
Stabilizing Numeric Programs against Platform
Uncertainties (Extended Abstract)

Yijia Gu and Thomas Wahl

College of Computer and Information Science, Boston, USA

1 Introduction

Floating-point arithmetic (FPA) is a loosely standardized approximation of real
arithmetic available on many computers today. The flexibility for floating-point
unit designers offered by the widely adopted IEEE 754 FPA standard [1] incurs
often underestimated risks for the robustness of embedded software against what
we collectively refer to as platform uncertainties in this paper. The flexibility
includes the freedom for hardware vendors to offer specialized instructions for
operations with increased precision (such as fused multiply-add [FMA]), and the
freedom for compilers to reorder complex expressions more or less at will.

The lack of robustness against platform uncertainties, called volatility in this
paper, translates in practice to reduced reproducibility of results and, ultimately,
non-portability of numeric code. In this Extended Abstract we report on recent
results to detect and repair such problems without the need to test the given
program against diverse platforms [3]. Our approach computes, for each variable
E of interest, a (tight) interval, called the volatile bound, such that the value of
E is guaranteed to be in that interval, no matter how the program is compiled.
Large volatile bounds indicate high uncertainty in the computation.

Our technique then proposes ways to reduce platform uncertainty. A naive
way is to use compiler flags that enforce strict (deterministic) evaluation, such
as /fp:strict for Visual Studio C++. This unfortunately inhibits optimizations
that compilers can apply to harmless (stable) fragments of the code [2]. We
present a more fine-grained approach that aims to stabilize only some evaluation
aspects, of some statements S that contribute most to the uncertainty in the
target expression E. Our approach returns information on what these statements
are, and what kinds of uncertainties in S’s evaluation are to blame for E’s
instability. This allows the user to apply fine-grained, local code stabilization.

2 Approach

We use the C program fragment shown in Fig. 1 (left) to illustrate our approach.
Consider the input

r = {−10.998046875,−16,−15}, radiusSq = 0.015625
s = {−10.4194345474,−15,−14} .

(1)

to function raySphere. On this input, the program takes different execution
paths on an Nvidia GPU and on an Intel CPU. The cause for this unwelcome
divergence is a difference in the calculations that propagate to the conditional
if (D > 0): the value computed for D in the GPU is −0.11892647 (the branch
is skipped), while on the CPU it is 0.14415550 (the branch is taken). Depending
on what happens in the branch, the behavioral differences of this program on
the two platforms can now have unlimited consequences.

Fig. 1: Ray Tracing: original code (left) and locally stabilized version (right)

The numeric uncertainty eventually leading to the decision divergence is due
to the presence or absence of FMA hardware instructions on the two processors.
FMA is a contraction of expressions of the form x * y + z such that the mul-
tiplication is in effect performed without rounding. Such expressions come up in
Fig. 1 (left) in function dot3 and in the expression defining D.

Running our analysis on this program, it reports a volatile bound for D of
[−0.252806664, 0.156753913]. This interval overapproximates the set of values
any IEEE 754-compliant compiler/hardware platform can possibly produce, for
input (1). Due to the size of this interval, and the looming D > 0 branch, our
analysis warns users that the code may have platform uncertainty problems.

To fix the uncertainty problem, our analysis produces information on the
provenance of the uncertainty of D’s value, i.e., for each preceding statement, a
measure of how much its uncertainty contributes to that of D. In addition, we
output the reason for the uncertainty in each statement, to guide the programmer
as to what aspect of the evaluation to fix. This output is shown in Table 1.

Stmt. label Provenance (L,U) for D Reason

l1 (0.000000000, 0.000000000) null

l2 (−0.275680393, 0.000000000) FMA

l3 (−0.146962166, 0.000000000) order

l4 (−0.002806664, 0.031753913) FMA+order

Table 1: Provenance information for D and reason for uncertainty contribution

The left component L (“lower”) specifies by how much the left boundary of
the volatile bound interval for D shifts, due to the numeric uncertainty in the
computation at li (analogously for U [“upper”]). That is, a negative value for
L indicates that the volatile bound interval expands (to the left). We see that

statement l2 contributes most to the expansion of D’s volatile bound to the left.
The uncertainty in l2 is due to use or non-use of FMA; ordering uncertainty has
no effect at all, for input (1).

After disabling FMA only for the statement labeled l2 (details later), our
analysis returns a smaller volatile bound for D of [−0.002806663, 0.156753913].
However, the comparison D > 0 still suffers from decision uncertainty. To further
increase the lower bound of D, we force left-to-right evaluation order for l3. The
volatile bound for D becomes [0.125000000, 0.156753913], making the compari-
son stable and consistent with strict evaluation. The locally stabilized version of
the Ray Tracing program is shown in Fig. 1 (right).

Accuracy reproducibility experiments. We have also tested our technique on a
number of matrix calculation programs; Table 2 shows the results. Column In-
put specifies the input matrix size; ∗ means that the benchmark takes non-
matrix inputs. Columns Volatile Bound and vstrvstrvstr show the volatile bound of
the final result for each benchmark and the corresponding value under strict
evaluation. If the output is a matrix, we define its volatility to be that of the
cell with the largest volatile bound in the matrix, maximized over all test cases;
that cell is shown under Variable.

Program Input Variable Volatile Bound vstrvstrvstr
sor [100 × 100] G[67][55] [0.720786273, 0.720786631] 0.720786452

fft [16 × 2] X[14] [0.123653859, 0.123654306] 0.123654097

nbody ∗ energy [−0.169289380, −0.169289351] −0.169289351

triple ∗ AJ [−40.967014313, −40.966991425] −40.967002869

adam ∗ W0 [−0.728196859, −0.728196740] −0.728196859

crout [10 × 10] A[0] [1.282013535, 1.282219410] 1.282117963

choleski [15 × 15] A[11][11] [4.187705517, 4.187705994] 4.187705994

ldl [15 × 15] A[11][10] [0.102230683, 0.102230750] 0.102230720

Table 2: Volatility for the benchmarks

These experiments demonstrate that, for the given test suite, the matrix
programs offer a high degree of robustness against platform uncertainties: the
value computed for the given variable is guaranteed to fall in the given volatile
bound interval (soundness), no matter what platform the code is executed on,
and these intervals are quite small.

References

1. IEEE Standards Association. IEEE standard for floating-point arithmetic, 2008.
http://grouper.ieee.org/groups/754/.

2. Martyn J Corden and David Kreitzer. Consistency of floating-point results using

the Intel
®

compiler, 2010. http://software.intel.com/sites/default/files/

article/164389/fp-consistency-102511.pdf
3. Yijia Gu and Thomas Wahl. Stabilizing floating-point programs using provenance

analysis. In Verification, Model Checking, and Abstraction Interpretation, 2017.

http://grouper.ieee.org/groups/754/
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf

	Stabilizing Numeric Programs against Platform Uncertainties (Extended Abstract)

