
Behavioral Non-portability in Scientific Numeric
Computing

Yijia Gu1(B), Thomas Wahl1, Mahsa Bayati2(B), and Miriam Leeser2

1 College of Computer and Information Science,
Northeastern University, Boston, USA

{guyijia,wahl}@ccs.neu.edu
2 Department of Electrical and Computer Engineering,

Northeastern University, Boston, USA
{mbayati,mel}@coe.neu.edu

Abstract. The precise semantics of floating-point arithmetic programs
depends on the execution platform, including the compiler and the tar-
get hardware. Platform dependencies are particularly pronounced for
arithmetic-intensive parallel numeric programs and infringe on the highly
desirable goal of software portability (which is nonetheless promised by
heterogeneous computing frameworks like OpenCL): the same program
run on the same inputs on different platforms often produces different
results. Serious doubts on the portability of numeric applications arise
when these differences are behavioral, i.e. when they lead to changes in
the control flow of a program. In this paper we present an algorithm
that takes a numeric procedure and determines an input that may lead
to different branching decisions depending on how the arithmetic in the
procedure is compiled. We illustrate the algorithm on a diverse set of
examples, characteristic of scientific numeric computing, where control
flow divergence actually occurs across different execution platforms.

1 Introduction

Many high performance computing applications make use of floating-point arith-
metic. It is well known that floating-point expressions produce different results
on different machines, due to lack of associativity, etc. Most practitioners assume
that this affects only the last few bits of a computation, and can safely be ignored.
In this paper, we present several examples where code run on different platforms
on the same inputs can produce not just different results but different control
flow. We use OpenCL as a programming language [9], which promises cross-
platform portability. Yet, as our experiments show, this promise does in fact not
guarantee portability of control flow.

All the computer hardware that we target complies with the IEEE 754–
2008 standard [5]. The code generated to run on compliant hardware has several
degrees of freedom. A compiler may reorder expressions, which affects the numer-
ical values of the results. An example of such reordering is the use of reductions

Work supported by the US National Science Foundation grant CCF-1218075.

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 558–569, 2015.
DOI: 10.1007/978-3-662-48096-0 43

Behavioral Non-portability in Scientific Numeric Computing 559

to compute long sums by parallel threads. Further, the IEEE standard permits
the use of a fused multiply-add (FMA) instruction (which contracts a multi-
plication followed by an addition into a singly-rounded operation) but gives no
guidance on how a compiler should employ such an instruction (if it exists at
all). In most applications, there are several different, IEEE-compliant ways for
the compiler to implement an expression using FMA.

Using examples characteristic of floating-point computations in parallel com-
puting, we demonstrate in this paper that the above vagaries of IEEE floating
point can impact control flow in a platform-dependent way. We present an algo-
rithm that, given a numeric procedure, determines an input that may lead to
different branching decisions due to (fully IEEE compliant) expression reorder-
ing or the use/non-use of FMA instructions. Our two-stage algorithm first uses
symbolic execution to determine inputs that make a given branching decision
unreliable. It then examines such inputs for different ways of evaluating expres-
sions.

Motivating Example: Ray Tracing. Consider the following C program, taken from
http://www.cc.gatech.edu/∼phlosoft/photon/. We have elided the code follow-
ing the branching decision D > 0, since here we are merely interested in whether
that code is executed at all, depending on the execution platform.

float dot3(float *a, float *b) {

return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; }

int raySphere(float *r, float *s, float radiusSq) {

float A = dot3(r,r);

float B = -2.0 * dot3(s,r);

float C = dot3(s,s) - radiusSq;

float D = B*B - 4*A*C;

if (D > 0)

