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ABSTRACT

Security of deep neural network (DNN) inference engines, i.e.,
trained DNN models on various platforms, has become one of the
biggest challenges in deploying artificial intelligence in domains
where privacy, safety, and reliability are of paramount importance,
such as in medical applications. In addition to classic software at-
tacks such as model inversion and evasion attacks, recently a new
attack surface—implementation attacks which include both pas-
sive side-channel attacks and active fault injection and adversarial
attacks—is arising, targeting implementation peculiarities of DNN
to breach their confidentiality and integrity. This paper presents
several novel passive and active attacks on DNN we have developed
and tested over medical datasets. Our new attacks reveal a largely
under-explored attack surface of DNN inference engines. Insights
gained during attack exploration will provide valuable guidance for
effectively protecting DNN execution against reverse-engineering
and integrity violations.

CCS CONCEPTS

« Security and privacy — Hardware attacks and countermea-
sures.
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1 INTRODUCTION

Deep learning (DL) has become a foundational means for solving
grand societal challenges, disrupting many application domains
with superior performance. Trained Deep Neural Network (DNN)
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models have proven to be effective in solving various medical imag-
ing problems. Commercial Al-assisted computer-aided diagnosis
equipment has been approved and deployed [19, 21]. Despite the
promising outcomes of DNN, protecting the security of trained
models has become a challenge, in part because DNN inference
engines create heretofore unknown attack surfaces.

Trained models constitute valuable intellectual property, for the
following reasons. Customizing DNN models for applications re-
quires access to high-quality, often proprietary, datasets and also
demands a considerable amount of computational resources. Typi-
cally it also requires machine learning experts and domain experts
to work together towards selecting network structures suitable
for the task, pre-processing the dataset, and fine-tuning the model
structure and hyperparameters. Given the commercial value of to-
day’s DNN models, an adversary has a strong incentive to reverse-
engineer a trained DNN model to obtain a near-identical one. If
the model is known to the adversary, active attacks that disrupt or
sabotage the DNN inference engines can be enabled or strength-
ened. For example, attacks based on adversarial examples, which
appear authentic to human eyes but contain deliberately added
noise to yield a wrong output, can become more effective. Know-
ing the details of the model also facilitates fault injection attacks,
which maliciously modify the model parameters to disrupt the deep
learning applications in execution.

In this work, we present two passive attacks that steal the in-
tellectual property of DNN models, and two active attacks that
compromise DNN execution. We discover a new attack surface with
a number of threats directed at DNN inference engines. Counter-
measures are proposed to protect the confidentiality and integrity
of DNN model execution against these new attacks.

The rest of this paper is organized as follows. Section 1.1 gives
an overview of the attacks. Section 1.2 provides the necessary back-
ground for attacks on DNN. Section 2 and 3 describe the passive
attacks and the active attacks in detail, respectively, where counter-
measures are also outlined for each attack. Conclusions and future
work are presented in Section 4.

1.1 Overview

To protect the confidentiality of trained DNN models, trusted ex-
ecution environments like Intel SGX and ARM TrustZone can be
adopted. However, valuable information can still be extracted from
various side channels. We develop two passive side-channel attacks
to steal the intellectual property of DNN models. The first one is a
novel persistent cache monitoring attack, which relies on a newly
developed utility to monitor the state of shared caches continuously
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and covertly. By monitoring carefully selected function call instruc-
tions, we are able to reverse-engineer the hyperparameters of DNN,
as shown in Section 2.1. Knowing the hyperparameters, ie., the
structure of the DNN, enables another finer-grained side-channel
attack, which exploits the floating-point timing side-channel to
reverse-engineer all parameters of DNN models accurately, as de-
tailed in Section 2.2. This is the first reverse-engineering work
targeting weights and biases of DNN software implementations,
published in DAC 2020 [9].

We also investigate the feasibility of active attacks, i.e., how to
effectively and efficiently disrupt the execution of DNN inference
engines. A ResNet-18 network that detects COVID-19 disease from
chest X-ray images is trained to evaluate these attacks. In Section 3.1,
we launch an adversarial attack against this model and demonstrate
that adding human-imperceptible noise to the input images can
effectively mislead the DNN inference. In Section 3.2 we perform
a realistic fault injection attack on GPU kernels for such ResNet-
18 model inference. We leverage the GPU overdrive attack [28],
which was published in DAC 2020. This attack maliciously perturbs
the operating voltage and frequency of the target GPU, inducing
silent data corruption during model execution, which leads to a
significant decrease of the DNN classification accuracy.

