
Copyright

by

Thomas Wahl

2007

The Dissertation Committee for Thomas Wahl

certifies that this is the approved version of the following dissertation:

Exploiting Replication

in Automated Program Verification

Committee:

E. Allen Emerson, Supervisor

James C. Browne

Warren A. Hunt, Jr.

Vladimir Lifschitz

Dewayne E. Perry

Exploiting Replication

in Automated Program Verification

by

Thomas Wahl, Univ.-Diploma, M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2007

Acknowledgments

Like any reasonably large scientific work, this dissertation bears the handwriting

of more than one person. Some helped with their ideas, others with their critique.

Some influenced me directly, others shaped my personality by their example. Re-

flecting back upon the years behind me, I find that I owe to all of these people.

Not because it is customary, but because it is appropriate: I first thank

my advisor, Prof. Allen Emerson, for his guidance. He has helped my career in

more ways than he is probably aware of. It was both an honor and—sometimes—

a challenge to work under the supervision of such a distinguished member of the

research community. Most valuable to me was his rigor in reviewing my work. His

refusal to look at immature drafts taught me to be self-critical before imposing

my work onto others. I continue to look up to the high standards of his own

groundbreaking work in the early days of formal verification.

A lesson for life was Allen’s focus on truly important things, adjourning cler-

ical tasks with an amazing degree of stubbornness. Despite his immense repertoire

of scientific accomplishments, he remained a person humble at heart who can talk

to his students like a friend. I will miss our conversations.

Profs. J. Browne and W. Hunt urged me to heed the practical aspects of

research. Prof. Hunt introduced me to hardware verification and helped establish

contact with Intel, where I had the chance to do an internship during the late years

of my Ph.D. program. Prof. Browne sharpened my vision regarding the distinction

iv

of “are we doing things right” vs. “are we doing the right things”. His contributions

to my career, however, go beyond research. I suspect his calendar to be tight;

nevertheless he offered advice on many occasions, such as during the job search

process. I wish I could learn more from him about effective scheduling.

I am grateful for Profs. V. Lifschitz and D. Perry for their service as com-

mittee members. Incidentally, I have known Prof. Lifschitz for more than a decade,

when I started to learn rigorous mathematical logic from him. No-one can seriously

do research in formal methods without a solid logic background.

Prof. J. Misra introduced me to the intricacies, and beauties, of distributed

systems algorithms. I also had the pleasure to work with him on language design,

which allowed me insights into how to encourage correct programming. I appreciate

his support during my job search, as well as his general advice on life in academia.

I specifically thank Prof. Emerson’s former students Richard Trefler and Nina

Amla. I find that several of my papers were inspired in part by Richard’s research

on symmetry, and I am glad that we were able to publish one result together. While

Nina was particularly resourceful during my decision to choose formal methods as

my research field, it was Richard’s diligence in giving advice on finishing up and on

finding a job that deserves my utmost gratitude.

I had most fruitful discussions with my colleagues Fei Xie and Sandip Ray.

Fei, who is now a professor at Portland State University, gave plenty of advice on

life as a faculty member, and on becoming one. I was very fortunate for Sandip

to decide to stay at UT after graduation, so I could enjoy discussions with him

(although not often enough), benefit from his encyclopedic knowledge, and exchange

jokes with him about our unequal advisors. I admit that I often peeked at these

fine colleagues’ dissertations to see what it should be. I appreciate the company of

Jyotirmoy Deshmukh (did I get that spelled right?) and Roopsha Samanta as my

later fellow advisees of Prof. Emerson. Please don’t repeat my mistakes!

v

Last but not least, I want to thank the department’s staff for taking care,

professionally, of so many things that form the administrative scaffolding of a Ph.D.

program. I point out Katherine Utz’s cheerful disposition when assisting students,

and Gloria Ramirez’ friendliness, knowledge about “the procedures” and uncom-

promising willingness to help, even if all is explained clearly on forms 1-3.4/IVa-c.

I also thank the people who sat down and did the obvious: create a dissertation tem-

plate that abides by the University’s format guidelines. Thanks to the template,

my dissertation grew from 0 to 30 pages in under ten seconds. Seriously, their work

saved generations after them much hassle.

