
Reducing Model Checking of the Few to the One

E. Allen Emerson1 Richard J. Trefler2 Thomas Wahl1

1 Department of Computer Sciences and Computer Engineering Research Center,
The University of Texas, Austin/TX 78712, USA
2 David R. Cheriton School of Computer Science,

University of Waterloo, Waterloo/Ontario N2L 3G1, Canada

Abstract. Verification of parameterized systems for an arbitrary num-
ber of instances is generally undecidable. Existing approaches resort to
non-trivial restrictions on the system or lack automation. In practice, ap-
plications can often provide a suitable bound on the parameter size. We
propose a new technique toward the bounded formulation of parameter-
ized reasoning: how to efficiently verify properties of a family of systems
over a large finite parameter range. We show how to accomplish this with
a single verification run on a model that aggregates the individual in-
stances. Such a run takes significantly less time than if the systems were
considered one by one. Our method is applicable to a completely inhomo-
geneous family of systems, where properties may not even be preserved
across instances. In this case the method exposes the parameter values
for which the verification fails. If symmetry is present in the systems,
it is inherited by the aggregate representation, allowing for verification
over a reduced model. Our technique is fully automatic and requires no
approximation.

1 Introduction

Model checking is an algorithmic technique for the verification of programs with
respect to temporal logic specifications [QS82,CE81]. It is suitable for systems
representable by a finite model, which includes many safety-critical applications
such as flight-controllers. The method is successfully applied in industry to tech-
nical protocols, to computer hardware, and also, more recently, to software.

In practice, many systems are composed of replicated components. Examples
include communication and cache coherence protocols, where the components are
concurrent processes, and hardware designs, where the components are black-
box pieces of logic, such as memory units. To allow for re-usability, descriptions
of such systems are usually parameterized by the number of components. The
parameterized verification problem is to decide whether a given property holds
for all (i.e. infinitely many) instances of the size parameter. Due to its broad
nature, this problem is generally undecidable [AK86].

1 Authors supported in part by NSF grants CCR-009-8141 and CCR-020-5483.
2 Author supported in part by grants from NSERC of Canada and Nortel Networks.
Email addresses: {emerson|wahl}@cs.utexas.edu, trefler@uwaterloo.ca

There are two principle ways of approaching parameterized verification algo-
rithmically. One is to identify decidable subclasses of parameterized systems. To
this end, many authors quite heavily restrict both the systems and the properties
[CGB86,CG87,EK00, see also sections 8 and 9], and give more or less efficiently
verifiable conditions under which these properties hold for all instances. The
other way is to realize that it is often possible and sufficient to consider a bound
on the parameter size. Some applications suggest such a bound themselves, for
example the number of components that fit on a particular circuit board. In
other cases, verification engineers may find a correctness result that holds for a
large number of components acceptable if all-inclusive parameterized techniques
cannot handle their design.

In this paper, we propose a new approach to bounded parameterized ver-
ification. The goal is to verify—automatically and efficiently—temporal logic
properties of an arbitrary parameterized system for a large finite range of values
of the parameter. Of course, this can be accomplished (in an unsophisticated
way) by analyzing the individual systems one by one, ignoring their common
origin. This approach quickly becomes inefficient if the range for the parame-
ter is non-trivial: in each run, both the modeling step and the verification are
repeated, perhaps with only minor changes.

To address these shortcomings, we present a simple but effective technique
to merge all instances in the given finite range into a single aggregate structure
capable of simulating all systems from the range in one fell swoop. States of small
systems (with few components) can be embedded in states of larger systems. The
key in our approach is that we annotate each such embedding in a space-efficient
way with the number of components in the embedded state, thereby making the
merging lossless. Symbolic data structures such as BDDs (see section 2.2) can
then be used to explore the aggregate structure in only little more time than
(sometimes the same time as) it takes to traverse the largest of the original
structures. This compares favorably with the cumulative time to analyze all
structures one by one.

It is not obvious that the aggregate method outperforms the naive one. In
fact, our findings seem to contradict the principle of decomposing large systems
into small, verifiable units, and then re-composing the results into a final report.
The reason why in our case aggregation outperforms decomposition is that the
components—here: instances of a parameterized system—are of similar form,
suitable for a monolithic model. Moreover, we exert the power of symbolic data
structures to compactly represent a large number of similar structures, at a cost
much less than the sum of the costs to describe the individual entities.

The suggested method is applicable to an arbitrary, inhomogeneous, finite
system family, irrespective of any restrictions on the syntax of the system de-
scription or property. Given this much flexibility, it is well possible that the
property under investigation is true for some but not for all instances, i.e. for-
mulas may not be preserved across system sizes. In such cases, most traditional
parameterized techniques are unlikely to be useful (see comments in [CGB86];
an exception is [KM89]). In contrast, our technique is capable of reporting the

exact set of parameter values for which the property is incorrect, still with a
single verification run. This provides an invaluable hint for debugging.

In the second part of the paper, we consider the special case of symmetric,
i.e. more homogeneous, families. We show that the aggregate representation of
all instances Mn by a single one, M , preserves the symmetry. Permutations,
commonly used to formalize symmetry, are restricted to those that respect the
special format of the states in the aggregate structure. We then demonstrate
that with a careful encoding of M , this restriction can be ignored in an imple-
mentation: existing symmetry reduction algorithms can be applied without any
changes. We emphasize that even though for homogeneous systems full param-
eterized verification may apply, a front-end is still required that checks whether
the given system conforms to the imposed restrictions. Furthermore, this check
may very well turn out negative, since symmetry alone is not enough. None of
this is of any concern with our method.

In summary, we view our approach as a supplement to parameterized verifi-
cation, which is generally intractable. The proposed method trades the benefit
of solving the verification problem for infinitely many instances of a system, in
exchange for greatly enhanced practicability. Indeed, the technique does not re-
quire any manual reasoning, imposes no restrictions on the input syntax, and is
easy to implement. We document its efficacy by experimental results in section 8.