1.2 Background

1.2.1  Deep neural networks. Over the past decade, DNN have expe-
rienced rapid and tremendous progress thanks to the new era of big
data. Especially for computer vision problems, DNN and large-scale
annotated imaging datasets drastically improve the performance
of classification, object localization, detection, and segmentation.
Chest X-ray images can be quickly obtained from patients with
inexpensive equipment. Various DNN models have been developed
and trained on large datasets, which can rapidly extract and learn
the complex features embedded in images. Applying the trained
DNN models for inference can significantly aid diagnosing, disease
detection and localization. One prior work [30] introduces a recur-
rent neural cascade model for disease detection. Another work [26]
adopts convolutional layers to construct CheXNet, exceeding the
average performance on detecting pneumonia by radiologists. An-
other model, Text-Image Embedding network (TieNet), is based on
an end-to-end trainable CNN-RNN architecture and can be trans-
ferred to a chest X-ray reporting system [34].

1.2.2  Side-channel analysis. Side-channel analysis (SCA) targets
the information leakage of a system due to peculiarities of its phys-
ical implementation, on various platforms including CPU, GPU,
MCU, and FPGA. These leakages come in the form of physical
signatures that include, among others, power consumption [6],
execution time [9], electromagnetic radiation [18], and sound emis-
sion [8]. Various methods have been developed to extract secret
information, e.g., key of cryptographic algorithms, from these phys-
ical signatures. SCA attacks are relatively cheap to perform, and
hard and expensive to protect against. Recently SCA attacks have
been applied to steal the IP of DNN models [4, 9, 14].

1.2.3  Faultinjection attacks. Fault injection attacks actively modify
intermediate states of a program to bypass verification [17], facili-
tate differential fault analysis for secret key retrieval [3], or simply

disrupt or shut down the operation [16]. Physical fault injection
methods include laser beaming [33], electromagnetic radiation [25],
and voltage glitching [32], requiring physical access to the victim
device. Fault injections can also be performed by software, includ-
ing RowHammer [20] and DVFS attacks [31], possibly controlled
remotely. Vulnerabilities of DNN models to fault injections attacks
are evaluated by different algorithms [23, 39]. Our prior work [29]
also considers the effect of model compression in fault resilience. A
recent work implements practical fault attacks using laser beaming
on a simple MLP inference engine running on a microcontroller [5].

2 STEALING MODEL IP VIA PASSIVE
ATTACKS

This section presents two [P-stealing passive attacks: one cache side-
channel attack for hyperparameters retrieval and the other floating-
point timing attack to reverse-engineer all model parameters.

2.1 Persistent Cache Monitoring Attack

Cache Telepathy [37] is a recent work that leverages shared re-
source, cache, to learn the architecture of DNN. We devise a novel
cache monitor that can run much faster and can retrieve the model
architecture in real-time without instrumenting the victim code.

2.1.1 Attack Model. In our attack model, the victim is a trained
DNN model running on an x86 processor. The adversary (spy) runs
on the same processor and shares common software libraries with
the victim, e.g., OpenSSL for network security and OpenBLAS [35]
for deep learning applications. There is no synchronization be-
tween the victim and the spy processes, and they are executing
concurrently, either on different cores, or on the same core with
hyper-threading on. The spy and the victim only interact with each
other through the shared resource - cache, and the contention on
cache leaks victim information.

2.1.2  Attack Details. We propose a novel Flush+Flush based persis-
tent cache state monitor, and apply this monitor to a DNN victim.

a. Spy - Flush+Flush Cache Monitor: Various cache-based side
channels and covert channels have been presented, including
Flush+Reload [38], Prime+Probe [22], and Flush+Flush [12]. They
differ in the granularity of side-channel. Prime+Probe attacks deal
with cache sets and are more general as the adversary is completely
independent of the victim. The other two rely on a special x86 in-
struction - CLFLUSH to deal with individual cache lines, but require
shared libraries between the spy and the victim.

The prior work [37] uses a Flush+Reload monitor, where the spy
keeps running flushing and reloading one address from the shared
library and times the reloading. The effect of CLFLUSH, maddr
is, the cache lines corresponding to the memory address maddr
are flushed from the entire cache hierarchy - L1, L2, and Last-
level Cache (LLC). If the victim has accessed this memory address
between the spy’s flushing and reloading, the reload takes a shorter
time (cache hit) because the cache line has been brought back to
the processor by the victim. Otherwise, the reload experiences a
cache miss due to the prior flushing event. The difference in a cache
hit and a cache miss (can be 100+ cycles for last-level cache) forms
a strong timing side-channel to indicate whether the victim has
accessed a certain address or not.