Now that all seems done, it is tempting to say: “Actually, getting the Ph.D.

was easy”—it was not. Anyone who says it was is probably lying. It is a long

process. There was a time when my advisor kept asking me, ”How many papers do

you have?” Worse, I kept giving him the same answer. At the end they even started

demolishing beloved Taylor Hall, and I had to vacate my office.

I want to conclude mollifyingly by thanking the state of Texas and its people.

In all those hours when I should have been exploring state spaces, I instead explored

the cute villages, the vast lands, or the infinite coastline of the state. I found friendly

folks everywhere. I am truly grateful for having found a second home here, so far

away from the first, and I am looking forward to coming back.

Thomas Wahl

The University of Texas at Austin

August 2007

vi

Exploiting Replication

in Automated Program Verification

Publication No.

Thomas Wahl, Ph.D.

The University of Texas at Austin, 2007

Supervisor: E. Allen Emerson

This dissertation shows how systems of many concurrent components, which

naively engender intractably large state spaces, can nevertheless be successfully

subject to exhaustive formal verification, provided the components can be classified

into a few types. It therefore addresses an instance of the state explosion problem:

a finite-state model of a system can be much larger than a high-level description

of this system. Model checking, the technique to which this dissertation is primar-

ily devoted, inherently relies on state space exploration and thus suffers from this

problem more than other formal verification methods.

vii

The state explosion phenomenon persists even if the system consists of com-

ponents that are simply replicated instances of a generic behavioral description.

Examples of such systems abound; they include processes executing concurrently

according to some common protocol, clusters of processors executing a parallel pro-

gram, and hardware with replicated physical devices in a uniform arrangement.

Fortunately, models of such systems often exhibit a regular structure, known as

symmetry, which can be exploited in verification, sometimes to the extent of an

exponential reduction in model size.

The first contribution of this dissertation is to show how reductions based on

symmetry can be performed with state-of-the-art system representations. Many of

today’s computing systems induce astronomically large state spaces whose formal

models require a symbolic encoding using Boolean formulas. Such succinct represen-

tations call for new algorithms that can process entire sets of objects at once. How

to detect symmetry quickly during symbolic model checking, so that redundancy

in the exploration can be avoided, was an open problem for some time. In this

dissertation we provide an efficient and flexible solution to this problem by using

symbolic data structures in a somewhat unconventional way.

The second contribution is to extend symmetry reduction techniques to more

realistic and general scenarios. We establish that the principal ideas still apply if

symmetry is violated in parts of the state space. Such scenarios are common in prac-

tice, for instance when priorities determine which of several competing processes can

access a resource first. In these situations it is beneficial to exploit symmetry where

it exists and watch out for the (few) violations, rather than to ignore it altogether.

We also demonstrate how symmetry can help us solve a practically significant in-

stance of parameterized verification of system families. This technique traditionally

attempts to prove properties about systems independently of the size parameter,

but requires models of a special structure. We show that by restricting the param-

viii

eter to a finite range we can solve this problem efficiently, can do so without any

conditions on the models’ structure, and can take advantage of symmetry in the

individual systems of the family if it exists.