2 Background

The following paragraphs contain basic material about symbolic model checking
and temporal logics; the reader familiar with these topics is invited to skip ahead
to section 3.

2.1 Model Checking and Temporal Logic

Model checking requires that the system under investigation be expressed as a
finite-state model, and that the desired properties be written in a temporal logic
that is understood by the model checker at hand. Formally, a model M consists,
at a minimum, of a finite set of states, S, and a transition relation, R. The set of
states is usually obtained as the set of all possible valuations of system variables.
R is a relation, in order to allow for non-determinism. Finally, sometimes we also
explicitly define a labeling function, L, which provides the “glue” between the
model and the properties to be verified: it assigns to each state atomic properties
that are true at that state, such as “error state” or “initial state”. These atomic
propositions, forming a set AP , are used as atoms in temporal logic formulas.
Summarizing, given a finite set S, we have R ⊆ S × S and L : S → 2AP .

Popular temporal logics used for the specification of program properties are
(enhanced versions of) LTL [Pnu77] and CTL [EC82]. Both logics can be thought
of as propositional logic extended by operators related to the evolving nature of
programs through states. More precisely, LTL features temporal operators such
as X, F, and G, which express that their argument is true in the next state, in

some future state, and in all future states, respectively. CTL, on the other hand,
has operators characterizing both temporal and branching behavior of programs,
such as AX, EF, AG, which express that their argument is true in all successors
of the current state, in some future state along some execution path, and in
all future states along all execution paths, respectively. For example, the LTL
formula GF executed states that with respect to the current state, the atomic
predicate executed is always (G) eventually (F) true, i.e. infinitely often. The
CTL formula EF sorted states that along some execution path of the program, at
some point the predicate sorted will be true (we say a sorted state is reachable).
Neither of the two logics subsumes the other; the quite powerful logic CTL* is a
superset of LTL ∪ CTL. A formal treatment of these logics is beyond the scope
of this paper; plenty of literature is available on these topics [Eme90].

Both the system model and the temporal logic properties are presented to a
model checker. Given sufficient resources, the result is either a confirmation of
the satisfaction of the property with respect to the model, or a failure, in which
case often a counter example can be presented. Assuming the counter example
is an undesirable one, it is used in debugging the system.

2.2 Symbolic Model Checking

A phenomenon impacting the usability of model checking in practice is the state
explosion problem, referring to the fact that the state space of a system is often
exponentially larger than its description. One successful approach to combat
this problem is symbolic model checking [McM93]. The idea is that instead of
representing the system model M = (S,R) using sets that enumerate the states
and transitions, S and R can also be expressed as boolean formulas. For example,
the formula x = 4∧ y = 3 succinctly represents the set of states where x has the
value 4 and y the value 3 (with other variables’ values unspecified). A formula
over current-state and next-state variables can be used to express the effect of a
transition. For instance, next(x) = x+ 1 represents the assignment x := x+ 1.

Once states and transitions are modeled as boolean formulas, a data structure
is needed to encode these formulas. In its original form [McM93], symbolic model
checking was implemented using binary decision diagrams (BDDs) [Bry86]; to-
day alternative structures are used as well. BDDs can represent many practically
occurring systems succinctly, although for some they are provably unsuitable,
for instance those involving non-linear arithmetic. One disadvantage of BDDs
is that the degree of conciseness depends on quite a few parameters, many of
which can only be determined experimentally. An advantage that makes them
blend nicely with model checking is canonicity: for a fixed set of parameters,
every propositional formula has a unique BDD representation. This facilitates
termination detection in model checking routines.

3 Preliminaries

The parameterized systems we consider consist of replicated components, i.e.
collections of processes whose behavior is described by a single program. The
program can have shared variables; each process is characterized at any time by
its local state. We present such programs using the graph-like notation of syn-
chronization skeletons [CE81]. Local states are shown as nodes in the graph, tran-
sitions as edges. As an example, consider a token-ring solution to the n-process
Mutual Exclusion problem with a shared variable tok ∈ [1..n], and the skeleton
in figure 1.

CT
tok = self

tok := (tok (mod n)) + 1

N

Fig. 1. Synchronization skeleton for a token version of the Mutual Exclusion problem

A skeleton’s arcs can be labeled with guards (shown in the figure above
the arc) and actions (shown below the arc). Guards are boolean-valued expres-
sions on local states of processes and shared variables. Actions are assignments
to shared variables. The actions are executed after the local state change. The
skeleton in figure 1 allows a process to enter its critical section C if it currently
possesses the token (tok = self). Upon leaving C, it passes the token on to the
next process.

A synchronization skeleton gives rise to a system of n concurrent processes in
the obvious way. To keep the notation simple, we omit shared variables from our
state description for now. (Their presence is mostly immaterial to the techniques
developed in this paper, as we will discuss in section 9.) A global state s is thus
a tuple (s1, . . . , sn) of local states of processes; transitions do not have actions
associated with them. Given two states s and t, let the notation si

g→ ti ∈ SKEL
express that there is an edge in the skeleton from a node labeled si to a node
labeled ti such that s satisfies guard g. The transition relation Rn of the n-process
concurrent system is defined as

Rn =
{

(s, t) : ∃i : i ≤ n :
(
si

g→ ti ∈ SKEL ∧ ∀j : j 6= i : sj = tj
)}

. (1)

In practice, the behavior of the processes will rarely be given as a synchroniza-
tion skeleton, but perhaps in a programming language. Deriving a skeleton from
a program is fairly straightforward: each valuation of all local process variables
defines a local state; local atomic computation of a process (such as assignments
to local variables) is abstracted into a single transition.

4 The Aggregate System

The goal of this paper is to develop an approach to parameterized verification
that works for any bounded family of systems derived from a synchronization
skeleton parameterized by the number n of processes, and arbitrary CTL* prop-
erties. Let l be the number of local states occurring in the skeleton and AP be
a set of atomic propositions to be used in temporal logic formulas. The skeleton
gives rise to a family (Mn)n∈N of Kripke structures with Mn = (Sn, Rn, Ln).
With Rn as in (1), we have

Sn = [0..(l − 1)]n, Rn ⊆ Sn × Sn, Ln : Sn → 2AP .