Authorized licensed use limited to: Northeastern University. Downloaded on December 12,2020 at 22:46:14 UTC from IEEE Xplore. Restrictions apply.



However, Flush+Reload side channels experience many cache
misses and run slowly.

We build a fast Flush+Flush-based cache monitor. It has been
observed that there is a slight, but distinct difference between the
time taken to flush a valid cache line versus an invalid one (already
flushed before), about 9 to 12 cycles [12]. The timing difference
varies significantly with processor architectures, timers, and fencing
instructions used around timer readings. Carré’s work [7] uses a
Flush+Flush monitor on ECDSA algorithm. Figure 1 shows the
setup for our persistent cache monitoring, where the spy runs
consecutive CLFLUSH and times each one. On our platform and
experimental setup, the two timings our monitor reads are about
320 cycles (victim accesses the monitored address) and 180 cycles
(no-access) respectively, a very strong timing side-channel.

A

Attacker | Attacker Setup | NOPs Clflush Finish
Victim ‘ Victim Setup ‘ NOPs ‘ Victim Operations ‘ Finish

Figure 1: Persistent Cache Monitoring with F+F

b. Victim - DNN Model Operation: The victim in our attack is the
general matrix-matrix multiplication (GEMM) function of Open-
BLAS, one core operation for DNN. We can monitor the cache states
of a running GEMM function to extract the dimensions of input
matrices, a hyperparameter of the convolutional kernel [37].

In modern BLAS libraries, blocked matrix-matrix multiplication
is applied to get better performance with cache locality. GEMM
function takes two matrices A (M X K) and B (K x N) as input, and
calculates A - B to generate the output matrix C (M x N). To fit
different level caches, OpenBLAS splits input matrix A into blocks
of size P X Q, and B into blocks of the size Q X R, where P, Q and
R are preset parameters. The block matrix-matrix multiplication
algorithm involves several recursive loops, and the number of the
iterations for these loops are related to M, K, N through known
P, Q, R, and UNROLL. With our monitor, we can obtain the loop
iterations and therefore derive the matrix dimensions. The Open-
BLAS source code gives out the preset parameters, which on our
test machines are P=512, Q=256, R=16384 and UNROLL=8.

2.1.3  Experimental Results. We conduct some preliminary exper-
iment and launch our persistent cache monitoring on a GEMM
function. We focus on monitoring two loops, one with iterations
iter; = (N mod R)/3UNROLL where each iteration calls a function
oncopy, and the other with iterations iter; — 1 = M/P — 1 where
each iteration calls a function itcopy, as shown in Figure 2.

iter2 iter1 -1
—b} itcopy H oncopy }—b{ itcopy }—»

Figure 2: Flow of a loop in GEMM function[37]

In our spy program, we monitor two instruction addresses,
target1 from the function itcopy, and target?2 from the function
oncopy, consecutively, as shown in Algorithm 1. In each monitor-
ing iteration two time stamps will be collected (rdtsc) and stored
in an array, and the differential between every two consecutive
time stamps will be the time the CLFLUSH in between takes.

Algorithm 1: Monitor program for GEMM
for i < 1to ITER do
CLFLUSH target1;
Tarray[2i-1] = rdtsc();
CLFLUSH target2;
Tarray(2i] = rdtsc();

In the victim program, we vary the size of input matrices (M, N
and K) to get different iter; and itery. Figure 3 shows a trace
segment for the GEMM execution in the case M = 2048 N =
120,K = 1, with correspondingly iter; = M/P = 4 and iter; =
(N mod R)/3UNROLL = 5. We mark timings for target1 itcopy
as blue points, and timings for target2 oncopy red points.

500

e targetl: itcopy
® target2: oncopy

300 4

CPU cycle

) 1000 2000 3000 4000 5000 6000
Samples

Figure 3: Monitor result for Matrix dimension: M=2048,
N-120, K-1

In Figure 3, we have 5 red points followed by 3 blue points (above
the threshold of 250 cycles), which means oncopy() is accessed by
the victim 5 times and itcopy() is accessed 3 times, and therefore
itery = 5 and iter; = 4. Such information can help derive the size
of M, N, and K.

2.1.4 Discussion. To mitigate the Flush+flush based cache attack,
we can add more noise to the cache state, i.e., contention on the
shared cache by other concurrent processes. Disabling Hyperthread-
ing on x86 processors can also reduce the resolution of the CLFLUSH-
based monitor to reduce the cache information leakage.