ix

Contents

Acknowledgments iv

Abstract vii

List of Figures xv

List of Algorithms xvii

List of Tables xviii

I Introduction 1

Chapter 1 About This Dissertation 2

1.1 Problem Overview . 2

1.2 Results Overview . 6

1.3 Roadmap . 10

Chapter 2 Model Checking 12

2.1 Finite-State Models of Systems . 14

2.1.1 Kripke Structures . 14

2.1.2 Explicit-State Representations of Kripke Structures 17

2.1.3 Symbolic Representations of Kripke Structures 19

x

2.1.4 Binary Decision Diagrams . 21

2.1.5 Modeling Systems with Many Components 24

2.2 Specifying Properties of Systems . 27

2.2.1 Linear Temporal Logic . 28

2.2.2 Computation Tree Logic . 30

2.2.3 CTL* and the Propositional µ-calculus 32

2.2.4 Concluding Remarks . 33

2.3 Model Checking—Algorithms and Implementation 35

2.3.1 Automata-Theoretic LTL Model Checking 35

2.3.2 Symbolic CTL Model Checking 38

2.3.3 Model Checking Tools . 41

Chapter 3 Abstraction 44

3.1 Existential Abstraction . 45

3.2 Relationships between Concrete and Abstract Models 47

3.2.1 Simulation . 47

3.2.2 Abstraction and Refinement 49

3.2.3 Bisimulation . 50

Chapter 4 Symmetry and Symmetry Reduction 53

4.1 Symmetry of a Kripke Structure . 54

4.1.1 Permutations and Groups . 54

4.1.2 Symmetry . 56

4.1.3 Detecting and Verifying Symmetry 58

4.2 Symmetry Reduction—An Instance of Existential Abstraction 59

4.2.1 Symmetric Atomic Propositions 60

4.2.2 The Symmetry Quotient . 61

4.3 The Symmetry Quotient in Practice 63

xi

4.3.1 Orbit Representatives . 63

4.3.2 Detecting State Equivalence 64

4.3.3 The Orbit Problem of Symbolic Model Checking 65

4.3.4 Ameliorating the Orbit Problem 66

4.4 Symmetry: A Look Beyond . 67

II Efficient Approaches to Symmetry Reduction 69

Chapter 5 Dynamic Symmetry Reduction 71

5.1 Symmetry Reduction without Symmetry Quotient 72

5.2 Computing the Representative Mapping 75

5.3 Correctness and Efficiency of the Algorithm 77

5.4 Lifting Abstract Error Traces . 79

5.5 Generalizations . 81

5.5.1 Other Types of Symmetry . 81

5.5.2 ID-Sensitive Variables . 83

5.5.3 Full CTL Model Checking . 83

5.5.4 Computing Representative Sets for Atomic Propositions . . . 85

5.6 Conclusions and Bibliographic Notes 86

Chapter 6 Symmetry Reduction with Generic Representatives 89

6.1 Quotient Structure Revisited . 90

6.2 Counter-Abstracting Symmetric Programs—An Example 92

6.3 Formalizing the Translation Process 96

6.3.1 Input Program Syntax . 96

6.3.2 Input Program Translation 99

6.4 Verifying the Generic Program . 101

6.5 BDD-Complexity of the Generic Program 102

6.6 Conclusions and Bibliographic Notes 105

xii

Chapter 7 Improving Counter Abstraction by Counting Less 107

7.1 The Local State Explosion Problem 108

7.2 Amelioration through Local Reachability Analysis 110

7.3 Amelioration through Live Variable Analysis 111

7.4 Conclusions and Bibliographic Notes 113

Chapter 8 DySyRe—Symbolic Verification of Symmetric Systems 116

8.1 Purpose, Scope and Features of DySyRe 117

8.2 Input Language of DySyRe . 118

8.3 Property Language of DySyRe . 121

8.4 Conclusions and Bibliographic Notes 124

Chapter 9 Experimental Evaluation 126

9.1 Generic Representatives . 127

9.2 Live Variable Analysis . 131

9.3 Dynamic Symmetry Reduction . 131

III Extending the Scope of Symmetry Reduction 135

Chapter 10 Reducing Partially Symmetric Systems 138

10.1 What is Partial Symmetry? . 140

10.2 Adaptive Symmetry Reduction—An Example 141

10.3 Representing Partially Symmetric Systems 143

10.4 Orbits and Subsumption . 145

10.5 State Space Exploration Under Partial Symmetry 148

10.6 Implementing the Exploration Algorithm 151

10.7 Experimental Evaluation . 153

10.8 Conclusions and Bibliographic Notes 156

xiii

Chapter 11 Symmetry and Parameterized Reasoning 159

11.1 Aggregating a Family of Systems . 162

11.2 Efficiently Constructing the Aggregate System 164

11.3 Verification over the Aggregate System 168

11.4 Symmetric Families . 171

11.5 Reducing Symmetric Families . 173

11.6 Experimental Evaluation . 175

11.7 Conclusions and Bibliographic Notes 178

IV Conclusions 182

Chapter 12 Summary of Results 183

Chapter 13 Open Problems and Further Research 187

13.1 Open Problems . 187

13.2 Further Research . 188

Appendix A Select Proofs 193

A.1 Proof of Lemma 18 . 193

A.2 Proof of Theorem 28 . 194

A.3 Proof of Theorem 32 . 195

Appendix B The Readers-Writers Protocol in DySyRe 198

Appendix C The MCS Queuing Lock Algorithm 205

Bibliography 207

Vita 215

xiv

List of Figures

2.1 A Kripke structure . 17

2.2 A binary decision tree and the equivalent binary decision diagram . 21

2.3 Synchronization skeleton for a solution to the MutEx problem 26