Let now N be an integer specifying the maximum number of processes we are
interested in, i.e. we consider n ≤ N . We will represent all systems M1..MN in a
single aggregate structure by forming their disjoint union, in the following sense.
A state of a particular instance Mn is given by the local states of n processes,
which can be embedded in a local state vector of length N . In order to be able
to recognize the state as a member of Mn, we fill the remaining N − n vector
positions with a fresh local state symbol, say $. Every state vector is thus a
sequence of non-$ symbols followed by a sequence of $ symbols. Intuitively, a
process resides in local state $ if its index is outside the range of the system to
which the global state belongs.

Formally, we define a new Kripke structure M = (S,R,L) over the state
space S = [0..l]N . Every state in S is a vector of length N over l+ 1 local states.
The embedding of the systems Mn in M is achieved as follows.

Definition 1 For n ≤ N , the completion of a state sn = (s1, . . . , sn) ∈ Sn and
of an edge (sn, tn) ∈ Rn, respectively, are defined as

c(s1, . . . , sn) = (s1, . . . , sn, $, . . . , $︸ ︷︷ ︸
N−n

) ∈ S, c(sn, tn) = (c(sn), c(tn)) ∈ R. (2)

The completion of sets of states and sets of transitions is defined pointwise.

The completion upgrades states and transitions to members of the aggregate
structure. We call a state s ∈ S proper if there exists a number n such that
s is of the form (s1, . . . , sn, $, . . . , $), sj 6= $ for all j ∈ [1..n]. If s is proper,
this number n is unique, called the width of proper state s. A state is proper of
width n exactly if it is the completion of some state in Sn.

We are now ready to define the transition relation of the aggregate system:

R =
⋃
n≤N

c(Rn). (3)

R can be viewed as the disjoint union of theRn, the disjointness being guaranteed
by the fresh local state symbol $. This definition ensures that the aggregate
structure allows only proper paths, in the following sense.

Property 2 For (s, t) ∈ R, both s and t are proper and have the same width.

Corollary 3 All states along non-empty paths in the aggregate structure M are
proper and have the same width.

Finally, the labeling function L of M is defined as follows.

L(s1, . . . , sN) =
{
Ln(s1, . . . , sn) if (s1, . . . , sN) is proper of some width n

∅ otherwise. (4)

We remark that L is well-defined since the width of a proper state is unique.

5 Efficiently Constructing the Aggregate System

In this section we illustrate how to efficiently implement the system represen-
tation outlined before with symbolic data structures such as BDDs. The main
result will be that building a BDD for the aggregate R differs only slightly from
building a BDD for any Rn.

The first step is to make sure there is enough space to accommodate the
additional (l + 1)st local state, for each process. Representing state space S
requires dlog(l + 1)e bits per process, which is equal to dlog le bits unless l
happens to be a power of 2. Hence, S can often be represented with no more
bits than the largest of the original state spaces, SN . When l is a power of 2,
the number of bits increases by 1 per process, compared with SN .

Second, how do we implement the transition relation R? Equation (3) is
suitable for proving theorems about the aggregate system, but not for imple-
menting R, because it refers to the individual relations Rn, which we want to
circumvent. Fortunately, there exists a different characterization of R, paving
the way for a better solution.

Theorem 4 Let the family of systems (Sn, Rn)n≤N be given as a synchroniza-
tion skeleton. Then⋃

n≤N

c(Rn) = {(s, t) : s is proper of some width n, and

∃i : i ≤ n :
(
si

g→ ti ∈ SKEL ∧ ∀j : j 6= i : sj = tj
)} (5)

(In the expression si
g→ ti ∈ SKEL, guard g is evaluated over (s1, . . . , sn).)

Proof .
“⇒”: Let (s, t) ∈ c(Rn). Then by the definition of completion, s is proper of

width n, and ((s1, . . . , sn), (t1, . . . , tn)) ∈ Rn. By equation (1), there exists an
index i with the property required in (5).

“⇐”: Consider (s, t). From (1) and the second line in (5), we conclude
((s1, . . . , sn), (t1, . . . , tn)) ∈ Rn. From the properness of s, we conclude sk = $
and hence tk = $ for k > n. Thus, c(s1, . . . , sn) = s, similarly for t, and therefore
(s, t) ∈ c(Rn). �

Discussion. This theorem provides the ingredients for an efficient implementa-
tion of R. The left side of equation (5) is identical to the expression defining R
in (3). The right side of (5) is almost identical to the right side of (1), which
defines the transition relation Rn of a single system. The only difference is the
requirement that s be proper. The reason for this requirement is that the width
of a proper source state tells us the number n of processes in the system instance
that contains the state. This number is needed when a guard or an action of a
skeleton edge refer to it. An example is a guard like ∀i : si = T , where n deter-
mines the range for i. Another example is the action tok := (tok (mod n)) + 1,
where n determines the value at which the token is reset to 1.

To implement R, we divide the skeleton edges in two classes: those that are
independent of the system size n, such as the edge T

tok=self−→ C in figure 1, and
those that depend on n. For the former class, we simply translate every edge
as if it was an edge of the largest system, MN . For the latter class, we need an
additional loop that iterates through the possible system sizes; see figure 2. In
the figure, e(p) stands for the propositional formula representing the system size
independent skeleton edge e executed by process p. Similarly, e(p, n) stands for
the formula representing edge e executed by p in system Mn. The term proper(n)
in line 8 symbolizes the set of proper states of width n (expressed in current-
state variables). It ensures that transition e(p, n) can only be executed from a
state that belongs to Mn. (The computation of proper(n) can be pulled out of
the loop beginning in line 6.)

