
Efficient Reduction Techniques
for Systems with Many Components

E. Allen Emerson and Thomas Wahl

Department of Computer Sciences and Computer Engineering Research Center
The University of Texas, Austin/TX 78712, USA

Abstract. We present an improved approach to verifying systems in-
volving many copies of a few kinds of components. Replication of this
type occurs frequently in practice and is regarded a major source of state
explosion during temporal logic model checking. Our solution makes use
of symmetry reduction through counter abstraction. The efficiency of
this approach directly depends on the size of the components’ local state
space, which is exponential in the number of local variables. We show how
program analysis can significantly reduce the local state space and can
help towards a succinct BDD representation of the system. Our reduction
techniques synergistically combine into efficient symbolic verification, as
documented by promising experimental results.

1 Introduction

We consider systems comprised of many copies of a few basic building blocks.
Examples include collections of concurrent processes executing the same pro-
gram, but also compositions of distinct kinds of homogeneous subsystems, such
as the readers-writers protocol. Systems of this type are a primary source of state
explosion during temporal logic model checking, characterized by the potential
to incur a state graph much larger than the description of the system.

In this paper, we show how program analysis techniques can significantly
enhance the benefit of symmetry reduction to limit this problem. A system is
symmetric with respect to a group of bijections on the state space if the transi-
tion relation R is invariant under each bijection π, i.e. if R equals {(π(s), π(t)) :
(s, t) ∈ R}. The bijections amount to permutations of the processes. States that
are identical up to such permutations are considered equivalent. The quotient
structure that is derived naturally from this equivalence is bisimilar to the origi-
nal structure. Of particular interest is the case of full symmetry. Here, the above
condition on R is satisfied for every permutation π. Such symmetries allow up to
an exponential reduction in structure size. Also, they occur frequently in prac-
tice, especially in connection with systems of replicated homogeneous process
components.

This work was supported in part by NSF grants CCR-009-8141 and CCR-020-5483,
and SRC contract 2002-TJ-1026. Email: {emerson|wahl}@cs.utexas.edu

Model checking on the quotient structure requires an efficient way of deter-
mining whether two states are equivalent. This so-called orbit problem turned
out to be the bottleneck of symmetry reduction, particularly for symbolic rep-
resentation using binary decision diagrams. The BDD that contains pairs of
symmetry-equivalent states is provably of intractable size and must therefore be
avoided [CEFJ96].

One solution that applies to the case of fully symmetric systems is counter
abstraction [Lub84,GS92]. It is based on the observation that two global states,
viewed as vectors of local states of processes, are equivalent under arbitrary
permutations exactly if for every local state L, the number of occurrences of L
is the same in the two states. For example, the three states (A,A,B), (A,B,A)
and (B,A,A) are equivalent under full symmetry, since in all of them, two of
the processes reside in local state A, one in B. The states can be represented
succinctly as the tuple (2A, 1B) of counters. The approach not only avoids the
orbit problem, but also reduces a system of size ln (n processes, each with l
possible local states) to one of size roughly nl (l counters, each with range [0..n]).
With respect to the number of processes, the system size has been reduced from
exponential to polynomial [ET99,EW03].

Unfortunately, the local state explosion problem, encountered often in prac-
tice, can have a negative impact on these benefits. A local state of a process is a
valuation of the process’ local variables. For example, each of the 2m assignments
of values to m boolean local variables forms a local state. The size of the local
state space is thus exponential in the number of local variables. Introducing a
counter for every local state becomes infeasible in connection with symbolic data
structures like BDDs, which require bits to be reserved a priori for each counter.

One objective of this paper is to limit local state explosion. We show that an
analysis of the input program describing the processes’ behavior often reveals
opportunities to reduce the number of local states that actually must be mon-
itored. Although in principal a local state is defined by the values of all local
variables, it is sufficient to restrict attention to those that are live at certain
points in the program, i.e. whose current value is used along some future path.
Experience shows that for many programs, only a fraction of their variables are
live at any time during execution. We go on to demonstrate instances of static
local reachability analysis that can further cut down on the size of the abstract
system: The counter of an unreachable local state is invariably 0 and does there-
fore not have to be introduced into the counter-abstracted model. Many cases of
unreachable local states can be detected through an over-approximation of the
local state space of each process or by statically analyzing the process’ program,
before building the global Kripke model.

Live variable analysis is frequently applied in compiler optimization to im-
prove run time performance. A key contribution of this paper is to show a way
in which it can be very beneficial for verification as well, namely through a po-
tentially exponential reduction of the size of the counter-abstracted model. In
the best case, if no two of m boolean local variables are ever live together, the

abstract model needs only 2 counters per program control point, despite 2m

conceivable local states.
The techniques can be applied algorithmically. They are efficient, since they

operate on the source code, which is usually small compared to a Kripke model.
Finally, the proposed reductions are exact, i.e. the reduced system has the same
behavior as the original one (they are bisimilar).

Languages intended for modeling asynchronous systems often allow chang-
ing the local state of many components in one atomic step. For example, a reset
operation might cause every component to return to its initial state. In the ab-
stract program, this requires a synchronous update of a large number of counter
variables. We show how serialization can greatly reduce the complexity of sym-
bolically representing such statements, which seem to occur quite frequently in
practice. The serialized execution is efficient and preserves all properties of the
system expressible in the temporal logic CTL.