Our persistent cache monitoring attack is fast and reliable. We
have applied it to break an AES encryption (from the OpenSSL
library) and recover a round key with less than 2000 executions
and monitoring traces. It is more effective than the traditional
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Flush+Reload attack, which requires strong synchronization be-
tween the victim and the spy. We will further investigate our per-
sistent cache attack on DNN execution to recover more hyperpa-
rameters and parameters including weights and biases.

2.2 Reverse-Engineering Model Parameters via
Floating-Point Side Channels

This section describes a finer-grained passive attack for model
parameters retrieval.

2.2.1 Attack Model. The side-channel being exploited is the operand-
dependent timing for floating-point computations. According to
the IEEE-754 floating-point (FP) number standard [15], a single-
precision floating-point number is represented as a 32-bit string,
consisting of a single-bit sign (S), an 8-bit exponent (E), and a 23-bit
mantissa (M). We target this format in this work, but the attack is
otherwise agnostic to the FP format.

A normal floating-point number is representable with a mantissa
starting with 1, and an exponent in some predefined range. In con-
trast, a subnormal (or denormal) number has a magnitude between 0
and the smallest normal number and thus requires leading zeros in
the mantissa. Commercial CPUs typically have dedicated floating-
point arithmetic units (FPUs) and registers for normal floating-point
operations. However, since subnormal floating-point numbers are
less frequent, there is no dedicated hardware support for them on
modern processors. Instead, processors may have the hardware to
detect subnormal operands, but implement operations on them in
software (i.e., dispatch them onto microcode executions). This can
make such operations much slower than normal operations [27],
opening up a timing channel

FP Multiplication Timing Model: Consider a floating-point
multiplication a - b = ¢, where g, b and ¢ are non-zero. In most
cases, if one of @, b, or ¢ is a subnormal floating-point number, this
operation will feature abnormally long timing. However, if either
operand or the result is zero, we will not observe abnormal timing.
We developed a suite of microbenchmarks to characterize the timing
model of x86 floating-point multiplications, shown in Table 1. All
experiments are performed on a workstation with Intel i7-7700
quad-core processor and 2x8GB Dual-channel DDR4 memory. We
found an average extra timing of 114 cycles for abnormal operations,
which we denote as o.

Table 1: Timing model for floating-point mutiplications

| Case | Operation | CPU cycles |
1 normal - normal = normal 10
2 normal - normal = subnormal 124
3 subnormal - normal = normal 124
4 subnormal - normal = subnormal 124
5 subnormal - subnormal = 0 10
6 subnormal -0=10 10

FP Addition Timing Model: A floating-point addition a +
b = ¢ will feature abnormal timing when |a| € (miny, 6e—33)
and |c| € (1e—43, maxs,) (as observed on our experimental plat-
form), where maxsy is the largest (single-precision) subnormal

number (~ 1.1754942¢—38), and min,, is the smallest normal num-
ber (~ 1.1754944e—-38). We ran microbenchmarks to characterize
the timing model of FP addition and found that the average ex-
tra timing o is again about 114 cycles. Previous work that utilizes
floating-point timing side channels mainly focuses on multiplica-
tions and divisions. In this work, we take advantage of the timing
leakage of additions too (which are frequent in DNN inference). In
the following subsections, we will show how we leverage these two
timing models to reverse-engineer the weights and biases.

2.2.2  Attack Details. We attack the model in a layer-by-layer fash-
ion. We focus on recovering the first layer of an MLP model.
The algebraic representation of the first layer is

11 = Activation(Wq - lg + by)

Our goal of attacking this layer is to recover all the elements of W1
and by, by only varying the layer input ly and observing the timing.
In this paper, we assume the activation function to be a rectified
linear unit (ReLU), one of the most effective and widely adopted
activation functions.

Our approach proceeds in three steps: 1) recover the set of ab-
solute values of each column of the weight matrix, i.e. without
knowing the order within the column; 2) arrange the weights to
figure out weights belonging to the same row and find their relative
signs; and 3) recover the bias vector and the actual signs of all
parameters in the first layer.