1. R := ∅;
2. for p := 1 to N do:
3. for every edge e independent of the system size:
4. R := R ∨ e(p)
5. for n := 1 to N do:
6. for p := 1 to n do:
7. for every edge e dependent on the system size:
8. R := R ∨ (proper(n) ∧ e(p, n))

Fig. 2. Implementation of the aggregate transition relation R

We can see that for the second class of edges, the number of systems N
we consider enters the complexity quadratically. We remark, however, that the
majority of the edges in a skeleton defining a parameterized system usually
belong to the first class, since dependence of transitions on the system size tends
to destroy the regular system structure. Moreover, quite frequently edges that
seem to depend on n can be rewritten such that the dependence goes away.
Consider a conjunctive guard of the general form ∀i : h(i). In the context of
the aggregate structure, we can think of this guard as expressing the condition
that every index i satisfy h(i) unless i is greater than the width of the current
state (i.e. i is “out-of-scope”). In this case the guard is to be ignored. Thus, the

formula can be rewritten as ∀i : (h(i) ∨ si = $) over the entire range [1..N],
independent of the actual system size. Similarly, disjunctive guards ∃i : h(i) can
be rewritten as ∃i : h(i) ∧ i 6= $.

Finally, consider a system in which no edge depends on the system size.
In this case, equation (5) can essentially be replaced by (1). In particular, the
properness requirement need not be enforced in source or target states in R, since
properness is propagated from the initial states during model checking (see next
paragraph how proper initial states are constructed). In other words, it is then
R = RN , making the solution space-optimal. Although this exact situation may
be rare in practice, it shows the asymptotic complexity of our technique as the
number of dependencies on the system size decreases.

Implementing the labeling function L amounts to computing sets of states
labeled with a particular atomic proposition. As an example, suppose I is a
distinguished initial local state. For any n, this entails an initial global state
of Mn with components s1 = . . . = sn = I. According to (4), we can aggregate
the initial states of all systems Mn into the following set of initial states of M :

1. (I, $, $, . . . , $)
2. (I, I, $, . . . , $)

...

N. (I, I, I, . . . , I)

A BDD for this set can efficiently be derived from the set P of proper states
using the formula P ∧ ∀i : i ≤ N : (si = I ∨ si = $). The BDD representing the
set of proper states of a certain width n has no more nodes than there are bits
used to represent a state. It is computed with a loop over all conceivable indices
1, . . . , N . Indices greater than n are constrained to be equal to $, all others are
constrained to be different from $. The set of all proper states (of any width)
can be obtained as the union over sets of proper states of a specific width. These
BDDs are all small in practice and have to be computed only once.

6 Verifying the Aggregate System

We are now ready to realize the main goal of this paper: to reduce the verification
of all systems up to size N to the verification of the aggregate system M . We
accomplish this by establishing N bisimulations, one between each Mn and M ,
which contain pairs of a state and its completion:

Lemma 5 For any n ≤ N , the relation sn ∈ Sn ∼ c(sn) ∈ S is a bisimulation
relation between structures Mn and M .

Proof . Let sn = (s1, . . . , sn) ∈ Sn, hence c(sn) = (s1, . . . , sn, $, . . . , $) ∈ S.
(i) By the definition of the labeling function L, we have L(c(sn)) = Ln(sn),
since c(sn) is proper of width n. (ii) For tn such that (sn, tn) ∈ Rn, we have
tn ∼ c(tn). Since (sn, tn) ∈ Rn, we get (c(sn), c(tn)) = c(sn, tn) ∈ c(Rn) ⊆ R

by (3). (iii) Conversely, consider some t ∈ S such that (c(sn), t) ∈ R. By (3),
there exists m ≤ N such that (c(sn), t) ∈ c(Rm). From c(sn) ∈ c(Sm), we
derive m = n, hence t ∈ c(Sn). This allows us to conclude the existence of tn
with c(tn) = t, thus (c(sn), c(tn)) ∈ c(Rn) and (sn, tn) ∈ Rn. �

We point out that there is in general no way to define a fixed initial state
of M such that for every n, the initial states of Mn and M are bisimilar (if there
was, the Mn would all be bisimilar to each other by transitivity). Instead, for
each n an appropriate initial state of M must be chosen. This suffices for our
purpose, which is to prove that a property true of all individual systems Mn is
also true of the aggregate system M , and vice versa. For n ≤ N , let sn ∈ Sn be
the state of Mn with respect to which the property is to hold, and define

Σ = {c(sn) ∈ S : n ≤ N}.

All states c(sn) are proper and thus suitable as a start state of a path in M . We
can now formulate the main result of this section:

Theorem 6 Let f be a CTL* formula, and sn, Σ as above. Then

∀n : n ≤ N : Mn, sn |= f iff ∀s : s ∈ Σ : M, s |= f. (6)

Proof . We exploit that structures with a bisimulation relation between them
satisfy the same CTL* formulas with respect to bisimilar states.
⇒: Given s ∈ Σ, let sn such that s = c(sn). Then sn ∼ s. Further Mn, sn |= f

as given, and hence M, s |= f follows with lemma 5.
⇐: Given n ≤ N , we have M, s |= f for s = c(sn) ∈ Σ. Since sn ∼ c(sn),

the claim Mn, sn |= f follows with lemma 5. �

Discussion. Theorem 6 can be viewed as identifying a claim of the form “for
all numbers n: . . . ” and a claim of the form “for all states s: . . . ”. The latter is
suitable to be approached with symbolic data structures that reason over sets
of states, such as BDDs. Indeed, if BDDf denotes the set of states of M that
satisfy formula f , then the condition on the right of equation (6) is equivalent
to Σ ⊆ BDDf .

We remark that the meaning of formula f implicitly depends on n, namely
through the labeling functions Ln. These may assign a given atomic proposition
to “different” (even after completion) states in different systems; thus EF q may
mean different things depending on the system.