...; }

This code employs well-known high school arithmetic. When “arithmetic”
means floating point, however, the results are no longer so obvious: the compu-
tation of vector dot products in dot3, common in high performance libraries,
depends on the compiler’s choice to evaluate the sum left to right or vice versa,
and whether to use FMA instructions and in which of several possible ways.
For certain inputs, these choices translate into platform-dependent control flows
across the if statement involving D. Such divergence is likely not accounted for
and undesirable. In Sect. 2 we describe an algorithm to find such inputs. Our algo-
rithm determines that, given the following inputs (trailing 0’s omitted) to proce-
dure raySphere, the NVIDIA Quadro 600 GPU computes a value DN ≈ −3.56,
while an Intel 64-bit CPU computes DI ≈ 4.55; we observe DN � 0 � DI :

r = (−33.999900817871094, −54.0, −53.0); radiusSq = 0.000000029802322;
s = (−33.370471954345703, −53.0, −52.01855468750).

http://www.cc.gatech.edu/~phlosoft/photon/

560 Y. Gu et al.

Related Work. The scientific computing community has long been aware that
floating point vagaries can affect a computation’s output. Shewchuk shows how a
near-zero determinant may cause flat-out incorrect results due to floating-point
rounding errors [10]. Several works have demonstrated that rounding errors can
cause the control flow of a floating-point program to differ from that of the
corresponding idealistic real-arithmetic program [2,6]. Our technique is distinct
in both motivational and technical aspects: (i) we compare the control flows
on different floating-point platforms; (ii) instead of a purely dynamic (testing)
approach, we use SMT technology to locate potentially problematic inputs.

2 Finding Inputs Witnessing Behavioral Non-portability

Motivated by the observations made in Sect. 1, the goal now is an algorithm
that determines inputs to the given program that are likely to expose behavioral
non-portability when the program is run on certain diverse execution platforms.

2.1 Problem Formulation

Behavioral non-portability is frequently caused by expressions whose floating-
point semantics is dependent on the evaluation order, and on the use of hardware
features such as fused multiply-add. We call such expressions volatile in this
paper. These are expressions <ve> defined by the following grammar:

<ve> :: <ve⊕ > | <ve⊗ >| <vedot> | <vefma >
<ve⊕ > :: <e> ⊕ . . . ⊕ <e>
<ve⊗ > :: <e> ⊗ . . . ⊗ <e>
<vedot> :: <e> ⊗ <e> ⊕ . . . ⊕ <e> ⊗ <e>
<vefma > :: fma(<e>,<e>,<e>)
<e> :: c | var | <ve> | <e> < op > <e>
<op> :: ⊕ | � | ⊗ | �
where c is a floating-point constant and var is a floating-point program variable.
The semantics of fma(x, y, z) is the term (x · y) ⊕ z, which represents the real
value x·y+z followed by a single rounding step. Volatile expressions are unparen-
thesized sums, products, dot products, or FMA expressions over floating-point
constants, variables, and other expressions.

Branch Point. We are interested in the effect of behavioral non-portability on
the program control flow and, therefore, on conditional statements such as if
statements and loops. We call such statements branch points. Each branch point
refers to a conditional q , which is a Boolean-valued formula over atomic floating-
point subformulas ψ of the (normalized) form

ψ::X � c, � ∈ {≤,≥, >,<,==} (1)

where c is a floating-point constant and X a floating-point valued expression.

Behavioral Non-portability in Scientific Numeric Computing 561

We can now define the concept we are investigating in this paper. The value of
the conditional q depends not only on the program input I, but also on platform
parameters such as the availability of FMA and decisions made by the compiler
about evaluating volatile expressions. We refer to an instantiation of such plat-
form parameters as an expression evaluation model M . For example, a particular
expression evaluation model might state that there is no FMA support, and that
sums and products are evaluated left-to-right. An expression evaluation model
therefore disambiguates among many of the common and IEEE-754 compliant
ways expressions can be rendered by the compiler.

Let q(I,M) denote the value of expression q for program inputs I (that cause
q to be reached) and expression evaluation model M , and consider a program P .