1) Column Absolute Values: This attack utilizes the first tim-
ing model presented in 2.2.1. We utilize case 2 in Table 1, where the
product is subnormal, and the inputs are normal numbers within the
range of [miny, 1]. For the first DNN layer, each neuron computes
a scalar product of the input vector and a weight row. In software
implementations without parallelism, these neuron computations
are carried out in sequence, and all contribute to the total timing,.
To focus on the first column, we set Ip[1] = a, [p[2 : m] = 0, for
some value a, where m is the length of the input vector lg. With n
neurons, the observed first-layer computation time is the sum of
the times for n multiplications with the fixed value of a. The total
timing model for the first layer is thus:

n
Tlayerl(a) = Z T(a- Wili,1]) + Torpers »
i=1

i=

where T,;4,,s sSummarizes other timing components and can be
considered constant. Our attack consists of two steps. First, find
a vector A = (a1, ag, ...an) with the n values in decreasing order,
such that Tjgye,1(ai) = ¢ + i - 0. We envision that in the range
[ming, 1], there exist n such values, namely Ag[i] = maxs, /VI]il,i €
[1, n], where V[i] are the n weight values. We treat these n values
as reference points, which divide the range of [min,, 1] into n +
1 segments for the value of a, with Tj4e,1(a) for each segment
decreasing from c+n-o to ¢, from left to right. We are finding a vector
A such that its n values partition the range of a into n + 1 intervals,
where each of the intervals contains one such reference value Ag[i].
By tracing this value with the interval known, we can recover the
weight. We employ a binary search to reduce the interval to the
precision desired. The precision threshold to terminate the binary
search in this algorithm is denoted by e.
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2): Weights with Relative Signs in Each Row The first step
has recovered all the weights in each column of W1, but we do not
know their order. Recovering all the locations of weights together is
hard because we can only control the input and observe the timing.
We adopt an iterative technique to accomplish this task. To create
a reference point for each row, we pick the first column of the
weight matrix and sort its values. Then, for each element of the
first column, we identify which element in each of the remaining
columns belongs to the same row, i.e., we recover a weight row
vector. The input is constructed so that only if the target element
is in the same row as the reference point, an addition abnormal
timing will be triggered. We repeat this step for all elements in the
first weight column and recover all the n weight rows.

After the previous two steps, we have recovered Wy except its
actual signs. For the final step, we exploit the definition of the ReLU
function, which is to reduce any negative input to 0. We construct
the value of one neuron to be of large magnitude and with the same
relative sign. If the output of the neural network does not change,
the actual sign is negative, and vice versa. The bias vector can be
recovered in a similar way.

Once the first layer is recovered, similar steps can be applied to
follow-on layers and they will all be recovered in a sequence.

2.2.3 Experimental Results. The experimental platform is as dis-
cussed in Section 2.2.1: the total execution time of the layer is
measured, in CPU cycles, for a hundred times repetitively; the most
frequent ones are averaged.

The model we recovered is afour-layer MLP, although the method
also applies to CNN as well. The input layer flattens the MNIST
dataset with a size of 28 X 28 = 784. The second and third layers
both have a size of 50. The last layer is the output layer before
the softmax function, which has a size of 10. All the activation
functions are ReLU. The model is trained using stochastic gradient
descent (SGD) with a learning rate of 1e—2, a momentum of 5e—1,
and a batch size 64 for 5 epochs. The testing loss and accuracy are
1.342e—1 and 96.04%, respectively. Our entire reverse-engineering
attack takes less than one hour for the selected MLP model on our
testing workstation.

We define the accuracy of parameter recovery as follows: pp =
1—|p—p’|/p, where p is the actual parameter, and p’ is the recovered
parameter. We evaluate the accuracy of all recovered first-layer
parameters and take their average.

We also evaluate the effect of adjusting the precision parameter €
in the algorithm sketched in Section 2.2.2; Table 2 shows the results.
When € is below 1e—39, the accuracy is close to 1. We can use even
smaller values for € in our deployed algorithm.

Table 2: First-layer Parameter Accuracy with Different ¢

—loge 37 38 39 40
Pp |[0.838 £0.1180.987 £ 0.011)0.998 + 0.0010.999 + le—4|

We plug in the recovered model for testing with the MNIST
dataset, and evaluate the model accuracy. Table 3 shows that the
recovered model reaches the original testing accuracy when € is

below 1e—39.
2.2.4 Countermeasures. The timing side channel considered here

relies on longer execution times for certain operations involving
subnormal numbers, so eliminating these numbers—for instance by

Table 3: Model Accuracy in classifying MNIST for different ¢

—Toge 37 38 39 40
Pmodel || 0.9193 | 0.9598 | 0.9604 | 0.9604

flushing all subnormal results to zero—eliminates this side channel.
Incidentally, this can speed up the computation. The downsides are
that it can decrease the computation accuracy, and it is platform-
and compiler-dependent.