How do negative verification results over M relate to the family of structures
(Mn)n≤N? Assume the proof of ∀s : s ∈ Σ : M, s |= f (right side of (6)) fails.
Then there exists a non-empty set V ⊆ Σ of states s such that M, s 6|= f . By the
definition of Σ, all states in V are proper; the set width(V) = {width(s) : s ∈ V }
contains precisely the parameter values pointing to the delinquent systems. This
set can give valuable information for debugging; section 8 presents an example
of this phenomenon. Moreover, consider a particular n ∈ width(V). If the failed
verification of f over M admits a counterexample path, say p, then p can be

mapped to a path in Mn by projecting every state along p to the first n compo-
nents. The result is a valid counterexample path in Mn, due to the bisimulation
between the structures: the two paths correspond.

Another consequence of the path correspondence is that the diameter and
the girth of Kripke structure M , i.e. the distance between its most distant nodes
and the length of its longest simple path, respectively, are equal to the maximum
diameter, resp. girth, of any of the Mn. These numbers are important complexity
measures in symbolic model checking. For example, the diameter is an upper
bound on the number of image computations it takes for reachability analysis to
converge. As a result, the time complexity of model checking the CTL formula
EF bad over M , measured in number of image steps, is equal to the maximum
time complexity, over all structures Mn, of model checking this formula over Mn.

7 Families of Symmetric Systems

In this section we briefly review symmetry reduction in model checking and
then demonstrate that the aggregate system inherits contingent symmetry from
the individual systems. We conclude by showing how to efficiently exploit the
(slightly non-standard) symmetry in the aggregate with literally no change to
existing symmetry reduction algorithms.

7.1 Symmetries in Kripke Structures

A Kripke structure M = (S,R) modeling a system of n concurrently executing
processes is said to be (fully) symmetric if the transition relation R is immune
to permutations. More precisely, let Symn be the group of permutations on
[1..n] and let π ∈ Symn act on a state s ∈ S in the form π(s1, . . . , sn) =
(sπ(1), . . . , sπ(n)), i.e. by permuting the process indices. Then, M is symmetric
if for every π ∈ Symn the condition R = π(R) holds, i.e. [CEFJ96]

(s, t) ∈ R iff (π(s), π(t)) ∈ R. (7)

Intuitively, a system is symmetric if its set of transitions remains invariant
when the participating processes are renamed. A structure induced by a syn-
chronization skeleton is a promising candidate for symmetry, since all processes
execute the same parameterized program. This fact alone, however, is insuffi-
cient: guards and actions on local state transitions can depend on the identity
of the executing process in a way that limits or destroys the otherwise apparent
symmetry. For instance, the action tok := (tok (mod n)) + 1 of the skeleton in
figure 1 permits only the n rotation permutations and thus inhibits full symme-
try. Some conditions can be placed on the skeleton to guarantee that the derived
structure is indeed symmetric; see [EW03] for a possible strategy. In this section,
we assume such conditions are satisfied.

The orbit relation s ≡ t iff ∃π : π(s) = t is an equivalence relation on the
state space; based on it a quotient M = (S,R) of M can be constructed in the

usual style of existential abstraction: S is a set of unique representatives of the
equivalence classes (orbits), and

R = {(s, t) : ∃s ≡ s, t ≡ t : (s, t) ∈ R}. (8)

Given an appropriate set of atomic propositions that respect the equivalence
classes, the quotient turns out to be bisimulation equivalent to the original M .
Any CTL* formula over such atomic propositions can thus be verified over the
smaller M instead of over M . Technical details of symmetry reduction are avail-
able in the literature [ES96,CEFJ96].

7.2 Uniformly Symmetric Systems

Intuitively, due to the strong correspondence between the given system fam-
ily (Mn)n≤N and the aggregate M , one might expect that symmetry uniformly
present in all of the Mn carries over to M . In proving this conjecture, one encoun-
ters the difficulty that the Mn have different numbers of replicated components.
Thus permutations act on different sets of indices and cannot be compared across
the Mn or related to M . A unifying solution is to let permutations from SymN

act on all states, even with less than N components, after upgrading the states to
dimension N using the completion operator. This step introduces the $ symbol
into the state, which, due to its special meaning, requires special treatment: we
have to make sure permutations preserve the properness of a state. Otherwise,
a transition between proper states could be permuted into a pair of improper
states (by definition not a transition). We therefore first define a restricted per-
mutation action, as follows.

Definition 7 For any π ∈ SymN and s ∈ S, define

π[s] =

π(s)
if s is proper of some width n
and ∀i : i > n : π(i) = i

s otherwise,
(9)

where as usual π(s) = π(s1, . . . , sN) = (sπ(1), . . . , sπ(N)). This definition extends
in the pointwise fashion to transitions and to sets of states and transitions. It
can be shown that the relation s ≡ t iff ∃π : π[s] = t is an equivalence. The
condition ∀i : i > n : π(i) = i guarantees that no value i is permuted across the
boundary between n and n+1. Since si = $ for all i > n in a proper state s, it is
irrelevant how permutations act on such i, as long as they respect this boundary.
The weaker condition ∀i : i > n : π(i) > n has the same effect. Regarding the
“otherwise” case of (9), note that it applies not only to improper states, but also
to proper states for which π violates the boundary.

Property 8 For any π ∈ SymN and s ∈ S, s is proper if and only if π[s] is
proper. If both proper, they have the same width.

Proof . If s is improper, then π[s] = s, so π[s] is also improper. If s is proper,
but π violates the properness boundary, then again π[s] = s, so π[s] is proper.
Otherwise, with n as in (9), π(i) = i > n for all i > n, hence sπ(i) = $. Due to
bijectivity of π, we have π(i) ≤ n for all i ≤ n, hence sπ(i) 6= $, so π[s] is proper;
the claim of property 8 about the same width is immediate. �

We now define the notion of uniform symmetry for a parameterized system.
In order to overcome the technical barrier that permutations acting on different
systems have different domains, we use once again completions.