2.4 Büchi automata representing the LTL formulas XP , GP and P UQ 36

3.1 A Kripke structure and an abstraction of it 46

3.2 Bisimilarity and simulation-equivalence 50

4.1 An example of a symmetry quotient construction 62

4.2 Unique and multiple representatives 66

5.1 Swapping variables in a BDD . 79

6.1 Skeleton for a token-ring solution to the MutEx problem 93

6.2 Generic version of the token-ring solution to the MutEx problem . . 94

8.1 Some of DySyRe’s functions for creating BDDs 122

9.1 Multiple representatives, counter abstraction and dynamic reduction 133

10.1 Local state transition diagram of process i for an asymmetric system 141

10.2 Abstract reachability tree for the model induced by figure 10.1 . . . 142

10.3 Comparing the adaptive technique to plain exploration 154

xv

10.4 Comparing the adaptive technique to standard symmetry reduction . 155

B.1 Synchronization skeleton for the Readers-Writers problem 198

B.2 DySyRe code for Readers-Writers: declarations 200

B.3 DySyRe code for Readers-Writers: auxiliary predicates 201

B.4 DySyRe code for Readers-Writers: Readers’ transitions 202

B.5 DySyRe code for Readers-Writers: Writers’ transitions 203

B.6 DySyRe code for Readers-Writers: atomic propositions 204

C.1 MCS list-based queuing lock [MS91, figure 5] 206

xvi

List of Algorithms

1 Computing fixpoints of a monotone predicate transformer 40

2 Two ways to compute the representative states satisfying EF bad . . 72

3 Computing the representative mapping α using subroutine τ 77

4 Computing a concrete error path after quotient exploration 80

5 Symbolically computing the orbit of a state t 81

6 Subroutine τ for nice symmetry groups 82

7 Program text for process i . 111

8 State space exploration under partial symmetry 149

9 Updating Unexplored and Reached : update(v,R) 150

10 Implementation of the aggregate transition relation R 167

xvii

List of Tables

6.1 Fully symmetric basic guards on local states 97

9.1 Unique, multiple and generic representatives 129

9.2 Multiple representatives and counter abstraction w/o and with BDDs 130

9.3 Symbolic counter abstraction w/o and with local state reduction . . 131

9.4 Multiple representatives, counter abstraction and dynamic reduction 132

9.5 Model checking, multiple representatives and dynamic reduction . . 134

10.1 Adaptive symmetry reduction against increasing fragmentation . . . 156

11.1 Comparison one-by-one and aggregate verification method 177

xviii

Part I

Introduction

1

Chapter 1

About This Dissertation

Systems of many concurrent components naively engender intractably

large state spaces. They can nevertheless be successfully subject to ex-

haustive formal verification, provided the components can be classified

into a few types.

1.1 Problem Overview

Reliability of computer systems affects everyone today, even those ignorant of the

ubiquitous presence of computers in society. This insight has been widely accepted

throughout the software and hardware industry, especially when applied to safety-

critical and economically vital applications. Opinions diverge when it comes to

the means of achieving reliability and range from “getting it right the first time”

to after-the-fact methods such as testing, simulation and formal verification. The

justification for automated formal techniques lies in the observation that due to the

immense complexity of today’s systems, human capacity is insufficient to produce

correct programs at the first attempt, or to eliminate all errors afterwards by trial-

and-error approaches. Instead, computers must be used to establish the correct

2

functioning of computer programs. This implies the need for a formal approach

that can be implemented on a machine.

Formal methods have the potential to be exhaustive, to provide guarantees,

and—in some cases—to explain what has been found, by a proof or a counter ex-

ample. This potential comes at a price. Users of formal tools must usually have

more training than testing engineers; just how much depends on the specific tech-

nique. One that aims at reducing the required level of expertise is model checking

[CE81, QS82]. Prerequisites for its employment are that the system at hand can

be represented using a finite-state structure, and that the property of interest is ex-

pressible in a formula of a special decidable logic. Determining whether the property

is satisfied by the system then amounts to deciding whether the structure satisfies

the formula. The techniques in this dissertation were developed with model checking

in mind. Some are, however, of a more general nature; we point out such cases in

the text.