Even subnormal-free floating-point arithmetic contains many
(fine-grained) timing dependencies, for instance due to exceptions
being raised on rounding, overflows, etc. Ultimately, these can only
be eliminated using a constant-time numeric library, e.g. based on
fixed-point arithmetic, or customizable floating-point arithmetic [1].
In addition to the likely performance degradation, such approaches
no longer benefit from the trade-off between precision and range.

3 ACTIVE ATTACKS - ON DNN EXECUTION

As deep learning is used in many safety-critical applications includ-
ing autonomous driving, medical disease diagnosis, and machine-
learning-as-a-service (MLaaS) in the cloud, the integrity of model
execution is crucial. This section presents two active attacks, with
their goal to generate adversarial inputs and introduce faults during
model execution, respectively.

3.1 Adversarial Attacks

Adversarial examples have been proved to successfully deceive deep
learning systems and become a serious threat [11]. With slight, but
carefully crafted, noise imposed on the input sample, the deep learn-
ing system misclassifies the adversarial example to a targeted wrong
class or any class which is different from the correct one. Figure 4
demonstrates three adversarial examples we have generated based
on a publicly available COVID-19 dataset of X-ray images [41].
The COVID-19-CXR-Dataset contains 6,354 CXR images, for both
training and testing, divided into three categories: COVID-19, Nor-
mal and Pneumonia. Misclassifying COVID-19 images to normal,
ie., false negative, would result in life loss; while misclassifying
normal/pneumonia images to COVID-19, i.e., false positive, would
place tremendous stress on the patients and also drain the already
stringent hospital medical resources.

We first investigate effective algorithms to generate adversarial
examples to test the vulnerability of deep learning models, with the
ultimate goal to enhance the robustness of deep learning models
under such adversarial attacks.

3.1.1  Attack Model. We extend two previous attack methods for
generating adversarial examples to our COVID-19 disease detec-
tion system, and demonstrate the vulnerability of the system. We
first develop a baseline model to classify COVID-19 disease from
chest X-ray images. Irregular, patchy, hazy, reticular, and wide-
spread ground-glass opacities shown in the chest X-ray image are
considered as the symptoms of COVID-19. In Figure 4, the first
column shows three original chest X-ray images of three patients,
Normal, Pneumonia and COVID-19, respectively. ResNet-18 [13]
is adopted as our backbone model since it is easier to optimize,
and can substantially reduce the number of parameters through a
residual learning framework.
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3.1.2  Attack Details. We implement both fast gradient sign method
(FGSM) and projected gradient descent (PGD) adversarial attacks.

FGSM [10] can find adversarial examples reliably. For a neural
network N, let x be the input of the model, y is the targeted output
associated with x, and o is the set of trained parameters of the
model. During the model training, the loss function is denoted as
L{w, x, ). The loss function can be linearized to obtain an optimal
max-norm constrained perturbation:

n = esign(VyL(w, X, ), (1)

where € is a hyperparameter that controls the maximum permitted
Lo norm of the perturbation and the gradient sign determines the
polarity of the perturbation. In general, a larger ¢ allows a more
noticeable perturbation on the original image and leads to a more
effective attack on the DNN model

Based on FGSM, PGD attack proposed by [24] is also a L, attack
and utilizes the gradient of the loss function. It is the standard
method for large-scale constrained optimization. Instead of simple
one-step in FGSM, PGD extends to the multi-step variant:

xtJrl = n(xt + GSgn(VxL(a)’ X, y)))’ (2)

x+S

where S denotes a set of allowed perturbations that formalizes the
manipulative power of the adversary.

3.1.3  Experimental Results. Our experiments are conducted on a
server with 4x NVIDIA RTX2080 GPU by using PyTorch APL. We
train and test our model on COVID-19-CXR-Dataset with 5614
images for training, and the other 740 images for testing.

Our baseline model is trained from scratch using 100 training
epochs with the training batch size of 64. The SGD optimizer and
cosine learning rate scheduler is used with the starting learning
rate value of 0.01. We generate 740 adversarial examples based on
the entire testing dataset to test the vulnerability of our COVID-19
disease model.

The results of our experiments are shown in Figure 4 and Figure
5. Our baseline model has achieved good performance with 94.7%
accuracy. For the FGSM attack, targeting the incorrect answer in
every case, we swipe the hyperparameter € from 0.01 to 0.06. It
is shown that it brings the effective accuracy down to below 1%.
Figure 4 illustrates the adversarial examples by the FGSM attack, all
with tiny noise that human eyes cannot notice. The PGD attack has
reduced the accuracy to 0% after 15 iterations with hyperparameter
€ = 0.007. Both attacks are effective and successful against our
COVID-19 disease model.