Definition 9 The family (Mn)n≤N of systems is called uniformly symmetric if

∀n : n ≤ N : ∀π : π ∈ SymN : π[c(Rn)] = c(Rn). (10)

It is easy to see that (Mn)n≤N is uniformly symmetric exactly if each sys-
tem Mn satisfies π(Rn) = Rn for all permutations on [1..n]. Definition 9 pro-
vides a closed formulation of this fact and refers to only a single permutation
group, SymN . This makes reasoning about uniformly symmetric systems con-
venient. We point out that in equation (10), permutations π[·] act according to
equation (9), whereas in the expression π(Rn) = Rn, they act in the standard
fashion; there is no notion of proper states in individual systems.

The main result in this section relates symmetry in the Mn and in M :

Theorem 10 If (Mn)n≤N is uniformly symmetric, then M is fully symmetric.

Proof . Let an arbitrary π ∈ SymN be given; we show π[R] = R:

π[R]
(3)
= π

 ⋃
n≤N

c(Rn)

 (∗)
=
⋃
n≤N

π[c(Rn)]
(10)
=

⋃
n≤N

c(Rn)
(3)
= R,

where (∗) follows from function application distributing over finite set union. �

Using this result, it remains to show that the quotient of M with respect to
the orbit equivalence relation ≡ and the special permutation action from equa-
tion (9) is bisimulation equivalent to M , so that we can verify CTL* properties
over the quotient without losing information. This proof is similar to the argu-
ment used in standard symmetry reduction, provides no new insights and is thus
omitted here.

7.3 Symmetry-Reducing the Aggregate System

Looking at the somewhat ungainly equation (9) defining permutation action,
one might suspect that exploiting the symmetry in the aggregate system is more
difficult or less efficient since only certain permutations can be effectively applied
to a state. In the rest of this section, we will show that such is not the case:
restricting permutations in this way preserves the quotient size.

Symmetry reduction algorithms proceed by mapping an encountered state s
to a unique representative of its equivalence class orbit(s) with respect to the or-
bit relation [CEFJ96,ID99]. A common choice for the representative is the orbit’s
lexicographically least element, minlex(orbit(s)), given some total order ≤L on
the local states. For example, in a 3-process system with local states A and B,
the global states (A,A,B), (A,B,A) and (B,A,A) form an orbit, which can
be represented by the lexicographically least of the three states, (A,A,B). We
demonstrate in the following that such representatives can be computed with-
out worrying about the special permutation action introduced in (9); instead
permutations can be applied in the traditional way, with the same result:

Theorem 11 Let s be a proper state. Then

minlex{π[s] : π ∈ SymN} = minlex{π(s) : π ∈ SymN}. (11)

Proof . Let n be the width of s, and let P[s] and P(s) be the two sets in the
scope of the minlex operator in (11). Then minlex P[s] ≥ minlex P(s) follows from
P[s] ⊆ P(s). To see the subset property, consider an element π[s]. If ∀i : i > n :
π(i) = i, then π[s] = π(s) ∈ P(s). If not, then π[s] = s = id(s) ∈ P(s), for the
identity permutation id ∈ SymN .

For the converse, let s = (s1, . . . , sn, $, . . . , $). Since, by the choice of the
numerical value of the special local state $, si ≤L $ for all i, the state minlex P(s)

has the form m = (m1, . . . ,mn, $, . . . , $). We have to show that m ∈ P[s], from
which then minlex P[s] ≤ m = minlex P(s) follows. To map the proper state s to m,
we can choose a permutation π that leaves all i with i > n invariant (∀i : i > n :
π(i) = i) and permutes the first n components of s into their lexicographically
least arrangement. For this permutation, m = π(s) = π[s] ∈ P[s]. �

Theorem 11 shows that in order to map a proper state s to its orbit represen-
tative, there is no need to worry about the special permutation action. The key
is, of course, that the local state of out-of-bounds processes, represented by $,
was chosen greater, with respect to the local state order ≤L, than any other local
state. Thus, representative mappings never move this symbol to the left in the
local state vector and therefore preserve properness of states. As a result, the
quotient of M with respect to the restricted permutation action defined in (9)
is of the same size (in fact, is the same) as the standard symmetry quotient.

8 Applications

In this section we compare our technique with two alternative methods for ver-
ifying parameterized systems: the naive method that simply considers all sys-
tems individually (“one-by-one”), and general parameterized model checking ap-
proaches. Experimental results are obtained using BDD-based symbolic model
checking. In tables, “N” refers to the parameter bound. “Peak Number of BDD
Nodes” is the maximum number of BDD nodes live at any point during execu-
tion and thus is a measure of the memory requirements of the method. Running

times are given in seconds (s), minutes (m), or hours (h), as appropriate. We
used the CUDD BDD package [Som], with a BDD variable order statically cho-
sen to best-fit each problem. All experiments were performed on a 1.6GHz PC
with 512MB of RAM running a variant of the Linux operating system.

8.1 Comparison to the One-by-one Method

The one-by-one method and our aggregate technique have the same theoretical
power: they can be used to verify arbitrary parameterized systems up to some
finite bound. We show experimental results demonstrating the superiority of our
method in terms of efficiency.

The first example, “McsLock”, is a model of a queuing lock algorithm [MS91].
It has a shared variable that counts processes in the queue (such counters are
disallowed by many fully parameterized techniques). It also has a transition that
causes several processes to change their local state simultaneously; this transition
depends on the number of components in the system. We show in table 1 how
our method scales for an increasing number of components. As can be seen, the
BDD size for the transition relation R is only slightly bigger than that for RN .
The benefit of our technique is to reduce the verification time, which it does
by more than an order of magnitude for the larger instances, and this factor
increases with N .

The second example is a parallel program. Written for a particular cluster
of machines, such programs have a natural upper bound on the parameter: the
physical number of CPUs in the cluster. Due to the possibility of failures and
down-times, such programs are parameterized by the number of available proces-
sors. These characteristics make them a suitable application domain for bounded
parameterized verification.