The potential of model checking to be exhaustive, i.e. to provide full coverage,

is achieved by a sophisticated search through the state space. This search, however,

is also responsible for the major obstacle that model checking faces in practice: the

state explosion problem. The formal model that is needed in order to systematically

explore the system is often much larger than the original system description. As a

result, straightforward use of model checking can result in unsatisfiable or at least

unacceptable time and memory needs.

To increase the number of states they can handle, many model checkers

today avail themselves of some form of symbolic representation: Sets of states are

expressed as Boolean constraints over the state variables. This way, a relatively

short Boolean formula can often represent a number of states much larger than it

would be possible to enumerate individually. Moreover, most operations important

for model checking can be implemented efficiently on symbolic data structures. The

3

ensuant idea of symbolic model checking, proposed in a landmark dissertation by

K. McMillan [McM93], has had tremendous success since the mid 1990s and has

increased the scope of model checking to some systems with extremely large state

spaces.

Coping with the state explosion problem is one major thrust of model check-

ing research today; success in this regard will likely have a crucial impact on the

future of the technique. This dissertation presents solutions to this problem for a

frequent and notorious type of systems: those consisting of many components that

are replications of a generic behavioral description. The components can be ab-

stract entities, such as processes in a concurrent system, each executing a copy of

a program instantiated by a unique process identifier. The components can also be

physical entities, such as memory locations access to which is regulated by a cache

consistency protocol. The global state space, induced by the concurrent existence

of the components, is of size exponential in the number of components: despite in-

teractions among them, the local states of the components are largely independent,

and any combination of local states is a conceivable global state. This explosion

renders naive exploratory approaches infeasible.

Reason for hope comes with the observation that the aforementioned com-

ponents may be interchangeable. To stay with the above example, in a concurrent

system of processes running the same program, it seems intuitive that there is no

order among the processes. That is, in a two-process system, the state where one

process has access to the CPU and the other does I/O is intuitively equivalent to

the state where the rôles are reversed. Consider how model checking represents a

global state of such systems: as a vector of local states of processes. For exam-

ple, the two states in the two-process system above may be stored as (CPU, I/O)

and (I/O, CPU). This very step introduces an unnecessary and in fact undesired or-

der among the processes: technically, the above two global states are different and

4

will be distinguished during a state space search, despite their resemblance. This

introduces redundancy into the search, which can, however, be factored out.

Systems with interchangeable, unordered components are characterized by

transition models that exhibit symmetry. That is, for storage purposes these models

do impose an order on the components, but reordering the components in certain

ways results in exactly the same model: its set of transitions is invariant under

such reorderings. This demonstrates that the order is an artifact of the modeling

processes and should be ignored during model checking. This is done by considering

states such as (CPU, I/O) and (I/O, CPU) equivalent: they are considered instances of

a single abstract state. In general, an abstract state comprises all states identical

up to reorderings of the components. This compression of equivalent states into

one is known as symmetry reduction. If the transition set is invariant under any

reordering, an abstract state may represent exponentially many original concrete

states. In this case, symmetry reduction yields an exponentially smaller abstract

system model. This model can be shown to have the same properties as the original

one, as long as the properties do not artificially distinguish among the components.

For example, instead of asking whether it is possible for process 1 to get into a bad

state, the question should be whether any process can get into a bad state. Just like

the original system itself, this property does not impose an order on the processes

and can thus be verified over the much smaller abstract model.

In practice, it turns out to be much more difficult to exploit symmetry than

the above relatively simple observations seem to suggest. In order to compress

equivalent states into a single abstract state, it is necessary to recognize them as

such, and this recognition should be cheap. This appeared to be impossible if the

model is represented symbolically, using Boolean constraints, as is usually the case

for very large systems. In this case, equivalence between states must be expressed

as a Boolean constraint as well. This constraint is a Boolean formula over two states

5

evaluating to true if the states are identical up to reorderings of the components.

It turned out that such a formula essentially requires an enumeration of all possible

pairs of reorderings, rendering symbolic representation meaningless. This notorious

problem was investigated in depth by E. Clarke, R. Enders, T. Filkorn and S. Jha

[CEFJ96] and has since become known as the orbit problem, after the name orbit

for a symmetry equivalence class. The verdict was that symmetry can be combined

with symbolic representation only in very rudimentary ways and that one cannot

have the best of both worlds.