Our framework allows symbolic model checking of arbitrary CTL formulas for
systems specified in the high-level and flexible modeling language of the Murϕ
verifier [MD]. We exploit symmetry using counter abstraction whenever possible.
(Sub-) Systems with full symmetry, as marked by Murϕ’s scalarset type, are
converted into a hybrid representation of counters (replacing the symmetric part)
and specific state variables.

We structure this paper as follows. Section 2 introduces the model of com-
putation, and provides some background. Section 3 presents the techniques to
reduce the local state space. Section 4 describes the serialization of expensive
atomic actions. We conclude with experimental results, comparison to related
work and future prospects.

2 Preliminaries

Model of Computation. We assume a system of concurrent process components
with an interleaving model of computation. Replicated processes are instanti-
ations of a program template. Any number of templates is allowed; each gives
rise to a fully symmetric subsystem. Each process has its own local variables,
declared in its template. All variables and statements declared outside any tem-
plate are referred to as global. We thus permit compositions of distinct fully
symmetric subsystems, which allows us to model systems like Readers-Writers
(two symmetric clusters) or microprocessors with separate symmetries in chan-
nels, memory addresses, registers, etc.

Symmetry Reduction. Intuitively, the Kripke model M = (S,R) of a system is
symmetric if it is invariant under certain transformations π of its state space
S. In our case of process symmetry, π takes over the task of permuting the
processes. Formally, if li denotes the local state of process i, i ∈ [1..n], π is derived
from a permutation on [1..n] and acts on a state s as π(s) = π(l1, . . . , ln) =
(lπ(1), . . . , lπ(n)). Given π, we derive a mapping at the transition relation level
by defining π(R) = {(π(s), π(t)) : (s, t) ∈ R}. Structure M is said to be fully
symmetric if π(R) = R for all π.

The relation θ := {(s, t) : ∃π : π(s) = t} on S defines an equivalence be-
tween states, known as orbit relation; the equivalence classes it entails are called
orbits. It induces a quotient structure M = (S,R), where S is a chosen set of
representatives of the orbits, and R is defined as

R = {(s, t) ∈ S × S : ∃s, t ∈ S : (s, s) ∈ θ ∧ (t, t) ∈ θ ∧ (s, t) ∈ R}. (1)

In case of full symmetry, i.e. given π(R) = R for all π, M is up to exponentially
smaller than M and bisimulation equivalent to M ; the bisimulation relation is
ξ = (S×S)∩ θ. Relation ξ is actually a function and maps state s to the unique
representative s of its equivalence class under θ.

Properties of systems of concurrent components are usually expressed using
indexed atomic propositions, such as Ci, stating that in the given state process i
satisfies some property C. To perform model checking on M , the (maximal)
propositional subformulas of the property in question must be invariant under
permutations. A permutation acts upon a propositional formula by permuting
the indices of the atomic propositions appearing in it. Invariance then means
propositional equivalence. For example, the propositional formula C1 ∨ . . . ∨Cn
is invariant under any permutation action. Summarizing, for two states (s, s) ∈ ξ
and any formula f over propositional subformulas p such that p ≡ π(p) is a
tautology for every π ∈ G,

M, s |= f ⇔ M, s |= f. (2)

Counter Abstraction. For BDD-based symbolic verification, symmetry reduc-
tion using the orbit relation is likely to be space-inefficient, as shown in detail
by et al.ClarkeCEFJ96. An alternative technique makes use of the following
observation in order to represent orbits. Two states, i.e. vectors of local state
identifiers, are equivalent under θ (identical up to permutation) exactly if for
every local state L, the frequency of occurrence of L is the same in the two
states—permutations only change the order of elements, not their values. An or-
bit can therefore be represented as a vector of counters, one for each local state,
that records how many of the processes are in the corresponding local state.
For example, in a system with local states N , T and C, the states (N,N, T,C),
(N,C, T,N), and (T,N,N,C) are all symmetry-equivalent; their orbit (which
contains other states as well) can be represented compactly as (2N, 1T, 1C), or
just (2, 1, 1).

In practice, it is often possible to rewrite the program describing a fully
symmetric system such that its variables are local state counters in the first
place (before building a Kripke structure). This procedure is known as counter
abstraction, on which this paper concentrates. The advantage of the counter
notation is clear: the symmetry is implicit in the representation; the very act of
rewriting the program from the specific notation of local state variables into the
generic [ET99] notation of local state counters implements symmetry reduction.
Subsequently, model checking can be applied to the structure derived from the
counter-based program without further considerations of symmetry.

Input Language. We adopted the input language of the Murϕ explicit state
verifier, because it is widely known, has been used to verify non-trivial exam-
ples, and already has a built-in datatype to mark full symmetry. The complete
language specification is available from [MD]. In brief, transitions in Murϕ are
known as rules, which may have a guard that must be satisfied for the rule to
be enabled, i.e. able to fire. Firing means executing the rule’s body, leading to
a new state. The body consists of assignments and high-level statements like
loops, subroutine calls, etc. Our verifier accepts a program in this language and
performs symbolic model checking with respect to CTL specifications (unlike
the Murϕ tool, which analyzes the reachable state space for invariant violations
using an explicit representation of states).

Symmetry is marked in the Murϕ input language using the scalarset data-
type, a symmetric subrange of the integers. Syntactic restrictions guarantee full
symmetry of the resulting state graph.1 For example, a system of n pairwise inter-
changeable processes can be declared as var proc: array[scalarset(n)] of
basetype, where basetype is some user-defined data type that represents local
variables. Our verifier recognizes this type of symmetry and ultimately translates
the program into an equivalent one, with the specific processes proc[0..n-1]
replaced by counters.