We present here a variant of parallel odd-even sort [KGGK94]. This algorithm
proceeds in rounds; during even rounds processors compare each even-indexed
element they own with its right neighbor (which may be owned by the next pro-
cessor), analogously for odd rounds. The odd-even split ensures mutual exclusion
when changing the position of elements. The initial state is unconstrained; the
number of elements to be sorted grows with N . The CTL property we verified
is of the form AF sorted .

The results in table 1 show again clearly the time savings obtained through
our method. In contrast to the McsLock example, the BDD for the aggregate
happens to be of a form that allows it to be traversed with fewer live BDD
nodes compared with the one-by-one technique. Note that the number of live
BDD nodes depends strongly on implementation details in the BDD package.
On the other hand, the number of nodes of a particular BDD does not, and indeed
the sizes of RN vs. R are as expected. The differences between RN and R are
bigger than with McsLock since the sorting problem is much less homogeneous—
individual transition relations depend a lot on the instance size.

One-by-one method for n ∈ [1..N] Aggregation method for N
N BDD Size Peak Number BDD Size Peak Number

of RN of BDD Nodes
Time

of R of BDD Nodes
Time

McsLock (N = number of processes):

5 924 19,165 2.4s 958 19,176 0s

10 2,012 384,449 1:30m 2,057 384,796 53s

15 3,082 1,797,874 39:08m 3,147 1,797,711 15:17m

20 4,173 5,142,717 6:23h 4,346 5,142,890 1:50h

Parallel Sorting (N = number of parallel processors):

5 962 37,699 3s 2,021 26,106 3s

7 1,614 144,111 52s 3,643 90,249 30s

10 2,881 673,727 21m 6,911 371,529 7m

13 4,450 2,190,163 3:30h 11,129 1,099,196 54m
Table 1. Comparison one-by-one and aggregate verification method

8.2 Comparison to PMC Approaches

If applicable, successful approaches to parameterized model checking (PMC) (see
e.g. [Lub84,GS92, many others]) have the clear advantage that they show cor-
rectness for all sizes. Interestingly, the bounded and unbounded formulations of
PMC synergize when unbounded techniques reduce the correctness for infinitely
many instances to correctness up to some finite cutoff. This cutoff depends on
the communication complexity of the parameterized system and is not guar-
anteed to be small [EK00,BHV03,CMP04]. Our method can therefore be used
as a follow-up to cutoff-based approaches, picking up the task of verifying the
remaining finite-size family.

The disadvantage of unbounded methods is that, targeting a generally un-
decidable problem, a fully automated solution that works for any input system
does not exist. Many authors forfeit completeness by imposing restrictions on
the input syntax in order to allow an algorithmic solution. In an early work,
Clarke, Grumberg and Browne assume the absence of shared variables [CGB86],
which could be used to distinguish the number of components. The McsLock
example discussed above contains such a shared counter variable. Counters may
also occur in dynamic systems that monitor the number of active components,
for instance for performance reasons. Interestingly, if an “energy-saving” mode
of operation has a bug, the dynamic system may be correct for a large number
of processes, but not for a small one.

The logic used in [CGB86] also bans the next-time operator X and arbitrar-
ily nested ∃ and ∀ quantifiers over processes indices. This makes some natural
properties cumbersome to express, such as deadlock reachability [EK02] or even
mutual exclusion [CGB86]. In contrast, our method—being less ambitious—
requires no restrictions on the input syntax, and is valid for full CTL* (and even
the µ-calculus).

Other approaches sacrifice full automation. In [CG87], the notion of a closure
process is introduced, whose definition depends on the parameterized system at
hand to a degree that seems to undermine mechanization. In [KM89], the authors
present a fairly broad induction method to reduce a family of systems to a single
system, using an invariant process, which enforces a partial order among the
processes. Finding such an invariant requires help from the designer and can be
non-trivial. The Murϕ tool supports replicated components for fully symmetric
systems [ID99]. The tool automatically checks whether the given program allows
generalizing the verification result to larger systems. The designer, however, is
still left with checking the authenticity of returned error traces. Since our method
is exact, there is no need to solicit human interaction for path-lifting, or other
forms of manual assistance.

Looking back at the parallel sorting example, the Kripke structure derived
from this algorithm is asymmetric, since the processors have a translational (non-
cyclic) communication pattern. Because of this irregularity and the liveness-
type property, we believe that most existing parameterized techniques are not
immediately applicable to automatically verify this algorithm correct for all size
instances.

Finally, we present the response of our method to situations in which a prop-
erty is true for some but not all size instances. The sorting procedure requires
comparing each processor’s final element to the first of the next processor; the
last processor must be treated specially. The parity (even/odd) of the final ele-
ment owned by each processor alternates if the number of elements per processor
is odd. It is easy to get the communication of the boundary cases wrong. Below
is the output of our method for a version of the algorithm that fails to compare
the last two elements of the last processor if the number of processors is odd:

Initial states violating "AF sorted" for N=10:
- $ $ $ $ $ $ $ $ $
- - - $ $ $ $ $ $ $
- - - - - $ $ $ $ $
- - - - - - - $ $ $
- - - - - - - - - $

Here, ’$’ represents as before the local state of out-of-bounds processors. The
values carried by active processors have been abstracted away and replaced by ’-’
to more conspicuously expose the delinquent systems: The number of ’-’ in a
global state (i.e. in one row) equals the state’s width and thus indicates the
parameter size of the system. In our case, these sizes are all odd (1, 3, 5, 7, 9),
giving a potentially substantial hint as to where the problem lies.

