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Abstract. Floating-point arithmetic is a loosely standardized approx-
imation of real arithmetic available on many computers today. Archi-
tectural and compiler differences can lead to diverse calculations across
platforms, for the same input. If left untreated, platform dependence,
called volatility in this paper, seriously interferes with result repro-
ducibility and, ultimately, program portability. We present an approach
to stabilizing floating-point programs against volatility. Our approach,
dubbed provenance analysis, traces volatility observed in a given inter-
mediate expression E back to volatility in preceding statements, and
quantifies individual contributions to the volatility in E. Statements
contributing the most are then stabilized, by disambiguating the arith-
metic using expression rewriting and control pragmas. The benefit of
local (as opposed to program-wide) stabilization is that compilers are
free to engage performance- or precision-enhancing optimizations across
program fragments that do not destabilize E. We have implemented our
technique in a dynamic analysis tool that reports both volatility and
provenance information. We demonstrate that local program stabiliza-
tion often suffices to reduce platform dependence to an acceptable level.

1 Introduction

Floating-point arithmetic (FPA) is a loosely standardized approximation of real
arithmetic available on many computers today. The use of approximation incurs
commonly underestimated risks for the reliability of embedded software. One
root cause for these risks is the relatively large degree of freedom maintained in
the most widely adopted FPA standardization, IEEE 754 [1]: the freedom for
hardware vendors to offer specialized instructions for operations with increased
precision (such as fused multiply-add [FMA]), and the freedom for compilers to
reorder complex calculations more or less at will.

The price we pay for these freedoms is reduced reproducibility of results,
especially for software that is run on diverse, possibly heterogeneous hardware.
For example, distributing a computation across nodes in a cluster may rearrange
the code in ways that produce results very different from what was observed in
the comfort of the office PC environment. This platform dependence of results,
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called volatility in this paper, translates de facto into non-portability and, ulti-
mately, inferior reliability. Examples of discrete program behaviors that may be
affected, for certain inputs, when moving from one platform to another include
the program’s control flow, and invariants that hold on some platforms but not
others [8,14,16]. Problems of this nature are hard to detect using traditional
testing, as most developers cannot afford to run their programs on a multitude
of platforms and compare the results.

In this paper we present an approach to identifying such problems without
the need to run the given program on diverse platforms. Our approach employs
a dynamic analysis that executes the program on inputs of interest, such as from
a given test suite. For each input I and each intermediate program expression E,
we compute a (tight) interval, called the volatile bound, such that the value of
E on input I is guaranteed to be contained in that interval, no matter how the
program is compiled on the path to E, subject only to IEEE 754 compliance of
the platform. The volatile bound interval is computed via an abstract domain
that takes any possible expression evaluation order into account, as well as the
possibility of FMA contraction, for every expression on the path to E (not only
for E itself). Our analysis technique issues a warning when the observed volatility
becomes critical, for example when E is of the form c < 0 and 0 is inside the
volatile bound for c: this means the comparison is unstable for the given input—
the subsequent control flow depends on the execution platform.

Our technique then goes a significant step further and proposes ways to fix
this instability. A naive way is to “determinize” the compilation of the entire pro-
gram, using compiler flags that enforce “strict evaluation”, such as /fp:strict
for Visual Studio C++. This unfortunately destroys optimizations that compilers
can apply to harmless (stable) fragments of the code; it may thus needlessly
reduce a program’s precision and efficiency [5]. We propose a more fine-grained
approach that aims to stabilize only some evaluation aspects, of some state-
ments S that contribute most to the instability in the target expression E. We
call the information of what these statements are the provenance of E’s insta-
bility. Provenance information also includes what kinds of ambiguities in S’s
evaluation are responsible for E’s instability, i.e. evaluation order or the poten-
tial for FMA application. This allows very fine-grained, local code stabilization,
after which the user can repeat the analysis, to determine whether the critical
instability in E has disappeared.

We have implemented our technique in a library called ifloat. Given a pro-
gram and a test suite, the goal of the library is to stabilize the program against
expression volatility, for all inputs, using provenance analysis. It is immaterial
on what platform the analysis itself is executed. We conclude the paper with
experiments that illustrate on a number of benchmarks how the volatility of
critical expressions diminishes as local stabilization measures are applied. We
demonstrate the high precision of our (necessarily approximate) analysis com-
pared to an idealistic but unrealistic one that compiles and runs the program
twice—with and without stabilization measures.
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2 A Motivating Example

We use the C program fragment shown in Listing 1.1 as an example to illustrate
our approach. The code is used in Ray Tracing applications1 in computational
geometry. Consider the input

r = {−10.4194345474,−15,−14}, radiusSq = 0.015625
s = {−10.998046875,−16,−15} .

