
Fairness and Liveness

Thomas Wahl

Abstract
Fairness and Liveness are related notions of describing which of a collection of concurrent pro-

cesses make progress in their execution. We present three common notions of fairness, and show
their impact on the satisfaction of liveness properties by means of an example.

1 Fairness

A fairness constraint is imposed on (the scheduler of) the system that it fairly select the process to
be executed next. Technically, a fairness constraint is a condition on executions (paths) of the system
model. Although these constraints are not properties to be verified (rather, conditions assumed to
be enforced by the implementation), they can be expressed in temporal logic. Here are three typical
fairness constraints, formulated in LTL:

Absolute Fairness, Impartiality: every process should be executed infinitely often:

∀i : GF exi .

However, this notion ignores that a process might at certain times not be ready to execute, it
may not be enabled. The following two notions consider that.

Strong Fairness: every process that is infinitely often enabled should be executed infinitely often in
a state where it is enabled:

∀i : (GF eni) ⇒ (GF(eni ∧ exi)) .

Weak Fairness: every process that is almost always enabled should be executed infinitely often:

∀i : (FG eni) ⇒ (GF exi) .

(Remark: For this notion, exi can equivalently be replaced by (eni ∧ exi).)

Remark.
Absolute Fairness ⇒ Weak Fairness, Strong Fairness ⇒ Weak Fairness .

This means that if a property is true under the assumption of Weak Fairness, then it is also true
under Strong and under Absolute Fairness. However, Absolute Fairness does not imply Strong
Fairness, nor vice versa.

Fairness is not a property to be checked of a system. Consider the way asynchronous systems are
modeled: as a graph in which each node represents a global system state, and each successor of a node
corresponds to the new global state reached by a particular of the processes making a local transition.
Such a model usually contains no information about how often a process is executed, or how the next
process to be executed is chosen by the scheduler—in fact, the model is independent of the underlying
operating system and hence of the scheduler: scheduling is treated nondeterministically.

When verifying certain desirable properties, we might find that they are not satisfied by a system
as it is described by the model. If, however, the system behaved fairly in its selection of processes to
be executed, the property would hold. Since we don’t know about the system’s fairness, we model
check such properties assuming the system behaves fairly.

1



2 Liveness properties

These properties describe the requirement that a process make progress toward a specific goal, the
achievement of which depends on the fairness of the system. If a process never gets to execute, it
usually cannot reach its goal. Therefore, these properties are often evaluated only along fair paths,
i.e. paths that satisfy one of the above three fairness path requirements.

The following example shows a synchronization skeleton of a semaphore solution to the mutual
exclusion problem of concurrent processes, and the induced 2-process Kripke structure (we omit s):

Cis := 1
!s

Ni

s := 0

Ti
s := 0

C1N2

T1C2

N1C2

N1N2

T1N2 N1T2

C1T2

T1T2

C1C2

Other than safety, a typical property of interest is whether a process makes progress towards its
goal—to enter its critical section—if it so desires, formulated as

∀i : G(Ti ⇒ F Ci).

If the processes are selected randomly by the scheduler, this property does not hold. As a counter
example, consider two processes and take the global state N1T2, which satisfies T2. The future given
by the infinite path (N1T2, T1T2, C1T2)ω, where always process 1 executes, does not satisfy F C2. The
problem is that random scheduling allows unfair execution paths. A sensible implementation of the
model will instead have a fair scheduler. It is therefore reasonable to check the property under the
assumption of fairness.

If we require Weak Fairness, the weakest of the three fairness constraints (the other two imply it),
then the formula still does not hold, with the same counter example. Process 2 is not almost always
enabled along the above path (since it is periodically disabled at (C1, T2)), so Weak Fairness is vacu-
ously true. — The property that a process is almost always enabled is too strong—it does not hold
often in practice, such that the Weak Fairness constraint is often vacuously true and thus not useful.

If we require Absolute Fairness, then the property still does not hold, since the scheduler could
choose to execute process 2 whenever in system state (C1, T2), in which process 2 is not enabled, so it
makes no progress.

However, Strong Fairness says something about executing processes that are infinitely often enabled
(as opposed to almost always), and this antecedent is not too strong. In fact, in the system above,
each process is infinitely often enabled along any path: the states in which process i is not enabled are
of the form (Ti, Cj), for some j 6= i. In this case, process j makes the next transition, leading to state
(Ti, Nj) in which process i is enabled again. – Thus, the precondition of Strong Fairness is satisfied
for process i, and the right hand side guarantees that i proceeds to C.

2


