Consider the following standard induction principle over the natural numbers
(including 0):

P(0) AVn(P(n)= P(n+1)) = VnP(n). (1)
An alternative is the 2-induction principle:
P(0) A P(1) AVn((P(n) A P(n+1))=P(n+2)) = VnP(n). (2

We can generalize these principles to k-induction, for k > 1, as follows. Let

k—1 k-1
A, = (/\ P(i)) /\Vn((/\ P(n+i)> :>P(n+k)> . (3)
i=0 i=0
The k-induction principle now states:
I = Ay = VnP(n). (4)

Note that I; simplifies to the standard induction principle (1), which is hence
also called 1-induction. Similarly, I» simplifies to 2-induction (2).
In the rest of this document, we discuss the following questions:

1. Is k-induction a valid proof method?

2. Can it provide an advantage over standard induction?

Correctness of k-induction
We justify the k-induction principle using strong induction on n. The strong
induction principle states that the following is valid:

Yn ((Ym <nP(m)) = P(n)) = V¥YnP(n). (5)

To prove k-induction correct, i.e. the validity of Ay = VnP(n), for £ > 1,
assume Ay holds. We prove VnP(n) using (5) by proving its left-hand side. We
summarize all facts we have: given n,

Ym < nP(m) from left-hand side of (5) (6)
Nl PGy from Ay (7)
Vn’((/\fz_o1 P(n' +1)) = P(n' +k)) from Ag (n renamed to n')  (8)



The proof obligation is P(n), the consequent of the implication in the left-hand
side of (5). We distinguish two cases:

1. k=1 > n: in that case P(n) follows from (7).

2. k—1< n,ie k < n: in that case we prove P(n) using (8). Let n’ =
n—k > 0, then P(n'+k) = P(n); it remains to prove that /\f;ol P(n' +1),
which reduces to proving P(n —k) AP(n—k+1)A... AP(n—1). Since
n —1>k —1, this follows from (7). O

Is k-induction “better” than standard induction?

Suppose Ay holds, for some fixed k. By (4), therefore, P(n) is valid for any n.
This in turn means that A in fact holds for every k , as is immediately obvious
from the definition (3). The proof obligations Ay, for k-induction, for various k,
are therefore all logically equivalent. How, then, can “true” k-induction (k > 1)
be more useful than standard (1-)induction?

The answer is purely pragmatic: A may in practice be easier to prove
than Ai: the second conjunct of Ay, the implication, has an antecedent that
gets stronger as k increases, so we have more to work with. In contrast, the
consequent, P(n + k), is always a single instance of P that needs to be proved.
The fact that the first conjunct of Ay, the base cases, also gets stronger as k
increases and thus requires “more proof”, is of little consequence: the arguments
to predicate P are constants.

Let us look at an example. Consider the Fibonacci sequence, defined by

n ifn<1
fib(n) = { fib(n — 1) + fib(n — 2) otherwise.

Suppose we want to prove fib(n) > n for n > 5. Induction seems to lend itself!
In classical (1-)induction, one would show that fib(5) = 5 > 5, and would then
try to prove that fib(n) > n implies fib(n+1) > n+1. The term fib(n+1) reduces
to fib(n)+ fib(n—1), at which point we are stuck: the induction hypothesis does
not tell us anything about fib(n — 1).

The solution is 2-induction: we first show that fib(5) =5 > 5 and fib(6) =
8 > 6. This is the first conjunct of Equation (3) for k = 2, the base cases. The
second conjunct requires us to prove that fib(n) > nA fib(n+1) > n+ 1 implies
fib(n+2) > n+2. This follows immediately from fib(n+2) = fib(n+1) + fib(n)
(and the prerequisite n > 5).