9 Conclusion

In this paper we have shown how to collapse a range of instances derived from an
arbitrary parameterized system into a single aggregate, which is detailed enough
to be able to simulate each instance. Further, initial states of the original systems

can be converted appropriately to states of the aggregate, enabling us to verify
arbitrary CTL* properties for all instances up to some finite size in one fell
swoop. The large time savings obtained in this manner come at little or no
additional space cost, the difference sometimes being masked by the fluctuating
performance of BDD-based symbolic model checking procedures. As a special
case, if the systems are individually symmetric, then so is the aggregate system,
which can thus be symmetry-reduced. Our method can be viewed as, instead of
symmetry reducing and verifying all systems individually and then combining
the result (“does any of them have an error?”), combining the systems first and
then applying the reduction and verification once.

We have presented experimental results using a BDD-based implementation
of our technique. We believe the method can likewise be used with SAT-based
symbolic verification such as Bounded Model Checking (BMC) [BCCZ99]; crucial
is the capability to operate on sets of states in one step. We remark on the side
that despite the common “bounded”, the goals of BMC (investigating bounded
time lines over a fixed structure) and of our technique (investigating unbounded
time lines over a bounded family of structures) are quite different.

Treatment of shared variables. Shared variables are used for communication and
synchronization among processes, and they may appear in atomic propositions of
CTL* formulas. Their presence is mostly orthogonal to our techniques. To form
the aggregate system M , we distinguish two types of shared variables. Those
with range independent of the system size n (such as a boolean semaphore) are
introduced into M with the same range. Id-sensitive shared variables, i.e. those
ranging over process indices and thus with range [1..n] in Mn, are assigned a
range of [1..N] in the aggregate structure, equal to their range in structure MN .
An example is the variable tok in figure 1 earlier. Regarding the definition of
proper, a variable like tok must be restricted to [1..n] in a proper state of width n,
despite the variable’s range [1..N] in the aggregate. The completion operator
leaves the values of all shared variables unchanged.

Other related work. In addition to the results on parameterized verification men-
tioned in section 8, there are some that make use of the apparent symmetry in
systems defined using a single process template. Full symmetry of Kripke struc-
tures can be exploited using some form of counters [EN96,ID99], or by appealing
to state symmetry [ES96] of the property [EN96,EK00]. In contrast, we show how
to take advantage of internal symmetry of the property and the Kripke structure
through a quotient construction.

Future Work. A topic for further investigation is which reductions other than
symmetry are preserved during the aggregation. This seems promising since the
aggregate faithfully simulates the individuals. The success will depend on how
much existing reduction algorithms have to be adjusted to work on the aggregate,
and how much efficiency and compression is lost as a result of such adjustments.

References

[AK86] Krzysztof Apt and Dexter Kozen. Limits for automatic verification of finite-
state concurrent systems. Information Processing Letters (IPL), 1986.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Sym-
bolic model checking without BDDs. In Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), 1999.

[BHV03] Ahmed Bouajjani, Peter Habermehl, and Tomás Vojnar. Verification of
parametric concurrent systems with prioritized FIFO resource management.
In Concurrency Theory (CONCUR), 2003.

[Bry86] Randy Bryant. Graph-based algorithms for Boolean function manipulation.
Transactions on Computers (TC), 1986.

[CE81] Edmund Clarke and Allen Emerson. The design and synthesis of synchro-
nization skeletons using temporal logic. In Logic of Programs (LOP), 1981.

[CEFJ96] Edmund Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha. Ex-
ploiting symmetry in temporal logic model checking. Formal Methods in
System Design (FMSD), 1996.

[CG87] Edmund Clarke and Orna Grumberg. Avoiding the state explosion problem
in temporal logic model checking. In Principles of Distributed Computing
(PODC), 1987.

[CGB86] Edmund Clarke, Orna Grumberg, and Michael Browne. Reasoning about
networks with many identical finite-state processes. In Principles of Dis-
tributed Computing (PODC), 1986.

[CMP04] Ching-Tsun Chou, Phanindra Mannava, and Seungjoon Park. A simple
method for parameterized verification of cache coherence protocols. In For-
mal Methods in Computer-Aided Design (FMCAD), 2004.

[EC82] Allen Emerson and Edmund Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Science of Computer Programming
(SOCP), 1982.

[EK00] Allen Emerson and Vineet Kahlon. Reducing model checking of the many
to the few. In Computer-Aided Design (CAD), 2000.

[EK02] Allen Emerson and Vineet Kahlon. Model checking large-scale and pa-
rameterized resource allocation systems. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2002.

[Eme90] Allen Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics. MIT Press,
1990.

[EN96] Allen Emerson and Kedar Namjoshi. Automatic verification of parameter-
ized synchronous systems. In Computer-Aided Verification (CAV), 1996.

[ES96] Allen Emerson and Prasad Sistla. Symmetry and model checking. Formal
Methods in System Design (FMSD), 1996.

[EW03] Allen Emerson and Thomas Wahl. On combining symmetry reduction and
symbolic representation for efficient model checking. In Correct Hardware
Design and Verification Methods (CHARME), 2003.

[GS92] Steven German and Prasad Sistla. Reasoning about systems with many
processes. Journal of the ACM (JACM), 1992.

[ID99] Norris Ip and David Dill. Verifying systems with replicated components in
Murφ. Formal Methods in System Design (FMSD), 1999.

[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Intro-
duction to Parallel Computing. Benjamin/Cummings Publishing, 1994.

[KM89] Robert Kurshan and Kenneth McMillan. A structural induction theorem
for processes. In Principles of Distributed Computing (PODC), 1989.

[Lub84] Boris Lubachevsky. An approach to automating the verification of compact
parallel coordination programs. Acta Informatica, 1984.

[McM93] Kenneth McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer Academic, 1993.

[MS91] John Mellor-Crummey and Michael Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. Transactions on Computer
Systems (TOCS), 1991.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Foundations of Computer
Science (FOCS), 1977.

[QS82] Jean-Pierre Quielle and Joseph Sifakis. Specification and verification of con-
current systems in CESAR. In International Symposium on Programming
(ISOP), 1982.

[Som] Fabio Somenzi. The CU Decision Diagram Package, release 2.3.1. Univer-
sity of Colorado at Boulder, http://vlsi.colorado.edu/~fabio/CUDD/.