(1)

to function raySphere. On this input, the program takes different execution
paths on an Nvidia GPU and on an Intel CPU. The cause for this unwelcome
divergence is a difference in the calculations that propagate to the conditional
if (D > 0): the value computed for D in the GPU is −0.11892647 (the branch
is skipped), while on the CPU it is 0.14415550 (the branch is taken). Depending
on what happens in the branch, the behavioral differences of this program on
the two platforms can now have unlimited consequences.

float dot3(float *a, float *b) {

return a[0]*b[0] + a[1]*b[1] +

a[2]*b[2]; }

int raySphere(float *r, float *s,

float radiusSq) {

float A, B, C, D;

A = dot3(r,r);

B = -2.0 * dot3(s,r);

C = dot3(s,s) - radiusSq;

D = B*B - 4*A*C;

if (D > 0)

...; }

Listing 1.1. Ray Tracing

ifloat dot3(ifloat *a, ifloat *b) {

return a[0]*b[0] + a[1]*b[1] +

a[2]*b[2]; }

int raySphere(ifloat *r, ifloat *s,

ifloat radiusSq) {

ifloat A, B, C, D;

A = dot3(r,r); // l1

B = -2.0 * dot3(s,r); // l2

C = dot3(s,s) - radiusSq; // l3

D = B*B - 4*A*C; // l4

if (D > 0)

...; }

Listing 1.2. Ray Tracing with ifloat

The numeric instability eventually leading to the decision divergence is due
to the presence (GPU) or absence (CPU) of FMA hardware instructions on
the two processors. FMA is a contraction of floating-point multiplication and
addition in expressions of the form a * b + c, so that the multiplication is in
effect performed without intermediate rounding. Such expressions come up in
Listing 1.1 in function dot3 and in the expression defining D.

To analyze and debug the Ray Tracing program for instability issues using
our library, we first change all float types in the program to ifloat. To enable
our tool to identify the root cause of the divergence, we add comment labels
to each statement in the raySphere function that we wish to include in the
analysis. The program after these transformations is shown in Listing 1.2.

Compiling and running the transformed program outputs a volatile bound
of [−0.252806664, 0.156753913] for D. This interval overapproximates the set of
1 http://www.cc.gatech.edu/∼phlosoft/photon/.
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values any IEEE 754-compliant compiler/hardware combination can possibly
produce, for input (1). Due to the size of this interval, and the looming D > 0
branch, our ifloat library generates a warning to tell users that the code may
have instability (platform dependency) problems.

To fix the instability problem, one could now simply “determinize” the float-
ing-point compilation of the program. This can be achieved using strict-evalu-
ation compiler flags, such as /fp:strict in Visual Studio C++, which typically
disable FMA and force a specific evaluation order for chained operations. How-
ever, there is of course a trade-off between reproducibility on the one hand, and
platform-specific precision and performance on the other: program-wide code
determinization prevents optimizations that compilers could otherwise apply to
harmless (stable) fragments of the code; they may thus needlessly reduce a pro-
gram’s precision and efficiency [5]. Instead, we propose a more fine-grained app-
roach that only fixes some evaluation aspects of select statements, namely those
that affect the comparison, or any other user-provided critical expression. At
the end of this section we show, using the Ray Tracing program, how to achieve
statement-level fixation in C++.

But how do we determine which statements to stabilize? Identifying those
merely based on the volatile bounds of the expressions computed in them is
insufficient. To see this, we list in Table 1 the volatile bounds of the intermediate
variables on the path to the computation of D. The size of D’s volatile bound
clearly dominates that for the other variables, suggesting that we should fix the
evaluation of the expression for D itself. However, turning off FMA and forcing
left-to-right evaluation for the assignment to D results in a volatile bound of
[−0.250000000, 0.125000000], nearly unchanged from the bound before stabiliza-
tion. The new bound clearly still permits diverging control flows.

Table 1. Volatile bounds of intermediate variables

Variable Volatile bound Strict value

A ( 601.957031250, 601.957031250 ) 601.957031250

B ( −1129.186889648, −1129.186767578 ) −1129.186889648

C ( 529.548950195, 529.549011230 ) 529.548950195

D ( −0.252806664, 0.156753913 ) 0.125000000

Instead, our analysis of the transformed program produces information on
the provenance of the instability of D’s value, i.e., for each preceding statement,
a measure of how much its instability contributes to that of D. In addition, we
output the reason of the instability in each statement, to guide the programmer
as to what aspect of the evaluation to fix. This output is shown in Table 2.

Consider a pair of the form (L,U) in the “Provenance for D” column in the
row for label li. The left component L (“lower”) specifies by how much the left
boundary of the volatile bound interval for D shifts, due to the numeric instability
in the computation at li (analogously for U [“upper”]). That is, a negative value
for L indicates that the volatile bound interval expands (to the left). We see that
statement l2 contributes most to the expansion of D’s volatile bound to the left.
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Table 2. Provenance information for D and reason for instability contribution

Stmt. label Provenance for D Reason

l1 ( 0.000000000, 0.000000000 ) null

l2 ( −0.275680393, 0.000000000 ) FMA

l3 ( −0.146962166, 0.000000000 ) order

l4 ( −0.002806664, 0.031753913 ) FMA+order

The instability in l2 is due to use or non-use of FMA; ordering uncertainty
has no effect at all, for input (1). After disabling FMA only for the statement
labeled l2 (details of how to do this at the end of this section), our analysis results
in a new volatile bound for D of [−0.002806663, 0.156753913]; the corresponding
provenance information is shown in Table 3.