Definition 1 (Control-Flow Instability). Let q denote a Boolean-valued
expression used as a conditional in program P . Input I is said to cause control-
flow instability if there exist two evaluation models M1 and M2 such that

q(I,M1) �= q(I,M2). (2)

Intuitively, input I is a candidate for causing program P to exhibit differ-
ent control flows on different platforms, caused by different Boolean values of
the conditional q , for the same input I, computed on those platforms. Control
flow instabilities are likely undesirable. In the rest of this paper we describe an
algorithm that, given program P and a branch point with conditional q , deter-
mines whether there exists an input that renders the control flow unstable. The
algorithm efficiently searches through all possible inputs and evaluation models
with the goal of finding I, M1, M2 such that q(I,M1) and q(I,M2) differ.

2.2 Detecting Behavioral Non-portability: Overview

Our algorithm for finding behavioral non-portability proceeds in two phases.
Given is a program P with volatile expressions and a branch point, identified
by the user to be of interest, with conditional q over atomic subformulas of the
form ψi::Xi � ci (1). The first phase determines a candidate input, i.e. an input
I0 such that minor variations of I0 cause q to flip. Numerically, this requires
that there exists ψk in q such that Xk is close to ck for input I0. This phase is
implemented using symbolic execution: we build a formula for the path leading
from the program entry point to the conditional q . We change the comparison
operator in q to an equality = (or an approximate equality, see below) and solve
the obtained path formula using a constraint solver.

In the second phase, the algorithm computes the minimum and maximum
value of Xk for input I0 and under all possible expression evaluation models.
For two models that give rise to the minimum and maximum value, the chances
are that the value of Xk is on either side of ck, causing the conditional q to flip.
The algorithmic challenge is to search among all these models efficiently.

Figure 1 shows our overall approach. We explain the details of each step in
the following subsections.

562 Y. Gu et al.

Fig. 1. Finding behavioral non-portability: overall approach

2.3 Phase I: Finding Candidate Input

Recall the form ψi::Xi � ci (1) of the n atomic subformulas of q . Let b1, . . . , bn
be fresh Boolean variables and q be the Boolean skeleton of q , i.e. the formula
obtained from q by replacing each ψi by bi. For a Boolean assignment A :
{b1, . . . , bn} → {0, 1}, let A|bi→v denote A except that bi is assigned value v.

Finding Critical Subexpression. A prerequisite for finding a candidate input
is to identify a critical subexpression ψk in the conditional q : an index k and a
Boolean assignment A0 such that, under that assignment, flipping the value of
ψk flips the value of q . We formalize this condition via the skeleton:

q(A0) �= q(A0|bk→¬bk(A0)) (3)

Algorithm 2.1 finds such an index k and a satisfying assignment A0. In line 2, we
use a SAT solver to check whether q(. . . , bk, . . .)� q(. . . ,¬bk, . . .) is satisfiable; �
denotes exclusive-or.

Algorithm 2.1. Finding Critical Subexpression
Input: Boolean formula q(b1, . . . , bn)

1 for k = 1 to n do
2 if q(. . . , bk, . . .) � q(. . . ,¬bk, . . .) satisfiable then
3 return index k and sat. assignment

Finding Candidate Input. In this step we generate, from the original C code,
constraints whose solutions serve as possible candidate inputs I0. We split the
generated constraints into the following parts:

1. Path Constraint φpath : this part symbolically encodes the execution path
from the program entry point to the conditional q , following the appropriate
branches at all intermediate program branch points.

2. Boolean Assignment Constraint φassgn : input I0 must assign to all subex-
pressions ψi, for i �= k, the same Boolean value as A0 (determined in (3)) to
bi, and this should hold independently of the expression evaluation model M :

∀M ∀i : i �= k ⇒ ψi(I0,M) = bi(A0) (4)

Behavioral Non-portability in Scientific Numeric Computing 563

Solving this constraint is very costly, not least due to the limited support
for floating-point arithmetic in automated solvers. We therefore interpret (4)
and other arithmetic constraints in this section over the reals. As a result,
φassgn simplifies to

∀i : i �= k ⇒ ψi(I0) = bi(A0) (5)

since real arithmetic results do not depend on the evaluation model. A prob-
lem is of course that we lose precision: real results may not hold in floating-
point arithmetic. However, the goal in Phase I is merely to determine an
input I0 that brings the conditional q close to the tipping point. The numer-
ical differences caused by the interpretation of the code over R instead of
over floating-point arithmetic will not affect this goal, as long as they are
small. The solution will be made precise in Phase II of the algorithm.