3 Local State Space Reduction

High-level modeling languages allow users to specify the behavior of processes
in terms of (assignments to) global and local variables. The concept of local
states is implicit and must first be extracted from the program. This is, at least
in theory, straightforward. A local state is given by a valuation of the local
variables. Quantitatively, let m be the number of local variables declared in a
program template, and let V1, . . . , Vm be the ranges of those variables. It follows
that there are |V1|× . . .×|Vm| possible local states of each process. If we naively
introduce one counter per local state in order to perform counter abstraction,
we obtain a number of counters that is exponential in m and hence in the input
program size.

The number of local states is an important factor for the efficiency of counter
abstraction. With BDD-based symbolic model checking, bits need to be explic-
itly allocated for every counter, whether it is relevant for program execution or
not. It is therefore crucial for the performance of counter abstraction to detect
situations in which keeping a counter to monitor a local state is unnecessary.
Such a situation might arise because some variable values in a local state are
unused in the program and hence do not matter (section 3.1), or because the
local state is known to be unreachable (section 3.2).

1 Compliance with the restrictions is not entirely verified by the compiler, see [MD].

3.1 Live Variable Analysis

We assume the program executed by the processes is specified as sequential
code with individual control points that demarcate atomic actions. In this case,
the local state space of a process contains a program counter, indicating the
statement to be executed next. An analysis of the program allows us to estimate
the way data are manipulated. We can exploit this information by only keeping
track of values of variables that can possibly be used in the future.

Definition 1 (e.g. [Muc97]) A variable x is called live at a control point if
there exists a path to a future moment2 at which the value of x is used, and x is
not assigned along the path. Otherwise, x is dead at the control point.

Consider the following example. Each of n processes has two local boolean
variables, nonempty and locked , and a program counter PC ∈ [0..7]. There is a
global variable q ∈ [0..n], which counts waiting processes. Process i’s program is
shown in figure 1.

0. nonemptyi := (q > 0); q := q + 1
1. if nonemptyi then
2. locked i := true
3. wait until ¬locked i

{ execute restricted code here }
4. if q = 1 then
5. q := 0; goto 0
6. some j : PC j = 3 : locked j := false
7. q := q − 1; goto 0

lock process i
wait for other process to unlock i
access to some resource, etc.

unlock some proc. j waiting at line 3

Fig. 1. Program text for process i

Variable nonempty is live only at program line 1. It is used only there, and
it is not live before reaching 1, since it is assigned right before in line 0. The
consequence is that we do not have to remember the value of nonempty at
any program line other than 1. For instance, the two local states (4, false, false)
and (4, true, false), written in the order (PC ,nonempty , locked), do not have
to be distinguished, since they differ only in the value of the dead (in line 4)
variable nonempty . Notice that both local states are otherwise legitimate and in
fact reachable. A similar argument holds for variable locked . It turns out to be
live only at line 3, and thus needs to be remembered only at that point of the
program.

How much does this analysis help counter abstraction? The straightforward
approach introduces a separate counter for each conceivable local state, of which
there are |[0..7]|× |{false, true}|2 = 32. In contrast, following the above analysis,
at all lines except 1 and 3, no local variable other than the PC matters. For

2 “Future” is meant to include the present, i.e. the current program line.

line 1, we only record the value of nonempty , and for line 3, only locked . The
table below lists the local states that the program needs to monitor, using again
the notation (PC ,nonempty , locked) with ’−’ for irrelevant values:

(0, − , −) (2, − , −) (4, − , −) (7, − , −)
(1, false, −) (3, − , false) (5, − , −)
(1, true , −) (3, − , true) (6, − , −)

We have thus reduced the number of local states to keep track of from 32 to 10.
The formal justification for not recording dead variables is as follows. Assume

each process has a program counter PC and m other local variables v1, . . . , vm.
The concurrent execution of the program P by the processes in an interleaved
fashion defines a Kripke structure M = (S,R). Recall that a global state s ∈ S
is given by a valuation of all global variables, and by assigning a local state to
each process.

Definition 2 Consider the binary relation ∼ on the local state space of each
process, defined as (PC x, x

1, . . . , xm) ∼ (PC y, y
1, . . . , ym) if

1. PC x = PC y, and
2. xi = yi for each i ∈ [1..m] such that variable vi is live at line PC x.

Relation ∼ can be extended to a relation ≈ on the global state space S by defining
s ≈ t if s and t agree on all global variables and for each process p, the local
states lp(s) and lp(t) of p in s and t, respectively, satisfy lp(s) ∼ lp(t).

Theorem 3 Relation ≈ is an equivalence relation on S. Moreover, the quotient
structure M of M with respect to ≈ is bisimilar to M with the canonical bisim-
ulation relation B := {(s, [s]) : s ∈ S} relating a state to its equivalence class
under ≈.

Proof : For the first part, we start by showing that ∼ is an equivalence relation
on the local state space. Reflexivity and symmetry of ∼ follow immediately from
properties of equality. For transitivity, (PC x, x

1, . . . , xm) ∼ (PC y, y
1, . . . , ym)

and (PC y, y
1, . . . , ym) ∼ (PC z, z

1, . . . , zm) implies PC x = PC z. Assume an i
such that variable vi is live at PC x. From the equivalence of the first two states,
we conclude xi = yi, and from the last two, we conclude yi = zi, thus xi = zi.
Regarding ≈, since both “agreement on all global variables” and ∼ are equiva-
lence relations, so is ≈.