Table 3. Provenance information for the calculation of D after partial stabilization

Stmt. label Provenance for D Reason

l1 ( 0.000000000, 0.000000000 ) null

l2 ( 0.000000000, 0.000000000 ) null

l3 ( −0.146962166, 0.000000000 ) order

l4 ( −0.002806664, 0.031753913 ) FMA+order

From this bound we conclude that the comparison D > 0 still suffers from
instability (which is now, however, less likely to materialize in practice). To
further increase the lower bound of D, we force left-to-right evaluation order
for l3. The volatile bound for D becomes [0.125000000, 0.156753913], making the
comparison stable and consistent with strict evaluation. The stabilized version
of the Ray Tracing program is shown in Listing 1.3 (differences in red).

float dot3(float *a, float *b) {

return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; }

int raySphere(float *r, float *s, float radiusSq) {

float A, B, C, D;

A = dot3(r,r);

{
#pragma STDC FP CONTRACT off

B = -2.0 * (s[0] * r[0] + s[1] * r[1] + s[2] * r[2]);

}
C =((s[0]*s[0] + s[1]*s[1]) + s[2]*s[2]) - radiusSq;

D = B*B - 4*A*C;

if (D > 0)

...; }

Listing 1.3. Stable version of Ray Tracing, obtained using compiler pragmas and
parentheses (dot3 partially inlined)
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In practice, little is gained by stabilizing a numeric computation for a single
input. Instead, in our experiments we determine provenance information embed-
ded into a dynamic analysis tool on a test suite that comes with the given pro-
gram. Given a critical target expression E, our tool determines which preceding
statement causes the greatest expansion of E’s volatile bound, maximized across
all inputs. The identified cause of volatility for that statement is then lifted. The
analysis repeats until an acceptable level of stability is achieved. In the technical
part of this paper (Sects. 4, 5, 6 and 7) we describe details of our provenance
analysis for a given input. The application of this analysis across a test suite is
discussed in Sect. 8.

3 Background: Volatility in Floating-Point Arithmetic

We use standard symbols like + and ∗ for real-arithmetic operators, and circled
symbols like � and � for floating-point operators. The latter are defined by the
IEEE 754 standard [1, “the Standard” in this paper], for instance floating-point
addition as x � y = rd(x + y), where rd is the rounding function (often refered
to as rounding mode). The Standard postulates five such functions, all of which
satisfy the following monotonicity property:

∀x, y ∈ R : x ≤ y =⇒ rd(x) ≤ rd(y) . (2)

Unlike binary operations, floating-point expressions, which feature chains of
operations as in x � y � z, do not come with a guarantee of reproducibility:
compilers have the freedom to evaluate such expressions in any order. It is well
known that (x � y) � z and x � (y � z) can return different results, e.g. due to
an effect known as absorption when x is much larger than y and z. As a result,
floating-point addition lacks associativity, as does multiplication.

Other sources of non-reproducibility are differences in the available floating-
point hardware. The most prominent example is the fused multiply-add (FMA)
operation, defined by fma(a, b, c) = (a ∗ b) � c. That is, the two operations are
performed as if the intermediate multiplication result was not rounded at all.
Not all architectures provide this operation; if they do, there is no mandate for
the compiler to compute a� b� c via FMA. Worse, expressions like a� b� c� d
permit multiple ways of applying FMA.

Definitions and notation. Expressions that suffer from ambiguities due to
reordering of � and � expressions and due to (non-)use of FMA are called
volatile in this paper [14]. Formally, these are parenthesis-free expressions of the
form

x11 ⊗ x12 . . . ⊗ x1n ⊕ . . . ⊕ xm1 ⊗ xm2 . . . ⊗ xmn ,

which includes chains of addition, chains of multiplication, and dot products.
“Platform parameters” refers to compiler and hardware parameters, namely

the availability of FMA, and collectively the decisions made by the compiler
about expression evaluation. We refer to an instantiation of such parameters
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as an expression evaluation model M . We denote by Ψ(I,M) the value of
(volatile) expression Ψ on input I and expression evaluation model M . A volatile
expression Ψ is stable on input I if, for all evaluation models M1,M2, we have
Ψ(I,M1) = Ψ(I,M2).

Relevant for the goal of stabilization in this paper is the strict expression
evaluation model Mstr, defined as the model that disables FMA support and
evaluates sums and products from left to right. Enforcing this model is sup-
ported on many compiler platforms, such as using the /fp:strict flag in Visual
Studio C++. Finally, as this paper is about numeric reproducibility, we treat the
occurrence of special floating-point data like NaN or ±∞ as a failure and abort.

4 Provenance of Volatility: Overview

A volatile expression Ψ can be evaluated under a number of different evaluation
models M . In general, this in turn can give rise to as many different results, for
a fixed input I. One way to capture these results Ψ(I,M) is using an interval:

Definition 1. Given volatile expression Ψ and input I, the volatile bound
[↓Ψ(I), ↑Ψ(I)] is the interval defined by

↓Ψ(I) = min
M

Ψ(I,M) , ↑Ψ(I) = max
M

Ψ(I,M) . (3)

The size of the volatile bound characterizes the volatility of Ψ for input I: the
larger the bound, the more volatile Ψ . We extend the above definition to input
intervals I over floating-point numbers: [↓Ψ(I), ↑Ψ(I)] is the interval defined by

↓Ψ(I) = min
I∈I

min
M

Ψ(I,M) , ↑Ψ(I) = max
I∈I

max
M

Ψ(I,M) . (4)

However, with this definition the size of the bound no longer characterizes the
volatility of the expression. For example, given assignment statement r = x � y,
if the input intervals for x and y are large, the resulting bound for r will also be
large, but only due to the uncertainty in inputs, not different evaluation models.