3. Approximation Constraint φappr : the critical subexpression ψk : Xk � ck
must be unreliable, i.e.:

Xk(I0) = ck ± ε, (6)

where ε is the smallest non-negative number that permits a solution to (6).

The total constraint for candidate inputs is then φpath ∧ φassgn ∧ φappr .
As an example, given the raySphere program from Sect. 1 with the volatile
expression D = B ⊗ B � 4 ⊗ A ⊗ C and the conditional D > 0, we generate the
real-arithmetic constraint B · B − 4 · A · C = 0 and pass it to a suitable decision
procedure for candidate input generation.

2.4 Phase II (a): Efficiently Searching Evaluation Models

Finding Extreme Evaluation Models. Given the candidate input I0 that
results in the conditional q to be unreliable, we now determine the minimum
and maximum value of X, under any possible expression evaluation model that
may reorder expressions and use FMA instructions. We first introduce algorithms
getMinT and getMaxT (T ∈ {⊕,⊗, dot, fma}) that compute these extreme values
in polynomial time when X is a basic volatile expression. Later we extend these
algorithms to handle general expressions.

Minimizing Volatile Sum: Given volatile expression ve⊕ = v1 ⊕ . . . ⊕ vn, where
the vi (1 ≤ i ≤ n) are floating-point constants, the goal is to efficiently determine
minM ve⊕(v ,M), i.e. ve⊕ minimized over all evaluation models M . To this end,
consider the following array, for 1 ≤ i ≤ j ≤ n:

N [i, j] =

{
vi if i = j
min
i≤k<j

{N [i, k] ⊕ N [k + 1, j]} if i < j (7)

We now claim that N [1, n] is the quantity we are looking for:

Theorem 1. N [1, n] = minM ve⊕(v,M).

564 Y. Gu et al.

In order to prove this theorem, we strengthen it as follows:

Lemma 2. N [i, j] equals the minimum, over all possible orderings, of the
floating-point sum of the numbers in the range vi, . . . , vj.

Proof. We induct over the quantity j − i. If j − i = 0, then N [i, j] = vi = vj ,
and the claim follows since there is only one element.

For the inductive step, assume that for all i′, j′ such that j′ − i′ < j − i,
N [i′, j′] is the minimum value of the sum of the elements v′

i, . . . , v
′
j (IH). Let k

be one of the values that, in the definition of N [i, j], gives rise to the minimum,
i.e. N [i, j] = N [i, k] ⊕ N [k + 1, j]. Let further No[i, j] be the sum for any fixed
order o. We show that N [i, j] ≤ No[i, j].

The top-level ⊕ in the fixed-order sum No[i, j] splits the sum from i to j into
two sub-ranges i to l and l + 1 to j, such that i ≤ l and l + 1 ≤ j. Thus:

N [i, j] = N [i, k] ⊕ N [k + 1, j] { def. k and def. N [i, j] }
≤ N [i, l] ⊕ N [l + 1, j] { def. k: min sum in N [i, j] }
= rd(N [i, l] + N [l + 1, j]) { def. ⊕ (+ denotes addition in R }
≤ rd(No[i, l] + No[l + 1, j]) { IH: l − i < j − i, j − (l + 1) < j − i }
= No[i, l] ⊕ No[l + 1, j] { def. ⊕ }
= No[i, j] { def. l }.