A second problem occurring in practice is that the mathematical principles

of symmetry may not always hold precisely, but perhaps approximately. Suppose

a system design assigns priorities to a set of perfectly replicated components, for

example to avoid deadlocks. Priorities impose an order on the components and

thus formally destroy symmetry. On the other hand, the priorities matter only

in situations when several components attempt to access a resource of which too

few copies are available. Most behavior of such a system is still invariant under

reorderings of the components. Ignoring the special structure would clearly generate

a model checking procedure that spends much of its time on redundant work.

In summary, symmetry seemed to be hard to extract from compact data

structures, which are otherwise necessary to be able to represent large systems, and

the mathematical theory of symmetry and symmetry reduction did not cater for

practical cases of symmetry with small defects. These reasons discouraged the use

of symmetry as a means to fight state explosion.

1.2 Results Overview

The constraint that governs the use of any reduction technique is that the (unavoid-

able) reduction overhead must not devour the reduction benefit. The general theme

of this dissertation is to demonstrate how the overhead can be minimized to a level

6

that makes exploiting symmetry worthwhile.

Any scheme for model checking under symmetry in some form accommodates

the steps (i) modeling, (ii) reducing and (iii) checking. For example, the principal

(but in practice infeasible) approach to symmetry reduction outlined in section 1.1

can be viewed as building a formal model (i), followed by deriving a reduced abstract

model (ii), followed by model checking the reduced model (iii). Alternative strategies

devised in this dissertation are obtained by combining the step (i)-(iii) in different

ways.

Dynamic symmetry reduction. We present an approach to symbolic symmetry

reduction that interleaves the reduction (ii) and the model checking process (iii).

We show that the transitions of the abstract model can be faithfully simulated by

applying the transitions of the unreduced model, followed by an adjustment that

maps the produced states to abstract states. The reduction step is hence embedded

in the model checking process; the set of abstract transitions is not needed.

We call this approach dynamic to discriminate it against the traditional

paradigm, where the reduction is obtained statically before model checking. The

dynamic approach has two advantages. The first is that the abstract system is never

built and the orbit problem thus avoided—with all the savings this entails. This

benefit alone makes the approach worth considering. The second advantage is that

the procedure is applied to reachable states only. This provides tremendous gains if

errors are found early, i.e. close to the initial state. In contrast, building the abstract

system before model checking always applies to the entire state space.

Counter abstraction. Another approach to symbolic symmetry reduction is

based on the observation that in some cases the reduction step (ii) can be per-

formed before the modeling step (i), by applying the reduction on the program text.

This technique had been proposed before in the form of counter abstraction, to al-

7

low reasoning about systems composed of many identical processes. It was later

re-discovered as a means to symmetry-reducing symbolically represented systems.

This method is based on the idea that in a system of many indistinguishable

components, it is sufficient to count, for each conceivable component configuration,

how many components reside in it, instead of storing, for each component, its con-

figuration. With some effort it is possible to translate the input program into one

that operates over component counters. A model derived from the new program is

of size polynomial in the number of components, making it attractive for systems

with many identical processes. The caveat is that the model size is exponential in

the number of component configurations.

In the dissertation we show techniques that alleviate the unfavorable depen-

dence of counter abstraction on the number of component configurations. An over-

approximation of the input program can be used to estimate the set of reachable

configurations; the counters for unreachable ones are known to be zero and can

be omitted. In addition, program variables whose value is guaranteed to be irrele-

vant in the future at certain program lines can be collapsed in configurations. All

these techniques are performed on the program text, before modeling, and thus help

reduce state explosion before it happens.

Adaptive symmetry reduction. The dissertation also presents a technique to

explore the state space of systems that are not formally symmetric. The technique

is based on the idea that—as long as the system is approximately symmetric—more

compression can be achieved by assuming the system was indeed symmetric and

record exceptions on the fly, than it is to ignore the existing symmetry altogether.

Exceptions are detected from the program text; they often take the form of guards

that allow only certain processes to perform certain actions, for example only pro-

cesses with high enough priority to access a shared resource. Exceptions to perfect

symmetry cause explored states to be annotated in a way that impacts future explo-

8

ration from the state; in this sense the algorithm adapts to encountered symmetry

violations.