To be able to distinguish input uncertainty from evaluation uncertainty, we
introduce the concept of volatile error, which measures the difference between
an arbitrary evaluation model and the strict evaluation model Mstr (Sect. 3):

Definition 2. The volatile error of Ψ on input I is the pair (e
¯
, ē) with

e
¯

= min
M

Ψ(I,M) − Ψ(I,Mstr) , ē = max
M

Ψ(I,M) − Ψ(I,Mstr) . (5)

Values e
¯

and ē represent the “drift” of Ψ on input I, relative to Ψ(I,Mstr), to
the left and right due to different evaluations: we have e

¯
≤ 0 ≤ ē; an expression’s

value is platform-independent iff e
¯

= ē = 0.
Definition 2 lends itself to being extended to the case of input intervals I: in

this case, the volatile error of Ψ is the pair (e
¯
, ē) with

e
¯

= min
I∈I

min
M

Ψ(I,M) − min
I∈I

Ψ(I,Mstr) ,

ē = max
I∈I

max
M

Ψ(I,M) − max
I∈I

Ψ(I,Mstr)
(6)
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The pair (e
¯
, ē) represents the enlargement of the volatile bound purely due to

evaluation uncertainties. For instance, for Ψ := x� y, we indeed have e
¯

= ē = 0.
As we have seen in Sect. 2, knowing the volatile error for a single expression

is not enough. We are also interested in the provenance (origin) of volatility in
some variable v at some program point: it denotes the expansion of the volatile
bound for v due to the volatility in some preceding source expression S. It is
thus a measure of the amount of “blame” to be assigned to S. Formally:

Definition 3. Let v be a variable at some program point, and S be an expres-
sion. Let [l, r] be v’s volatile bound at that point, and [l̄, r̄] be v’s volatile bound at
the same point but in a modified program where expression S has been stabilized
to be computed under the strict evaluation model Mstr. The provenance pair
(Δl,Δr) for v and S is given by Δl = l − l̄, Δr = r − r̄.

For example, when Δl < 0, then the volatility in S causes v’s left volatile bound
to shift to the left—the bound interval expands. Likewise, when Δr > 0, the
volatility in S causes v’s right volatile bound to shift to the right—the bound
again expands. When (Δl,Δr) = (0, 0), the volatility in S has no influence on v.
This can be the case for example because S is not volatile, or is stable for the
given input, or is not on any control path that reaches v’s program point.

Precisely computing the provenance pair for a target variable v and a source
expression S is expensive: applying Definition 3 would require the computation
of volatile bounds from scratch as many times as we have volatile source expres-
sions S. Since our goal is to employ our analysis at runtime (where small over-
head is paramount), our method instead computes the necessary information
in a linear sweep over the program. The price we pay is that we only compute
an approximation (Δ′

l,Δ
′
r), as described in the rest of this paper. The approx-

imation has properties similar to those of (Δl,Δr): larger values |Δ′
l| and Δ′

r

indicate heavier influence of S’s volatility on v and hence suggest which source
expression to stabilize first.

If the source expressions Si on the path to the program point of v share
program variables, stabilizing one of them generally affects the volatility contri-
bution of the others. Our technique therefore proceeds in rounds, as illustrated in
Sect. 2: after stabilizing one source expression, we recompute the (approximate)
provenance pairs for v and all Si from scratch, and repeat the ranking and
statement stabilization process. For target variables v that are used in branches,
assertions or other decisions, a natural point to stop is when the decision has
become stable, i.e. platform independent, for all inputs. For other target vari-
ables, e.g. in branch-free programs, more heuristic stoppage criteria can be used;
we discuss these further in our experiments in Sect. 8.

5 An Abstract Domain for Tracking Volatility

Similar in spirit to earlier work that tracks precision loss in a floating-point pro-
gram relative to a real-arithmetic calculation [11,15], we use affine arithmetic
to abstractly represent floating-point values under platform uncertainty. The
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abstract values are affine-linear combinations of real numbers tagged with sym-
bolic variables that label these real numbers as various “error contributions”.
Formally, the provenance form is a term

p = d +
∑

l∈L

el · ηl + e∗ · η∗ (7)

where d, el, and e∗ are real numbers, L is the set of program statement labels,
and ηl and η∗ are symbolic variables indicating reordering errors contributed
by the statement at label l and higher-order error (combinations of different
error terms after propagation), respectively. Value d represents the value of
p under strict evaluation and incorporates rounding errors but not reordering
uncertainty. We also define the real-valued projection of provenance form p as
π(p) = d +

∑
l∈L el + e∗. The abstract values form a lattice via the provenance

ordering defined as pi < pj ⇔ π(pi) < π(pj). Binary arithmetic operations on
forms pi, pj are defined as

pi ± pj = (di ± dj) +
∑

l∈L

(ei
l ± ej

l ) · ηl + (ei
∗ ± ej

∗) · η∗ (8)

pi ∗ pj = (di ∗ dj) +
∑

l∈L

(ei
l ∗ dj + ej

l ∗ di) · ηl +

⎛

⎝
∑

l1,l2∈L∪{∗}
ei
l1 ∗ ej

l2

⎞

⎠ · η∗ (9)

The multiplication rule in (9) is a simplification of the term obtained by mul-
tiplying out the sums for pi and pj : the higher-order terms have been merged
into one, which would otherwise complicate the analysis significantly, with little
benefit.