The second ≤ step exploits the monotonicity of the rounding function rd . �

Value maxM ve⊕(v ,M) can be computed analogously. Both algorithms,
denoted getMin⊕ and getMax⊕ in the sequel, can be implemented in O(n3) time,
by filling N [i, j] “bottom-up”. We use similar procedures getMin⊗ and getMax⊗
to minimize and maximize volatile products. In the following we describe how
our method applies to the computation of extreme values for FMA expressions
and volatile dot products, resulting in the four procedures getMin{fma|dot} and
getMax{fma|dot}. The correctness argument and the algorithmic complexity are
the same as in the summation case and omitted.

Minimizing Volatile FMA: For an expression vefma = fma(v1, v2, v3), there are
only two possible evaluation models, namely using or not using FMA. These two
models can simply be compared against each other.

Minimizing Volatile Dot Product: Consider an expression vedot = v11 ⊗ v21 ⊕
. . . ⊕ v1n⊗v2n under an evaluation model that supports FMA. Here we need not
only consider different ways of parenthesizing the expression, but also different
ways of applying FMA. For example, for n = 3 the above expression can be
evaluated in many different ways, among others the following:

v11 ⊗ v21 ⊕ (v12 ⊗ v22 ⊕ v13 ⊗ v23) fma(v11, v21, v12 ⊗ v22 ⊕ v13 ⊗ v23)
fma(v11, v21, fma(v13, v23, v12 ⊗ v22)) fma(v13, v23, fma(v12, v22, v11 ⊗ v21))

Behavioral Non-portability in Scientific Numeric Computing 565

Our method can be used to compute the minimum over all different evaluation
models. The following equations determine minM vedot(v ,M) to be N [1, n]:

N [i, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v1i ⊗ v2i if i = j
min {fma(v1i, v2i, N [i + 1, j]),

min
i<k<j−1

{N [i, k] ⊕ N [k + 1, j]},

fma(v1j , v2j , N [i, j − 1])} if i < j

Minimizing General Volatile Expression: For an arbitrary floating-point expres-
sion e, we approximate the maximum and minimum values using interval analy-
sis [4]. Interval bounds on floating-point expressions soundly propagate to sums,
products, etc. as shown in Eq. (8) [7], where [e] denotes an interval bound on
expression e with lower and upper bounds ↓e and ↑e:

[e1 ⊕ e2] = [↓e1 ⊕ ↓e2, ↑e1 ⊕ ↑e2]
[e1 � e2] = [↓e1 � ↑e2, ↑e1 � ↓e2]
[e1 ⊗ e2] = [min(↓e1 ⊗ ↓e2, ↓e1 ⊗ ↑e2, ↑e1 ⊗ ↓e2, ↑e1 ⊗ ↑e2),

max(↓e1 ⊗ ↓e2, ↓e1 ⊗ ↑e2, ↑e1 ⊗ ↓e2, ↑e1 ⊗ ↑e2)]
[e1 � e2] = [e1 ⊗ [1

↑e2 , 1
↓e2]] if 0 �∈ [e2]

[veT (e1, . . . , en)] = getBoundT ([e1], . . . , [en]) (T ∈ {⊕,⊗, dot, fma})

(8)

Equation (8) suggests to find an interval for e under evaluation model varia-
tions by composing intervals for its subexpressions, computed recursively. In
particular, function getBoundT defined in Algorithm 2.2 computes an interval
for volatile expression ve, given intervals for subexpressions ei. The algorithm
considers all 2n combinations of lower/upper bound for expression ei (1 ≤ i ≤ n),
and call functions getMinT and getMaxT , which implement the min/max compu-
tations described earlier in this section. Note that at the “leaves” of the recursive
descent the ei’s are constants, so [ei] degenerates to the single point. The loop
in line 3 goes through one iteration in this case. For non-leaves, n is bounded
by the code size of expressions in the program text.

Using (8) we can prove that [↓e, ↑e] contains the exact interval [emin, emax].