Our experiments indicate that adversarial attacks can easily
upset the deep learning system in classification, even for extremely
accurate classifiers. This vulnerability of the medical deep learning
system should raise urgent attention, calling for approaches to
enhance the adversarial robustness of DNN when developing the
medical deep learning system.

3.1.4 Countermeasures. We outline several methods towards im-
proving the robustness of deep learning systems against adversarial
examples.

Algorithmic defenses: Adversarial defense schemes have been
studied extensively for deep learning algorithms and promising

Original Noise Adversarial Example
Normal COVID-19

Pneumonia

COVID-19 Normal

Figure 4: Adversarial examples generated by the FGSM at-
tack with hyperparameter € = 0.06.
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Figure 5: Accuracy performance of FGSM attack and PGD
attack.

approaches are proposed such as gradient masking [2], robust
optimization[24], and adversary detection [36].

System defenses: Different stages of deep learning systems can
all be examined to guard against adversarial attacks. Particularly
in medical deep learning systems, medical images should be well
protected, both for privacy consideration and for integrity, i.e.,
disallowing any modifications on the inputs to happen.

3.2 GPU Overdrive Fault Attacks on CNNs

Graphics processor units (GPUs) are widely used to accelerate a
variety of computational intensive applications, including deep
learning-based image classification in medical disease diagnosis.
Using GPUs in such life-critical settings necessitates a thorough
study of their security properties, including their resistance against
fault attacks. In this section, we evaluate the fault resiliency of the
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same deep learning model presented in Section 3.1, ResNet-18, when
used as an inference kernel on GPUs for automatic recognition
of COVID-19 from the chest X-ray (CXR) images. We leverage a
non-intrusive software-controlled fault injection method on GPUs,
called overdrive fault attack from our prior DAC 2020 work [28]. In
this paper, we extend this attack to deep learning execution.

3.2.1 Attack Model. The GPU overdrive fault attack exploits the
voltage-frequency scaling (VES) feature of power management units
on GPUs. VFS is a low-power feature which trades off computation
performance with energy consumption on GPUs by dynamically
changing their operating voltage and frequency (i.e., operating
performance point or OPP). Prior work [28] discovers that we can
use the vendor-provided software interfaces on the host CPU to
force the GPU to operate under an out-of-specification, and unsafe,
OPP. This causes the GPU instructions to experience silent data
corruption (SDC) due to timing violations in the execution engine.
SDCs are undetected errors in the data which are transient and do
not cause permanent damage to the device.

Figure 6 provides an overview of the GPU overdrive attack model
where an adversary on the CPU sends a series of overdrive com-
mands to the GPU, forcing it to operate under an out-of-spec OPP
while some critical kernels are running on it. If the kernels are
cryptographic implementation, the adversary collects the faulty
outputs of the victim and conducts differential analysis to infer the
secret key.

If the kernels are deep learning implementation, the SDCs may
propagate through the network and lead to misclassficiation or
malfunction of the DNN execution.
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Figure 6: The overdrive fault attack model, with a malicious
application on the host CPU and the victim kernel running
on the GPU.
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Figure 7: Overdrive characterization for AMD Readon RX
580 GPU.

Table 4: Typical outcome of kernels with different GCN in-
structions under overdrive fault injection.

Category Examples Faulty outcome
S_MUL_I32, S_LSHR_B64,
Arithmetic/logical Hang/Crash
S_XOR_B32, V_MAC_F32
Control/branch S_NOP, S_GETPC, S_BRANCH Hang/Crash

S_STORE_DWORD,
Store Hang/Crash
FLAT_STORE_UBYTE,

S_LOAD_DWORD,
Load FLAT_LOAD_UBYTE, SDC/Hang/Crash

FLAT_LOAD_DWORD

3.2.2 Attack Details. We address several salient issues in our fault
injection attacks.

Faulty OPPs characterization: We target an AMD Readon RX
580 GPU and identify its vulnerable OPPs for different kernels. We
sweep the operating voltage and frequency of our target GPU in
small increments and find when the GPU instructions produce SDCs.
Figure 7 shows vendor-specified OPPs (normal ones), the maximum
OPPs before which the GPU become unstable (hang/crash) (silicon
limit), and the faulty OPP for the ResNet-18 inference engine.

Vulnerable instructions: We construct several kernels with
different categories of GPU instructions, including arithmetic/logical,
branch/control, store, and load. As CNN models are both computa-
tion and data intensive, V_MAC_F 32 instruction from arithmetic and
FLAT_LOAD_DWORD instruction from load category are frequently-
used. We find out that GPU kernels containing memory loads expe-
rience SDC under overdrive OPP, while others cause the system to
hang or crash, as shown in Table 4.