We use a pair (L(v), U(v)) of two provenance forms to abstractly representa-
tion the boundary points of volatile bound of some variable v. For l ∈ L, denote
by (e

¯l, ēl) the contribution of volatile errors of the statement at label l; then

L(v) = d
¯

+
∑

l∈L

e
¯l · ηl + e

¯∗ · η∗ , U(v) = d̄ +
∑

l∈L

ēl · ηl + ē∗ · η∗ .

Forms L(v) and U(v) tell us which expressions affect v’s volatile bound, in which
direction (up or down), and by how much:

Example 1. For the program shown in Sect. 2, the initial provenance forms for
radiusSq are (0.015625, 0.015625). All values el and e∗ are 0, since there is
no volatility in the input. Suppose after executing the statement in l2, we have
(L(B), U(B)) = (−1129.18688965,−1129.186767578 + 0.00012207 · ηl2). This
means that the volatile error at l2 increases the upper bound of B by 0.00012207
and has no effect on its lower bound.

Our method is an instance of concretization-based abstract interpretation [6].
The collecting semantics for an abstract program state (L(v), U(v)) after assign-
ing to variable v is the set of possible values of v under all evaluation models;
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the concretization function thus is γ((L(v), U(v))) = [π(L(v)), π(U(v))]. With
the concrete transfer function F for the program, our goal is an abstract transfer
function G that maintains the following relationship:

F ◦ γ ⊆ γ ◦ G .

We construct G separately for volatile and non-volatile expressions
(Sects. 6 and 7).

6 Abstract Transfer Functions for Volatile Expressions

If the assignment statement at label l contains the volatile expression v = x11 ⊗
x12 . . .⊗x1n ⊕ . . .⊕xm1⊗xm2 . . .⊗xmn, we need to propagate the volatile errors
existing in xij (Sect. 6.1), but also calculate the new volatile error introduced at
l in v by reordering and FMA (Sect. 6.2).

6.1 Propagating Existing Volatile Error

The propagation follows the spirit of interval analysis, but uses the operations
for provenance forms from Sect. 5 and assumes strict evaluation in the current
expression (new reordering error ignored). Given two (L,U) pairs xi, xj , we have

xi + xj = (L(xi) + L(xj) + d′
¯ ij , U(xi) + U(xj) + d̄′

ij)
xi − xj = (L(xi) − U(xj) + d′

¯ ij , U(xi) − L(xj) + d̄′
ij)

xi ∗ xj =
(min(L(xi) ∗ L(xj), L(xi) ∗ U(xj), U(xi) ∗ L(xj), U(xi) ∗ U(xj)) + d′

¯ ij ,
max(L(xi) ∗ L(xj), L(xi) ∗ U(xj), U(xi) ∗ L(xj), U(xi) ∗ U(xj)) + d̄′

ij)

The min/max functions use the order relation defined in Sect. 5. Values d′
¯ ij/d̄′

ij

account for rounding errors of �,�,� and are defined as d′ = rd(π(p)) − π(p).
Rounding error d′ is added to p via p + d′ = (d + d′) +

∑
l∈L el · ηl + e∗ · η∗. For

example, in L(xi) + L(xj) + d′
¯ ij , d′

¯ ij is defined as d′
¯ ij = rd(π(L(xi) + L(xj))) −

π(L(xi) + L(xj)).
As in interval analysis, we ignore the relation between xi and xj ; thus the

resulting provenance form overapproximates possible values of v with Mstr.

Theorem 4. Let (L′(v), U ′(v)) be the resulting provenance forms for v. Then:

[min
I∈I

v(I,Mstr),max
I∈I

v(I,Mstr)] ⊆ [π(L′(v)), π(U ′(v))] ,

where I = [π(L(x11)), π(U(x11))] × . . . × [π(L(xmn)), π(U(xmn))].

The theorem follows easily from the properties of interval analysis.
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6.2 Calculating Fresh Volatile Error

By Formula (6) in Definition 2 of the volatile error, to calculate the volatile
error introduced at l we need two bounds: the bound of v under Mstr, which is
approximated by [π(L′(v)), π(U ′(v))] (calculated in the previous step), and the
volatile bound of v. In this section we show how to obtain a sound approximation
for the latter. We only show this for the lower bound; the upper bound calculation
is analogous.

Our approach consists of two steps. First we transform each sub-monomial
xi1 �xi2 . . .�xin into two-const form c�

i �c�
i , done in Algorithm6.1. The reason

for choosing this form is that we need to consider possible ways of applying FMA
between adjacent sub-monomials.

Algorithm 6.1. Compute the two-const form for monomial m

Input: m := u1 � . . . � un, where ui can be a constant or a variable,
↓ui = π(L(ui)) and ↑ui = π(U(ui))

1 ↓m = +∞;
2 for (c1, . . . , cn) ∈ {↓u1, ↑u1} × . . . × {↓un, ↑un} do
3 (t�, t�) = getMinmul(c1, . . . , cn);
4 if ↓m > t� ∗ t� then
5 ↓m = t� ∗ t�;
6 c� = t� ;
7 c� = t� ;
8 end
9 end

10 return (c�, c�);

Function getMinmul in Algorithm 6.1 is defined as

getMinmul(c1, . . . , cn) = (N [1, L[1, n]], N [L[1, n] + 1, n])

where N [i, i] = ci, N [i, j] = N [i, L[i, j]] � N [L[i, j] + 1, j] for i < j, and

L[i, j] =

⎧
⎨

⎩

argmin
k : i≤k<j

|N [i, k] ∗ N [k + 1, j] | if sign(m) = +

argmax
k : i≤k<j

|N [i, k] ∗ N [k + 1, j] | if sign(m) = − .