Algorithm 2.2. getBoundT

Input: {[e1], [e2], . . . , [en]}
1 ↓e = +∞ ↑e = −∞
2 for (v1, . . . , vn) ∈ {↓e1, ↑e1}

× . . . × {↓en, ↑en} do
3 vmin = getMinT (v1, . . . , vn)

vmax = getMaxT (v1, . . . , vn)
↑e = max(↑e, vmax)
↓e = min(↓e, vmin)

4 return [↓e, ↑e]

Algorithm 2.3. Calibration
Input: constraint ψk: : Xk � ck,

interval [↓Xk, ↑Xk] that
does not contain ck

if ck < ↓Xk then
ε = ↓Xk − ck // ε > 0

else
ε = ↑Xk − ck // ε < 0 (↑Xk < ck)

φappr := Xk(I0) ≈ ck − ε

566 Y. Gu et al.

2.5 Phase II (b): Calibration

Given the conditional q over atomic subformulas ψi::Xi � ci, we use the above
methods to compute an input I0 and the interval [↓Xi, ↑Xi] (1 ≤ i ≤ n). We now
check whether these results satisfy our requirements from Sect. 2.3: φpath : given
input I0 the program follows the execution path that leads to the conditional q ;
φassgn : for i �= k, ψi has the same Boolean value as A0 assigns to bi, for both
bounds ↓Xi and ↑Xi; φappr : the values of ψk for Xk = ↓Xk and Xk = ↑Xk differ:
↓Xk � ck �= ↑Xk � ck.

If I0 does not satisfy φpath or φassgn , we ask the solver to generate a different
input I0, using a suitable blocking constraint. If I0 and the interval fail φappr ,
we further distinguish the following cases: (a) the lower and upper bounds of
Xk are the same: ↓Xk = ↑Xk. We deal with this as before by asking the solver
for a new input; or (b) ↓Xk �= ↑Xk but the two bounds are on the same side of
ck: ↓Xk � ck = ↑Xk � ck. Here we employ a step-by-step calibration strategy
shown in Algorithm2.3. If, for example, ck < ↓Xk, then the values returned by
I0 are slightly too large. We define ε to be the “error” ↓Xk − ck and adjust
formula φappr to account for this error, by reducing the point of comparison ck.
We now repeat the process using the new set of constraints. In our experiments,
we typically needed to go through 10–15 iterations of this calibration loop (see
Fig. 1) if we were able to find an unstable input. The process is halted after some
user-specified number of unsuccessful calibrations.

3 Empirical Results

We have vetted the algorithm described in Sect. 2 on several examples to generate
inputs that may trigger control flow divergence. The examples are then executed
on several different hardware platforms on these inputs, and the results are com-
pared. The examples include the ray tracing code from Sect. 1, long summations,
and molecular dynamics. More details are available at our website.1

Hardware Used in Comparisons. We target a range of different computer hard-
ware for our experiments, including: (1) two different CPUs (Intel and AMD
64 bit processors), (2) an AMD Radeon 6550D GPU, and (3) three different
NVIDIA GPUs (Quadro 600, Tesla C2075 and Tesla K20). All targets have
OpenCL compilers, provided by each manufacturer, which were used to gener-
ate the results. All the target hardware is IEEE 754–2008 compliant. The Intel
and AMD CPUs are 64 bits. Intel has FMA, but only in its multimedia instruc-
tions (AVX) which are not used in these experiments. The AMD processor does
not have FMA. The three NVIDIA GPUs all have FMA instructions and the
NVIDIA OpenCL compiler applies FMA aggressively. The AMD GPU does not
have hardware FMA instructions.

1 http://www.ccs.neu.edu/home/wahl/Research/FPA-Heterogeneous/Non-
Portability.

http://www.ccs.neu.edu/home/wahl/Research/FPA-Heterogeneous/Non-Portability
http://www.ccs.neu.edu/home/wahl/Research/FPA-Heterogeneous/Non-Portability

Behavioral Non-portability in Scientific Numeric Computing 567

Tool Specifics. We have implemented the algorithm on top of the KLEE symbolic
analysis engine [3] with LLVM-2.9. We use the Z3 theorem prover [8], version
4.3.2, as KLEE’s internal solver. The experiments are run on a Ubuntu 14.04.1
LTS machine with Intel Core-i7 3.10 GHz processor and 8 GB RAM. With the
exception of the calls to Z3 for finding the candidate inputs, the running time
of our algorithm is negligible and in the tens of milliseconds, which is
why we omit performance details.