For the second part, the quotient M = (S,R) is defined as S = {[s] : s ∈ S}
(set of equivalence classes of ≈), and R = {(s, t) ∈ S × S : ∃s ∈ s, t ∈ t :
(s, t) ∈ R}. Given s ∈ S and s = [s], we have to show two things:

1. Assume t such that (s, t) ∈ R. Then let t = [t]. t and t are related under B.
By definition of R, it follows that (s, t) ∈ R.

2. Assume t such that (s, t) ∈ R. Then, by definition of R, there exist s′ ∈ s,
t′ ∈ t such that (s′, t′) ∈ R. By the semantics of interleaved execution, this
means that s′, t′ agree on the local states of all processes except one, say p,

which possibly changes its local state from lp(s′) to lp(t′). Since s, s′ ∈ s,
they have the same PC value, they agree on all global variables, and further
on all local variables of process p (in fact, of all processes) except possibly
some dead variables, whose values, by definition, are not used at the current
PC . It follows that executing P from local state s gives the same result t′ as
executing P from s′, hence (s, t′) ∈ R. We can therefore choose t := t′ and
have t ∈ t and (s, t) ∈ R. �

Counter abstraction of the reduced structure M can be implemented fully au-
tomatically, and without first building M , as follows. Determining live variables
is a data flow analysis problem. A variety of solutions exist, of a complexity that
is in practice usually low-degree polynomial in the size of the input program;
see for example [Muc97]. The result is, for each value of the program counter,
a list of the variables that are live just before the corresponding line. Stepping
through the program, we create a counter variable for each partial valuation of
the local variables of the form (PC , x1, . . . , xk) such that xi is a value of local
variable vi, and vi is live at the given PC . Dead variables are not expanded into
possible local states.

3.2 Local Reachability Analysis

Suppose L is a local state (i.e. a valuation of local variables) that is not reachable
by any process. In the counter-abstracted program, the corresponding counter
nL is invariably zero. If the unreachability of L is known a priori, we do not have
to introduce nL as a variable in the abstract program, and the translation into
counters does not have to consider L.

Formally, we define the local reachability problem as follows. Given a lo-
cal state L and a system of concurrent processes, determine whether there is a
reachable global state in which some process is in local state L. In general, this
problem is of course a model checking problem by itself. However, in order to
perform counter abstraction, we do not need to know the exact set of reachable
local states; any over-approximation suffices. In fact, not performing such an
analysis at all is tantamount to using all (conceivable) local states in creating
counters. The better we approximate the precise set of reachable local states,
the fewer counters we have to introduce, resulting in increased efficiency.

The set of reachable local states can be approximated in several ways. One
solution is to build a Kripke model of the given program template, instantiated
with only a single process, say process 1. Guards that express dependencies
on local states or local variables of other processes are treated conservatively,
i.e. they are replaced by true if under an even number of negations (they have
positive polarity), and by false otherwise. For example, the guard ∃i : Ai is
replaced by A1∨ true and hence by true, whereas ∀i : Bi is replaced by B1∧ true
and hence by B1. Guards on global variables are likewise replaced by true or
false, depending on their polarity. Assignments to global variables are discarded.
Essentially, local information of other processes and global variables are viewed
as part of an unpredictable environment. The result is a Kripke structure that

over-approximates the behavior of a process. Since this local structure can be
expected to be exponentially smaller than the global structure of the concurrent
composition of the processes, standard reachability analysis can be performed
on it. Every local state reachable in the global structure is also reachable in the
local structure.

Another technique to approximate reachable local states is borrowed from
compilers, which sometimes optimize program behavior by confining the num-
ber of values that a local variable can have at some program point. Local states
not satisfying these limits are unreachable. Examples for such techniques are
constant propagation, constant folding, copy propagation, integer interval arith-
metic and perhaps even alias analysis (depending on the expressive power of
the programming language).3 Consider the following contrived program, which
prints an input number a in some numerical base and the character with ASCII
code a, denoted by chr(a).

0. const minprint := 32
1. base := 16
2. read a
3. if minprint ≤ a < minprint + 96 then
4. print convert(a, base), ": ", chr(a)

least printable ASCII code

choose a numerical base

if a among 96 printable characters

Variables minprint and base degenerate to constants, since there is only one (dy-
namic) assignment to them. After replacing every occurrence by 32 or 16, resp.
(constant propagation), these variables do not participate in the construction of
local states. More interestingly, in line 4 we know after constant folding that a
satisfies 32 ≤ a < 128, so local states with PC = 4 and a < 32 or a ≥ 128 are
unreachable. Assuming base ∈ {2, 8, 10, 16} (binary, octal, etc.) and a ∈ [0..255],
the conceivable state space of the above program with local variables PC , base
and a has size 5 · 4 · 256 = 5120. Using the above observations and the fact that
a is live only at lines 3 and 4, we obtain a number of counters that need to be
introduced of only 1 + 1 + 1 + 256 + 96 = 355 (one term for each program line).

More generally, regarding the potential of these observations, note that if we
have shown for only a single local variable that it cannot assume a particular
value at some program line, the total number of local states is reduced by at
least 2m−1, given m local variables. (However, for several variables at the same
program line, the respective sets of local states eliminated may not be disjoint.)