Function sign(m) returns the sign of the multiplication result of the monomial.
Note that we use real multiplication in the definition of L[i, j] instead of � as
in the definition for N [i, j]: the multiplication in FMA is done in real. We can
prove that (N [1, L[1, n]], N [L[1, n]+1, n]) is the pair such that its multiplication
N [1, L[1, n]] � N [L[1, n] + 1, n] is the minimum value of the monomial.

After transformation, the whole polynomial expression is transformed into
standard dot product: c�

1 � c�
1 � . . . � c�

n � c�
n. In the second sub-step we obtain

the lower bound of the dot product, ↓v, using a method presented in previous
work [14, Sect. 2.4], which accounts for all possible evaluation models for the dot
product expression. It can be shown that [↓v, ↑v] is an over-approximation of the
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volatile bound of v. Together with (L′(v), U ′(v)), we can now get the volatile
error el for v of

e
¯l = ↓v − π(L′(v)), ēl = ↑v − π(U ′(v)) .

The final provenance form for v is (L′(v) + e
¯l · ηl, U

′(v) + ēl · ηl). It follows:

Theorem 5. Let (L′(v)+e
¯ l ·ηl, U

′(v)+ ēl ·ηl) be the resulting provenance forms
for v, and I = [π(L(x11)), π(U(x11))] × . . . × [π(L(xmn)), π(U(xmn))]. Then

[min
I∈I

min
M

v(I,M),max
I∈I

max
M

v(I,M)] ⊆ [π(L′(v) + e
¯ l · ηl), π(U ′(v) + ēl · ηl)] .

6.3 Identifying the Cause of Volatility

Table 4. Categories of volatility

Category Definition

Stable ↓v = ↑v

FMA ↓v �= ↑v
∧↓vnofma = ↑vnofma

Order ↓v �= ↑v
∧↓vnofma = ↓v
∧↑vnofma = ↑v

FMA+Order otherwise

To help the user fix reproducibility prob-
lems, we classify the cause of the volatil-
ity into three categories: FMA, Order and
FMA+Order, which respectively indicates
that the volatility is due to the use/non-
use of FMA, reordering of the compu-
tation, or both. The definitions of the
three categories are shown in Table 4. Here
the [↓vnofma , ↑vnofma ] represents the volatile
bound of v without considering FMA contraction. It can be obtained by modify-
ing the return value in Algorithm6.1. Instead of returning the tuple (c�, c�), we
simply return the floating-point value c�

�c�. Then the whole volatile expression
is transformed to v = c1 � 1 � . . . � cn � 1, where ci = c�

i � c�
i . The second

sub-step is the same as in Sect. 6.2.

7 Transfer Functions for Non-volatile Expressions

Numerical programs generally contain expressions other than polynomials, such
as involving division and sqrt operations. We assume that such expressions
behave the same on all platforms and hence do not introduce new volatile error.
We still need to propagate existing volatile error through them, which is the
topic of this section. Our approach applies to any uni-variate function that is
monotone and twice continuously differentiable in its domain.

Let �η = (ηi) be an |L|-dimensional vector. The provenance form p = d +∑
l∈L el · ηl + e∗ · η∗ can be viewed as a function f of |L| + 1 variables, namely

all ηi and η∗, defined over the line segment AB from point A = (�0, 0) to point
B = (�1, 1): note that f(�1, 1) = π(p). Let g be a uni-variate function such that
ϕ = g ◦ f is twice continuously differentiable in AB. By the Taylor expansion
theory [17], there exists a point C in the interior of AB such that

ϕ(B) = ϕ(A) +
∑

l∈L∪{∗}

∂ϕ

∂ηl
(A) · 1 +

1
2

∑

l1,l2∈L∪{∗}

∂2ϕ

∂ηl1∂ηl2

(C) · 1 · 1. (10)
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Now our plan is to transfer Formula (10) back to provenance form. Recall
that, in our definition of provenance form, el reflects the shift of the volatile
bound (lower or upper) due to the statement at l. Thus, by the definition of
derivative, ∂ϕ

∂ηl
(A) approximates the change of the volatile bound of g because of

el. We also need to handle the formula’s final term, 1
2

∑
l1,l2∈L∪{∗}

∂2f
∂ηl1∂ηl2

(C),
which contains the unknown parameter C. Here we apply interval analysis on the
values along AB that C can take, to get an interval eee′′. This interval overapprox-
imates the change of the bound of g due to higher-order error terms according
to the definition of second derivative. Based on the above discussion, we get the
following “quasi-provenance form” for g for the given input p.

g(p) = ϕ(A) +
∑

l∈L

∂ϕ

∂ηl
(A) · ηl + (

∂ϕ

∂η∗
(A) + eee′′) · η∗ (11)

The only difference to the provenance form is that the coefficient of η∗ is an
interval instead of a constant. We also define [↓g(p), ↑g(p)] as

↓g(p) = ϕ(A) +
∑

l∈L

∂ϕ

∂ηl
(A) · ηl + ↓(

∂ϕ

∂η∗
(A) + eee′′) · η∗

↑g(p) = ϕ(A) +
∑

l∈L

∂ϕ

∂ηl
(A) · ηl + ↑(

∂ϕ

∂η∗
(A) + eee′′) · η∗

Using the quasi-provenance form, we can design the volatile error propagation
for g as the follows. If g is monotonously increasing in interval [π(L(v)), π(U(v))],
we have g((L(v), U(v))) = (↓g(L(v)), ↑g(U(v))). If g is monotonously decreasing,
we have g((L(v), U(v))) = (↓g(U(v)), ↑g(L(v))).