Code Instrumentation. We test our algorithm on the C code version of the
examples. In the first step, we apply transformations to each program: we attach
a main function that calls the tested program, and we annotate the symbolic
variables and volatile expressions, so that our algorithm can detect these later.

For a conditional q in the execution path, there may exist multiple inputs
that exhibit control flow instability. In our experiments we split the domain of
each input variable into subintervals of length 0.01, and run our algorithm on
each of these subintervals. For ray tracing, for example, this produced 408 sets
of inputs over the range [−50, 50] that cause control flow instability according
to Definition 1.

3.1 Examples and Control Flow Divergence

Ray Tracing. The OpenCL ray tracing code was run with the 408 different sets
of inputs generated by our algorithm to produce results where D is close to zero.
Inputs provided were the three dimensions of the sphere: s[0], s[1] and s[2], the
three dimensions of the ray, r[0], r[1] and r[2] and the radiusSq. All 408 input
sets generated differences on different architectures. 45 of the 408 sets of inputs
produce results that are on either side of zero for the comparison when the same
code was run on different platforms.

Summation. Summations of floating-point values are common in scientific com-
puting. We compare serial C code which accumulates a value to a register, and
a reduction kernel, written in OpenCL which is the common way to implement
long summation on a parallel architecture. The result of the sum is compared to
a threshold, set to zero for these experiments.

We ran our OpenCL kernel for a sum of 32 values generated by the algorithm.
We received 100 different sets of inputs from the algorithm, of which 58 gave us
different results. Three sets of results are shown in Table 1. The reduction values
differed from the serial summation, as expected. Most platforms produced the
same results of the reduction sum except for the NVIDIA Tesla 2075, which
produced different results. These differences are due to reordering. We were able
to illustrate differences even with a short list of input values (32) where the
range of these values is small ([−1.05, 1]). For practical applications where both
the number of values and their range will be larger, we expect these differences
to be more dramatic.

568 Y. Gu et al.

Table 1. Results for reduction sum (left) and MD (right)

Red Sum 1 Red Sum 2 Serial Sum

-4.6566E-8 -8.7544E-8 4.4936E-8

-5.9605E-8 -8.7544E-8 1.0547E-7

-5.9605E-8 -8.7544E-8 9.1502E-8

R1 R2

0.0 -2.3841858E-7

-2.3841858E-7 0.0

Molecular Dynamics. MD is a popular high performance computing application
with many versions available that run on parallel processors and on GPUs [1].
MD is sensitive to drift in floating-point calculations due to the large number of
time steps in simulation. Taufer et al. [11] show this and use a tuple of values
to represent both the floating-point number and its error. Our experiments use
open source code2 to calculate the Lennard Jones potential energy of molecular
systems. We specifically focus on the comparison with rrCut, a constant which
specifies the cutoff distance (see Listing 1.1). Atoms further away than rrCut
are assumed to not affect the result.

/* Doubly-nested loop over atomic pairs */

...

/* Computes the squared atomic distance */

for (rr=0.0, k=0; k<3; k++) {

dr[k] = r[j1][k] - r[j2][k];

dr[k] = dr[k] - SignR(RegionH[k],dr[k]-RegionH[k])