Discussion. Both analyses presented in section 3 are performed efficiently on the
source code of the program. As described here, both techniques are static, i.e.
they do not require (partial) execution of the program and ignore communication
between components. Instead, they exploit modularity. This makes them a fast
front-end to counter abstraction. Another point to note is that live variable
analysis (section 3.1) requires an input model with highly predictable flow of
control, such as a sequential program, as opposed to, say, a set of rules among

3 See for instance [Muc97] for a taxonomy and precise definitions of these techniques.

which the next is non-deterministically chosen. In contrast, local reachability
analysis via the local Kripke structure (section 3.2) is fit for any input model.

The overall benefit of counter abstraction is dependent on the ratio between
the number of local states l and the number of participating processes n. Since
the counter-abstracted system can be shown to have size O(nl), as compared to
O(ln) for the original system, the case n � l promises most benefits. If l � n,
then at any time during execution most counters are zero. For space-efficiency,
an explicit-state model checker may use a compressed notation for all zero-valued
counters. Symbolically, zero-suppressed BDDs [Min01] may be applicable, but
this technique does not capture the benefits of live variable analysis, where the
counters shown to be irrelevant are non-zero. Moreover, since the set of zero-
valued counters varies over time, counters for all local states must still be declared
initially. The advantage of the techniques in this section is that they reduce the
number of counters before even building a symbolic model; irrelevant ones are
simply not present.

4 Serializing Synchronization Constructs

In modeling languages intended for describing asynchronous systems, the gran-
ularity of interleaving is determined by whatever the programmer puts inside an
atomic action. Such languages therefore usually support constructs that change
the local state of several processes at the same time. Common examples are
broadcasts to all processes in a symmetric subsystem instructing them to re-
set their local state in order to recover from a deadlock, or to invalidate their
cache data. We call such statements synchronization constructs. We show that
the straightforward way to implement them abstractly using counters can lead
to complex BDDs, and describe an alternative that allows for a more efficient
solution.

4.1 Straightforward Counter Abstraction

In this section, we denote the value of local variable x in local state L by x(L)
(“x in L”). Assume, for the purpose of an example, every process has a local
boolean variable x, and consider the statement (before counter abstraction)

for i : xi := false. (3)

It changes the local state of all processes i where currently xi = true. The
straightforward translation of this simple statement into one based on counters
is rather involved. For all local states L with x(L) = true, counter nL must be
set to zero (no process with x = true exists after the execution of (3)). Further,
for local states L with x(L) = false, let L′ := L

∣∣
x=true

denote the local state
identical to L except that x(L′) = true. Counter nL increases by nL′ , since all
processes in L′ transit to L. These two steps can be implemented by executing

for L : x(L) = true : do nL := 0 (4)
for L : x(L) = false : do nL := nL + nL′ with L′ := L

∣∣
x=true

(5)

in parallel, or sequentially in the order (5), (4). Parameter L in statement (5)
ranges over almost all possible local states, namely all where x is fixed to be
false. In the worst case, the number of choices for L is thus exponential in the
number of local variables other than x. For all such choices of L, the counter ad-
dition operation in (5) must be modeled symbolically. Even after the reductions
described in the previous section, there is an evident potential for blow-up in the
representation of statement (5) as a BDD. Things get worse if variable x has a
range Vx of cardinality greater than 2. The choice of the “source state” L′ in (5)
(which processes leave in order to enter L) is then not uniquely determined any
more. In general, for each L, there are |Vx| − 1 possibilities for L′.

The intuition for this complexity is an artifact of counter abstraction. In an
assignment like for i : xi := false, the current value of xi is overwritten and
therefore normally not of further interest. With counter abstraction, however,
we need to know this value since the counter for the future local state increases
by the value of the counter for the current local state (L vs. L′ in (5)). The
solution to avoid the complexity is to disentangle steps (4) and (5) so as to
execute the original statement (3) in a serial fashion. The key is that this can
be done in a way that preserves all properties of the program.

4.2 Enforcing Serialized Execution

Compound statements of the form for i : stmti are often such that the result
does not depend on the order in which the individual stmti are executed. This is
guaranteed, for example, if i ranges over the process indices of a fully symmetric
(sub)system. To implement for i : stmti serially, execution switches to a mode
of operation in which the only enabled statement is stmti ; we call it the serial
mode. It will be turned off again once every process has executed stmti —the
order is irrelevant. To see how such a mode can be enforced, we first turn our
attention to a subclass of statements. In the following, we view a statement as
a mapping from states to states in the form stmt : S → S.

Definition 4 A statement stmt is called idempotent if stmt2 = stmt, i.e.
executing it twice has the same effect on any state as executing it once.

Observation 5 Statement stmt is idempotent exactly if, and only if, for all
states s, stmt(s) ∈ p for stmt’s fixpoint predicate p = {s ∈ S : stmt(s) = s}.

Thus, executing an idempotent stmt produces a state satisfying p, and every
state satisfying p is unchanged by stmt. All assignments x := expr such that
x does not appear in expr are idempotent; the fixpoint predicate is x = expr .
For conditional statements if cond then x := expr , the fixpoint predicate is
(¬cond) ∨ (x = expr).