Theorem 6. Let g be a uni-variate, monotone, and twice continuously differ-
entiable function. Given abstract input (L(v), U(v)), let (L′(v), U ′(v)) be the
abstract result (obtained via the abstract transfer function of g). Then

[g(π(L(v)), g(π(U(v)))] ⊆ [π(L′(v)), π(U ′(v))] .

The above discussion assumes that g can be calculated in infinite precision. In
floating-point reality we need to consider rounding errors for g. This can be
accommodated by attaching correction terms to the resulting provenance forms:
(L′(v)+d

¯
, U ′(v)+d̄), where d

¯
= g̃(π(L(v)))−π(L′(v)), d̄ = g̃(π(U(v)))−π(U ′(v)),

and g̃ is the floating-point version of g.

8 Implementation and Evaluation

We have implemented the above techniques in a runtime library. The core of the
library is a customized datatype called ifloat, which keeps track of the volatile
errors during execution, for each variable. Our library can be applied to programs
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that do not use mixed floating-point types or mixed rounding modes. In our
experiments we use single-precision float as the numeric data type, and round-
to-nearest-ties-to even as the rounding mode (as in most programs). Polynomial
expressions containing parentheses have “partial volatility”; we treat them by
moving the parenthesized part outside the expression, via a temporary variable.

The calculations of provenance forms are defined in R, as shown in Sect. 5.
In our implementation we use the mpq class type in the GMP library [13] as
an approximation. We have overloaded the following operators in our ifloat
datatype: + − ∗ / sqrt. Note that the result of sqrt may be irrational, in
which case Formula (10) may not be representable by mpq class. To solve this
problem, we use a double precision float together with outward rounding modes
to get an interval that contains the true value of sqrt. As a result, we get an
interval linear form [18] of Formula (11),

√
p = [

√
d] +

∑

l∈L

el

2[
√

d]
· ηl + (

e∗
2[

√
d]

+ eee′′) · η∗,

where [
√

d] = [RD(
√

d), RU(
√

d)] (rounding down and up, resp.). Consequently,

↓√
p = ↓[

√
d] +

∑

l∈L

↓ el

2[
√

d]
· ηl + ↓(

e∗
2[

√
d]

+ eee′′) · η∗

↑√
p = ↑[

√
d] +

∑

l∈L

↑ el

2[
√

d]
· ηl + ↑(

e∗
2[

√
d]

+ eee′′) · η∗.

It can be shown that Theorem 6 still holds.

Library usage. Our library can be used in the classical test-evaluation-fix iter-
ative fashion. Users replace all native float types with ifloat and label all
assignment statements that contain volatile expressions. Currently we make
these changes manually; they can easily be automated. Our library outputs the
provenance forms for user-selected variables. From the two forms the user can
locate which statement makes the most significant contribution to the target
variable’s volatility, and how to stabilize it. After (partial) stabilization, we re-
run the analysis. If the resulting bound is within a user-specified threshold, we
can guarantee that the actual volatility will not exceed the same threshold, since
our volatile bound is a conservative approximation.

Benchmarks. We have tested our approach on a number of numeric programs.
Benchmarks fft (Fast Fourier Transform) and sor (Jacobi Successive Over-relax-
ation) are from SciMark 2.0 [19]; nbody [9] models the orbits of Jovian planets.
The remaining programs are from a numerical analysis book [4]: triple is the
Gaussian triple integral algorithm; adam is the adams-forth order predictor-
corrector algorithm; crout is the crout reduction for tri-diagonal linear systems;
choleski and ldl are standard algorithms that factor a positive-definite matrix.
The benchmarks can be found at http://github.com/yijiagu/ifloat.

http://github.com/yijiagu/ifloat
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Experiments. We have tested our benchmarks with 10 random generated inputs
(except nbody, which comes with its own test inputs). All experiments are run
on Ubuntu 15.10 with 8 GB memory; Table 5 shows the results. Column Input
specifies the input matrix size; ∗ means that the benchmark requires scalar
inputs. Columns Volatile Bound and vstrvstrvstr show the volatile bound of the final
result for each benchmark and the corresponding value under strict evaluation.
These volatile bounds are sound based on the theorems in Sect. 6 and 7. If the
output is a matrix as well, we define its volatility to be that of the cell with the
largest volatile bound in the matrix, maximized over all test cases; that cell is
shown under Variable.