Overdrive attack timing control: The CNN models for image
recognition are composed of two main stages, the feature extraction
and the classification. The feature extraction stage has a series of
convolutional (CONV) layers with batch normalization (BN) or
pooling (POOL) layers in between, while the classification stage
has a series of fully-connected (FC) layers producing the output
predictions. We find through experiments that the CONV layers are
resilient against fault injection, and the BN and POOL layers often
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“absorb” the SDC fault injections, with the capability to mask them
from propagating to the next layers and affecting the final output.
In contrast, injecting faults on the later classification stage produces
more misclassifications, indicating that FC layers are more sensitive
to fault injection.

As shown in Figure 8, there are few parameters available in the
VFS software interface to control the overdrive timings, including
the rising time before reaching the target OPP (r). We use r = 32ms
to push the fault injection toward the classification stage of CNNs
for misclassifications. We conduct an end-to-end attack on a deep
learning model for COVID-19 recognition as detailed in the next
section.

Target Victim kernel exec.
e o @ I . I LB o
TN "
g Tt
Set faulty OPP §| 'l Fault injection
[] = [
' il
:I ! Time
Pre-delay (r) Stay

Figure 8: Overdrive timing parameters.

3.2.3 Experimental Results. Our training and test data sets are
downloaded from a public dataset collection [40]. We port the
ResNet-18 model trained in Section 3.1 to OpenCL for the AMD
GPU. The accuracy of the original trained model is 94.73% for
inference.

We then set the OPP to (1008mV, 1388Mhz) and the rising time
to 32ms (pre-delay), and launch an overdrive fault attack during the
ResNet-18 image inference. With these settings, we could observe
86 more misclassified images, reducing the inference accuracy to
83.13% significantly. Figure 9 shows four examples of misclassi-
fied images produced by the ResNet-18 inference engine under the
overdrive attack. We could change the CXR image classes from Nor-
mal to Pneumonia or COVID-19, and from Pneumonia to Normal
or COVID-19, i.e., overall false positives. However, we have not
observed false negative misclassifications, i.e., from COVID-19 to
Normal or Pneumonia.

We conclude that the GPU overdrive attack can pose a serious
threat to deep learning based recognition engines that are deployed
for large-scale and automatic medical image classification.

3.2.4 Countermeasures. Overall, SDCs are hard to detect by soft-
ware or reliability measures on GPUs.

We outline both software and hardware countermeasures against
GPU overdrive fault injections.

o Software: As the culprit lies in the faulty OPPs, the GPU
kernel and firmware can be augmented to block suspicious
OPPs, with extensive characterization of the target GPU.
Considering effects such as temperature variations, aging,
and process variations, this procedure can be calibrated reg-
ularly.

o Hardware: The underlying VFS mechanism can be improved
to prevent faulty OPPs from being taken. Hardware ap-
proaches include adding hardware guardbands in the GPU’s
power management circuitry to rollback unsafe voltage and
frequency settings to the safe vendor stipulated OPPs promptly.

True: Normal True: Normal

Prediction: COVID19 Prediction: PNEUMONIA

True: PNEUMONIA True: PNEUMONIA

Prediction: COVID19 Prediction: Normal

I ﬂ
Figure 9: Four examples of the misclassifications introduced
by the overdrive fault attack.

Specifically the clock stretcher circuits will be modified and
voltage regulators can respond more quickly.

4 CONCLUSIONS AND FUTURE WORK

Confidentiality, integrity and reliability are paramount in much
of data-intensive computing, but especially so for medical applica-
tions, which typically process highly sensitive customer data. DNN
deployed in medical devices open up a new attack surface. In this
work, we presented four attacks targeting this new surface. Two
passive attacks can steal the valuable IP of the DNN models. The
threat of active attacks in medical applications is demonstrated
by an adversarial attack and a fault injection attack. Individual
countermeasures are discussed for each attack. Applying all these
countermeasures on top of each other to protect a DNN inference
engine against all attacks is not practical. For future work, we
propose to build a comprehensive threat model for DNN applica-
tions, to enable the design of countermeasures that defend against
multiple types of attacks.

Our new attacks are first-of-their-kind, revealing an under-explo-
red attack surface in modern applications, i.e., DNN inference en-
gines. Insights gained during attack exploration will provide valu-
able guidance to effectively protect against reverse engineering and
integrity violations.
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