Consider now a statement for i : stmti with idempotent stmti , and let pi be
stmti’s fixpoint predicate. For an intermediate state s during serial mode, the
question whether some process j still needs to execute stmtj can be resolved
using pj : the answer is yes exactly if pj is false at s. The serial mode must
therefore be maintained as long as not all pi are true. More precisely,

1. let b be a fresh global boolean variable, initial value false
2. the statement for i : stmti is replaced by b := ∃i : ¬pi
3. the guard of every existing statement in the program (including the new one

in number 2) is strengthened by the conjunct ¬b
4. the following guarded statement is added to the program, for any process j:

b ∧ ¬pj −→ { stmtj ; b := ∃i : ¬pi }

This translation procedure is applied to all for statements with an idempotent
body. One new bit is introduced for each such for statement, resulting in a vector
~b of new variables. The old and the new program give rise to Kripke structures
M and M ′, respectively.

Property equivalence of M and M ′. Let B denote the disjunction of all bits
in ~b; this evaluates to true over a global state in M ′ exactly if M ′ is currently
executing one of M ’s for statements. First we observe that M ′ is neither an
over- nor an under-approximation of M , since some behavior was removed from
M , other behavior was added. It turns out, however, that all properties written
in the temporal logic CTL4 are preserved if we ignore states of M ′ in serial mode
in the evaluation of CTL formulas:

Theorem 6 Let f be a CTL formula, s a state of M , and let s′ be the unique
state of M ′ that satisfies ~b = (false, . . . , false) and is identical to s on all other
variables (~b does not occur in s). Then

M, s |= f exactly if M ′, s′ |= f ′,

where f ′ is recursively defined according to the structure of f :

f atomic proposition: f ′ = f
f = ¬g : f ′ = ¬(g′)
f = g ∨ h : f ′ = g′ ∨ h′
f = AF g : f ′ = AF (g′ ∧ ¬B)
f = AG g : f ′ = AG (g′ ∨B)
f = A (gUh) : f ′ = A ((g′ ∨B) U (h′ ∧ ¬B))
f = AX g : f ′ = AX A (B U (g′ ∧ ¬B)).

An analogous result holds for formulas with existential path quantifiers. The
proof is accomplished by induction on the structure of f and is omitted here.
As an example, a safety formula of the form AG good , to be evaluated over
M , is translated into AG (good ∨B) over M ′, the liveness property AG (req ⇒
AF grant) becomes

AG ((req ⇒ AF (grant ∧ ¬B)) ∨B).

4 For a full description of this logic, see for example [EC82].

One can see that almost all basic modalities are adjusted for verification in M ′

only by adding a propositional disjunct or conjunct (B). Intuitively, the disjunct
B allows invariants to ignore states of M ′ in serial mode, whereas the conjunct
¬B requires eventualities to in fact become true in states of M ′ that have a
counterpart in M , not in serial mode.

A more complex translation is required for the AX modality (last equation
in theorem 6). This is no surprise, as the serialization of the for statements does
not preserve next-time: a single transition is replaced by a path of length n+ 1,
for the number n of processes.5

Efficiency. The translated program has no transitions that require all processes
to execute an idempotent statement simultaneously. Transitions executed by one
process at a time require simple counter increments and decrements by 1, with
very efficient BDD implementations. The state space of the new program has
as many additional bits as there are idempotent for statements in the original
program. The new statement b := ∃i : ¬pi is translated into the abstract state-
ment b := ∃c : c > 0, where c ranges over counters for local states satisfying ¬p.
This statement can be expressed very efficiently with a BDD of size logarithmic
in the number of counter variables. The additional guard ¬b increases the BDD
size of an individual transition by no more than O(1) node. (The bit represent-
ing b should precede the bits for the processes’ local states in the BDD variable
ordering.)

Since some transitions in M are replaced by paths of length n + 1 in M ′,
a fixpoint computation in M ′ may require about n additional iterations. Our
experiments show that this overhead is more than compensated by the gain in
efficiency due to the reduced BDD complexity of the transition relation.

Generalization. The above translation relies on the idempotency condition. A
general, and less memory-efficient, solution that handles arbitrary for loops over
all processes can be obtained by introducing a fresh bit b local to every process.
These bits are initially false; when the for statement needs to be executed, they
are set to true. Interestingly, setting all bits to true again requires a for loop
over all processes. However, this loop has an idempotent body (bi := true),
so the technique presented above can be applied. Then, an arbitrary process is
selected whose bit bi is true (= “waiting for execution”), its individual statement
is executed, and bi is set to false. An equivalence result similar to theorem 6 can
be formulated.

5 This path is unique up to reordering of execution by the processes. Thus, “AXA” in
the last equation of theorem 6 can be equivalently replaced by “AXE”.

5 Experimental Results

In this section we show quantitative results of applying our techniques. Symbolic
computations are done with our own model checker UTOOL, which uses the
CUDD BDD package [Som]. It takes a program in the input language of the
Murϕ explicit-state model checker and performs symbolic verification on it,
exploiting symmetry using counter abstraction whenever possible. Our tool is
flexible in that it has support for less-than-full symmetries as well.

In tables, “Number of BDD nodes” refers to the peak number of BDD nodes
allocated at any time during execution. It represents the memory bottleneck of
the verification run. In columns titled “Time”, the symbols “s”, “m” and “h”
stand for seconds, minutes, and hours, respectively. For comparative explicit-
state model checking, we used the Murϕ verifier as available on the Internet
(see [MD]). All experiments were run on an i686/1400 Mhz PC with 256MB
main memory.