Table 5. Volatility for the benchmarks

Program Input Variable Volatile bound vstrvstrvstr

sor [100 × 100] G[67][55] ( 0.720786273, 0.720786631) 0.720786452

fft [16 × 2] X[14] ( 0.123653859, 0.123654306) 0.123654097

nbody * energy ( −0.169289380, −0.169289351) −0.169289351

triple * AJ (−40.967014313, −40.966991425) −40.967002869

adam * W0 ( −0.728196859, −0.728196740) −0.728196859

crout [10 × 10] A[0] ( 1.282013535, 1.282219410) 1.282117963

choleski [15 × 15] A[11][11] ( 4.187705517, 4.187705994) 4.187705994

ldl [15 × 15] A[11][10] ( 0.102230683, 0.102230750) 0.102230720

Table 6 shows the provenance information for the selected variable. We only
list the labels whose statements contribute the most to the target variable’s lower
(Column 2) and upper bound (Column 4). Table 6 also compares the contribu-
tion calculated by our approach (Columns 2+4) to the precise shift, according to
Definition 3 (Column 3+5). In most cases, these two sets of values are very close.2

It shows that the provenance outputs from our library are indeed a good approx-
imation of statements’ volatility contribution to the final result. Noted that in
some cases the actual value is larger than the predicted value. However, this does
not violate our claim that the volatile bound is sound. In all experiments, our
approach accurately pinpoints the statements that contribute the most to the
volatility of the final result. Thus, instead of naively recompiling and rerunning
the analysis for each target variable and source expression, library users execute
the program with our library once. From the output provenance forms they can
identify the most-to-blame statements and to what extent they may improve the
situation by stabilizing these statements. To assist in this process, Columns 2+4
also list the cause of statements’ volatility.

2 An exception is A[11][11] for choleski : inspection shows that this anomaly is due to
the rounding error. In fact, its left bound 4.187705517 and right bound 4.187705994
are two adjacent floating-point numbers.
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Table 6. Provenance information for the benchmarks

Variable Predicted e
¯maxe
¯maxe
¯max Actual e

¯maxe
¯maxe
¯max Predicted ēmaxēmaxēmax Actual ēmaxēmaxēmax

G[67][55] L1: −0.000000132
(Reorder)

−0.000000179 L1: 0.000000178
(Reorder)

0.000000179

X[14] L2: −0.000000158
(FMA+Reorder)

−0.000000179 L2: 0.000000079
(FMA+Reorder)

0.000000060

energy L7: −0.000000018
(FMA+Reorder)

−0.000000029 L9: 0.000000014
(FMA+Reorder)

0.000000000

AJ L2: −0.000004037
(FMA)

−0.000003815 L8: 0.000005997
(FMA)

0.000007629

W0 L3: −0.000000014
(FMA+Reorder)

0.000000000 L2: 0.000000016
(FMA+Reorder)

0.000000060

A[0] L1: −0.000098395
(FMA)

−0.000100494 L1: 0.000098380
(FMA)

0.000101450

A[11][11] L1: −0.000000007
(FMA+Reorder)

−0.000000477 L2: 0.000000027
(FMA+Reorder)

0.000000000

A[11][10] L2: −0.000000040
(FMA+Reorder)

−0.000000037 L2: 0.000000035
(FMA+Reorder)

0.000000030

The code linked against our library is currently up to 3 orders of magni-
tude slower than the original code with single precision. This is due to the extra
information tracked by our library, and also the extensive use of rational arith-
metic in the process. We point out that the performance of the library is not
our main concern: we view it as a unit testing tool for examining a program’s
numerically intensive parts. Our solution is effective in that it eases the testing
workload by avoiding multiple recompilations and reruns on different platforms.
The runtime in our experiments is acceptable; each test input takes less than a
few seconds. In the future, we plan to replace rational arithmetic in the analysis
by floating-point calculations, to enable application to larger examples.

9 Related Work

Analyzing the behavior of numerical programs across computing environments
has become an important research topic, due to an increased awareness of repro-
ducibility issues on heterogeneous (CPU/GPU/FPGA) platforms. The research
presented here was inspired by our own work in [14], where we designed an effi-
cient technique to compute the volatile bound of an expression, for a fixed input.
In the present work, we embed this technique in a dynamic analysis framework,
and go a significant step further: tracing volatility errors back to relevant source
statements and specific causes (FMA/reordering), and stabilizing the program,
by partially fixing the evaluation of these source statements.

[2] presents a formally verified C compiler that guarantees IEEE-compliant
floating-point machine code, which is achieved by enforcing “a single way to
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compile” [2], akin to strict semantics. This ensures code stability, but does not
address the question of whether there is any significant instability in the program
in the first place, nor how much stability is “healthy” for the program. Work
in [3,21] proves a maximum rounding error under platform variations. The app-
roach is deductive and not suitable for identifying inputs that cause platform
dependence. Since our error representation (the provenance form) allows us to
isolate errors due to volatility, we are able to trace sources of platform sensitivity,
and can offer ways to repair it; a question that has not been addressed in any
previous work, to the best of our knowledge.

The methodology used in our work is in part inspired by research on tracing
the rounding error propagation for numerical programs. Fluctuat [10–12] is a
static analysis tool based on abstract interpretation that locates the sources of
rounding errors in the program. [7] designs a runtime library that provides a
guaranteed upper bound of rounding errors for programs written in Scala. All
these works use affine arithmetic [20] as the underlying algebraic structure to
keep track of the rounding error. In this paper, we adopt a similar data structure,
manifest in the provenance form, to instead trace the volatile error.

10 Conclusions and Future Work

In this paper we have established that platform and compiler dependencies of
numeric code can be traced back to their sources dynamically, incurring a per-
formance penalty that is acceptable for software test runs. The slow-down is
currently too large to permit running the analysis as monitors in deployed code.
Future work includes decreasing this performance hit, for example by conserva-
tively using floating-point calculations during the analysis, rather than expensive
but more precise rational arithmetic.
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