- SignR(RegionH[k],dr[k]+RegionH[k]);

rr = rr + dr[k]*dr[k]; }

/* Computes acceleration & potential within the cut-off distance */

if (rr < rrCut) { ... }

Listing 1.1. Molecular Dynamics

We implemented this code in OpenCL and ran it on our six target platforms.
We set rrCut to 2.25. The algorithm was used to generate inputs r[j1][0], r[j1][1],
r[j1][2], r[j2][0], r[j2][1], and r[j2][2] that bring rr close to 2.25. It found twelve
sets of values where this decision is on either side of rrCut. Table 1 shows the
difference between 2.25 and the value rr. 6 sets of inputs produced one of these
results and 6 sets produced the other. R1 results are produced by the two CPUs
and the AMD GPU, none of which use FMA. The R2 results are produced on
the NVIDIA GPUs, all of which use FMA. Note that MD simulations run for
a long time, and the value of rrCut affects the run time by determining how
many calculations are done. Our algorithm can be used to help set rrCut and
thus reduce the overall run time.

4 Conclusions and Future Work

We have shown that floating-point instabilities can lead to different control flows
in code, and have introduced an algorithm to find values that potentially exhibit
2 http://cacs.usc.edu/education/cs596/src/md/.

http://cacs.usc.edu/education/cs596/src/md/

Behavioral Non-portability in Scientific Numeric Computing 569

such instability when code is run on the same inputs on different machines.
Our algorithm can inform programmers whether their code has instabilities for
certain ranges of input and parameter choices. For molecular dynamics, it can
help improve run times by allowing an intelligent choice of cut off distance. In
the future we plan to improve the usability of the algorithm and to apply it to
more complicated examples.

References

1. Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynam-
ics simulations fully implemented on graphics processing units. J. Comput. Phys.
227(10), 5342–5359 (2008)

2. Bao, T., Zhang, X.: On-the-fly detection of instability problems in floating-point
program execution. SIGPLAN Not. 48(10), 817–832 (2013). http://doi.acm.org/
10.1145/2544173.2509526

3. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209–224. USENIX Association, Berkeley (2008). http://dl.acm.org/
citation.cfm?id=1855741.1855756

4. Hickey, T., Ju, Q., Van Emden, M.H.: Interval arithmetic: From princi-
ples to implementation. J. ACM 48(5), 1038–1068 (2001). http://doi.acm.org/
10.1145/502102.502106

5. Institute of Electrical and Electronics Engineers (IEEE): 754–2008 – IEEE stan-
dard for floating-point arithmetic, pp. 1–58. IEEE (2008)

6. Jzquel, F., Chesneaux, J.M.: Cadna: a library for estimating round-
off error propagation. Comput. Phys. Commun. 178(12), 933–955 (2008).
www.sciencedirect.com/science/article/pii/S0010465508000775

7. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer,
Heidelberg (2004)

8. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. Munshi, A.: The OpenCL Specification, version 1.2 (2012). https://www.khronos.
org/registry/cl/specs/opencl-1.2.pdf

10. Shewchuk, J.R.: Robust adaptive floating-point geometric predicates. In: Proceed-
ings of the Twelfth Annual Symposium on Computational Geometry, pp. 141–150.
ACM (1996)

11. Taufer, M., Padron, O., Saponaro, P., Patel, S.: Improving numerical reproducibil-
ity and stability in large-scale numerical simulations on gpus. In: IEEE Interna-
tional Symposium on Parallel and Distributed Processing (IPDPS), 2010, pp. 1–9.
IEEE (2010)

http://doi.acm.org/10.1145/2544173.2509526
http://doi.acm.org/10.1145/2544173.2509526
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://doi.acm.org/10.1145/502102.502106
http://doi.acm.org/10.1145/502102.502106
http://www.sciencedirect.com/science/article/pii/S0010465508000775
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

	Behavioral Non-portability in Scientific Numeric Computing
	1 Introduction
	2 Finding Inputs Witnessing Behavioral Non-portability
	2.1 Problem Formulation
	2.2 Detecting Behavioral Non-portability: Overview
	2.3 Phase I: Finding Candidate Input
	2.4 Phase II (a): Efficiently Searching Evaluation Models
	2.5 Phase II (b): Calibration

	3 Empirical Results
	3.1 Examples and Control Flow Divergence

	4 Conclusions and Future Work
	References