The purpose of the first, introductory, example, is to demonstrate the po-
tential of counter abstraction compared to other reduction methods that utilize
symmetry (even without applying our program analysis techniques). We con-
sider the classical scenario of r readers and w writers that compete for access
to some data. The problem consists of two fully symmetric subsystems, but the
global system is asymmetric (due to the writers’ priority). The first algorithm
shown in table 1, “Multiple Representatives”, refers to applying symmetry reduc-
tion to the Kripke structure derived from the original program, without counter
abstraction. This technique allows symmetry equivalence classes (orbits) to be
represented by several states. The advantage to an approach using unique orbit
representatives is that a state of the orbit can be mapped to that represen-
tative for which this mapping is most efficient; see [CEFJ96] for details.6 The
next double column lists the results of applying the Murϕ verifier to the counter-
abstracted program, i.e. non-symbolically. The third algorithm combines counter
abstraction and symbolic representation.

We see from the table that counter abstraction is—even in its non-symbolic
form—more successful than the symbolic multiple representatives approach,
which suffers from symmetry reduction overhead. It should be noted that this
overhead largely stems from the computation of the a priori representative map-
ping, which does not make use of the simplicity of the transition relation of this
problem. As the results on the right show, counter abstraction was most effective
when combined with BDD-based symbolic model checking. The readers-writers
scenario is characterized by a small number of local states. In such simple cases,
techniques based on local state counters can be successful without techniques as
those described in this paper.

The second example demonstrates the local state space reduction based on live
variable analysis from section 3. In many synchronization algorithms, processes

6 The naive approach using the orbit relation mentioned in section 2 is not exhibited
here since it fails already for very small problem instances.

Choice Symbolic Murϕ: Non-symbolic Symbolic
of r, w Multiple Representatives Counter Abstraction Counter Abstraction

Number of Number of Number of
r w

BDD nodes
Time

rules fired
Time

BDD nodes
Time

8 8 19,853 1.4s 11,835 0.6s 1,082 0.0s

10 10 41,333 5.8s 25,784 0.6s 1,082 0.0s

16 16 223,770 108.0s 140,471 0.7s 1,379 0.1s

30 30 2,494,219 1:29m 1,482,854 2.2s 1,379 0.1s

100 100 — — 159,625,349 162.4s 1,973 0.2s

1000 1000 — — — — 2,864 1.5s
Table 1. Results for the Readers-Writers problem

denied access to some restricted resource wait (“spin”), constantly polling some
global variable. According to [MS91], this can cause performance bottlenecks,
and is partially avoidable. We investigated one of the algorithms proposed in
[MS91] (the list-based spin-lock without atomic compare-and-swap operation),
verifying that no two processes can acquire the resource at the same time, that
there is no deadlock in the system, and that processes will eventually gain access
to the resource, once requested. The program executed by the processes is similar
to that in figure 1 in section 3.1.

Symbolic Counter Abstraction . . .
without Reductions with Local State Reduction

Number Number of Number of
of proc. BDD nodes

Time
BDD nodes

Time

5 16,583 1.4s 3,022 0.1s

10 71,224 28.8s 9,366 0.6s

15 156,421 110.4s 17,070 1.5s

30 785,411 25:53m 68,332 19.4s

50 2,643,540 3:34h 207,370 145.9s

70 5,586,017 12:16h 454,360 10:18m
Table 2. Results for the MCS Spin Lock algorithm

The table teaches an important lesson. Counters corresponding to local states
that have no bearing on the program behavior should be explicitly excluded
from the BDD model. The fact that some conceivable local states differ only by
irrelevant (dead) variables is not taken care of automatically.

The final example illustrates the effect of serializing complex synchronous in-
structions when working with BDDs. A communication bridge transports data
between two ports, performing operations on them in the middle [Sim99]. Pro-
cesses read the data from the output port. When the output port is full, and no

process is ready to consume the data, the system is in a deadlock-like situation.
It recovers from it by instructing all processes to interrupt and be ready to un-
burden the output port. The message is broadcast to all processes, rather than
just sent to one, since the output port would likely be full again quickly if only
one data item was read from it.

We verified that no data is overwritten at the ports, and that the ports are
cleared within a fixed number of steps. The latter property is important for
performance guarantees when the bridge is part of a system that is embedded
in other devices. The subsystem formed by the processes is, for the purpose
of verifying these properties, fully symmetric. Table 3 shows the results for the
straightforward counter abstraction of the processes (“simultaneous broadcast”),
and for counter abstraction with serialized execution of the broadcast statement.

Symbolic Counter Abstraction . . .
with simultaneous broadcast with serialized broadcast

Number Size of Number of Size of Number of
of proc. trans. rel. BDD nodes

Time
trans. rel. BDD nodes

Time

4 10,914 49,576 2.2s 4,177 21,699 2.1s

8 15,850 188,690 10.4s 5,190 66,864 7.7s

16 20,786 830,610 127.4s 6,203 209,157 55.3s

32 25,722 2,683,800 26:43m 7,216 586,938 8:30m

64 30,658 7,310,979 3:36h 8,229 1,955,509 1:12h
Table 3. Results for Communication Bridge example

The figures in the table first tell us that the size of the transition relation was
reduced by a factor that grows with the size of the problem. This translates into
a reduction of the total number of BDD nodes, to the extent of about the same
factor. It is also worth noting that the time savings achieved are slightly less than
the space savings. One possible reason was hinted at earlier: The serialization
requires more iterations during fixpoint computations to converge.

6 Conclusion

We have shown how to integrate program analysis techniques into symmetry
reduction based on counter abstraction for exact and efficient model checking,
using symbolic representation with BDDs. Our method is most powerful when
the given system contains (multiple kinds of) identical components.

Our approach appears to be unique in its improvement of counter abstrac-
tion using program analysis. Recently, [FBG03], [WS02] and [Yor00] suggest
static analysis techniques to optimize BDDs in a concrete (rather than counter
abstracted) scenario. The potential savings come from choosing dummy values
for dead variables, or from non-deterministic assignments to them. This might

reduce the size of the BDD graph, but does not diminish the number of allo-
cated BDD variables. In contrast, we observe that dead local variables typically
result in many redundant (equivalent) local states. All but one of them can be
eliminated, significantly reducing the number of counters. This is guaranteed to
decrease the number of BDD variables and the size of the BDD graph.

In [BR00], the use of compiler optimization techniques similar to ours is
suggested to reduce the number of BDD variables to represent reachable states,
with different BDDs for different program points. In contrast, the goal of our
work is to build a symbolic representation of the overall program, to enable
symbolic model checking. This is possible since counter abstraction (which is of
no concern in [BR00]) allows us to incorporate live variable information into the
abstract state representation, by creating local state counters judiciously.

An interesting goal for the future is to apply our methods to a conservative
abstraction of an infinite-state system, using truncated counters. An approach to
doing this with Murϕ was presented in [ID99]. It is orthogonal to the techniques
presented here, since truncation reduces the range of counters, but not their
number.

Another further direction is to investigate to what extent counters can be
used to reduce systems with less than full symmetry, such as rotational symmetry
found in the Dining Philosophers example. Our tool currently falls back on other
symmetry reduction techniques in such cases. Applying counter abstraction only
to fully symmetric systems is still a huge win, since (1) full symmetry is the most
frequent symmetry type, (2) it offers greater potential for savings than other
symmetries, and (3) other symmetries suffer to a lesser extent from the orbit
relation complexity.

Acknowledgments. We would like to thank the reviewers for their helpful com-
ments regarding the readability of this paper.

References

[BR00] Thomas Ball and Sriram Rajamani. Bebop: A symbolic model checker for
Boolean programs. In Model Checking of Software (SPIN), 2000.

[CEFJ96] Edmund Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha. Ex-
ploiting symmetry in temporal logic model checking. Formal Methods in
System Design (FMSD), 1996.

[EC82] Allen Emerson and Edmund Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Science of Computer Programming
(SOCP), 1982.

[ES90] Allen Emerson and Jai Srinivasan. A decidable temporal logic to reason
about many processes. In Principles of Distributed Computing (PODC),
1990.

[ES96] Allen Emerson and Prasad Sistla. Symmetry and model checking. Formal
Methods in System Design (FMSD), 1996.

[ET99] Allen Emerson and Richard Trefler. From asymmetry to full symmetry: New
techniques for symmetry reduction in model checking. In Correct Hardware
Design and Verification Methods (CHARME), 1999.

[EW03] Allen Emerson and Thomas Wahl. On combining symmetry reduction and
symbolic representation for efficient model checking. In Correct Hardware
Design and Verification Methods (CHARME), 2003.

[FBG03] Jean-Claude Fernandez, Marius Bozga, and Lucian Ghirvu. State space re-
duction based on live variables analysis. Science of Computer Programming
(SOCP), 2003.

[GS92] Steven German and Prasad Sistla. Reasoning about systems with many
processes. Journal of the ACM (JACM), 1992.

[ID96] Norris Ip and David Dill. Better verification through symmetry. Formal
Methods in System Design (FMSD), 1996.

[ID99] Norris Ip and David Dill. Verifying systems with replicated components in
Murφ. Formal Methods in System Design (FMSD), 1999.

[Lub84] Boris Lubachevsky. An approach to automating the verification of compact
parallel coordination programs. Acta Informatica, 1984.

[MD] Ralph Melton and David Dill. Murφ Annotated Reference Manual, rel. 3.1.
http://verify.stanford.edu/dill/murphi.html.

[Min01] Shin-ichi Minato. Zero-suppressed BDDs and their applications. Software
Tools for Technology Transfer (STTT), 2001.

[MS91] John Mellor-Crummey and Michael Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. Transactions on Computer Sys-
tems (TOCS), 1991.

[Muc97] Steven Muchnick. Advanced Compiler Design & Implementation. Morgan
Kaufmann Publishers, 1997.

[PD95] Fong Pong and Michel Dubois. A new approach for the verification of
cache coherence protocols. Transactions on Parallel and Distributed Systems
(TOPDS), 1995.

[Sim99] David Simon. An Embedded Software Primer. Addison-Wesley, 1999.
[Som] Fabio Somenzi. The CU Decision Diagram Package, release 2.3.1. University

of Colorado at Boulder, http://vlsi.colorado.edu/~fabio/CUDD/.
[WS02] Farn Wang and Karsten Schmidt. Symmetric symbolic safety-analysis of

concurrent software with pointer data structures. In Formal Methods for
Networked and Distributed Systems (FORTE), 2002.

[Yor00] Karen Yorav. Exploiting Syntactic Structure for Au-
tomatic Verification. PhD thesis, Technion Israel,
http://www.cs.technion.ac.il/users/orna/KarenThesis.ps.gz, 2000.