Symmetry and parameterized reasoning. Finally, this dissertation estab-

lishes a connection between two related techniques that both reason about systems

with replicated components: The objective of parameterized verification is to iden-

tify classes of systems for which it can be proved that a certain property holds

independently of the system size, i.e. the number of components. Such proofs of-

ten have the form that the property is true for any size exactly if it is true for all

systems up to some bound. This reduces a problem over an infinite system family

to one over a finite family. In the dissertation we describe how the problem over

a finite family can in turn be reduced to one over a single system, which we call

the aggregate of the systems in the finite family. We also show that if the parame-

terized systems in the family exhibit symmetry, then so does the aggregate system,

and symmetry reduction can be applied to it. This shows that the proof obligation

posed by parameterized reasoning can be discharged efficiently.

This technique has an important ramification beyond symmetry. If the in-

dividual systems in the family are heterogeneous, i.e. a given property is true for

some systems but not for all, then parameterized reasoning is per definition inap-

plicable. The aggregate method still allows, however, the verification of any finite

family with a single verification run. It does so by reporting the parameter values

for which the property fails. The cost of the single verification run depends on how

much the systems in the family diverge: the more the members of the family have

in common, the closer is the verification cost to the cost of verifying only the largest

of the systems, rather than of all systems.

9

1.3 Roadmap

This dissertation has four parts.

Part I continues with background information about model checking and ab-

straction. Chapter 4 is specifically devoted to symmetry reduction, as it is essential

for understanding the material presented in this dissertation.

Part II describes new and improved principal approaches to symmetry re-

duction, suitable for symbolically represented systems. They are “principal” in the

sense that they assume perfect symmetry, as defined in chapter 4. Chapter 5 presents

dynamic symmetry reduction, a technique that avoids the orbit problem by avoiding

the construction of an abstract model. Approaches based on counter abstraction are

discussed in chapters 6 and 7. In chapter 8 we take a break from the theory and

present the DySyRe tool that implements many techniques developed in this part

of the dissertation. Chapter 9 provides experimental evidence for the effectiveness

and efficiency of the methods presented in part II, both for each method alone and

in comparison among them.

Part III describes methods that extend the scope of symmetry reduction.

Chapter 10 generalizes principal techniques to allow for minor glitches in the symme-

try of the system. This chapter focuses on explicit-state, not symbolic, model check-

ing under symmetry. Chapter 11 discusses parameterized verification and presents

an approach towards solving a feasible and practically relevant instance of the pa-

rameterized verification problem: verification with a bounded-size parameter.

Part IV concludes with a summary of the results of this dissertation, and a

discussion of open problems (strongly related to the topics of this dissertation) and

future research (loosely related to the topics of this dissertation).

With very few exceptions, proofs to theorems are included, either in the main

text along with the theorem, or—if bulky—in appendix A. The rest of the appendix

10

contains mainly code examples. The purpose of appendix B is to demonstrate how

to model systems in the DySyRe symbolic model checker (introduced in chapter 8).

To this end, the chapter presents the description of a variant of the Readers-Writers

synchronization problem. In appendix C we list the code for a queuing lock ex-

ample by J. Mellor-Crummey and M. Scott, which is used in various parts of this

dissertation for demonstration purposes.

A dissertation that claims to substantially improve previous results on a par-

ticular problem must examine prior work in detail. We discuss such work at the end

of the individual chapters in parts II and III, in a separate section with bibliographic

notes, in order to be able to compare the details with our own techniques. In the

main text we use citations sparingly; full credit is given in those reference sections.

11

Chapter 2

Model Checking

Overview. In this chapter we provide background on model checking and on

symbolic system representation. We introduce Kripke structures, binary decision

diagrams, temporal logics and model checking algorithms. The reader familiar with

these concepts is welcome to skip this chapter; throughout this dissertation we use

standard notation to denote standard concepts.

Model checking generally refers to the act of determining the truth value of a

formula in a given environment that defines the free variables in the formula. Model

checking can therefore be seen as an implementation of the semantics of the logic in

which the formula is given. More specifically, the term model checking was coined

in the context of temporal logics (section 2.2), which are interpreted over finite-

state transition graphs called Kripke structures (section 2.1). The combination

of temporal logics and Kripke structures is a crucial scenario in practice, for the

following three reasons: (i) many interesting programs can be modeled using Kripke

structures (perhaps after simplification), (ii) many interesting properties of programs

can be expressed in propositional temporal logics, and (iii) the model checking

problem for this constellation is decidable. In this dissertation, the term model

12

checking is used to mean propositional temporal logic model checking over finite-

state Kripke structures.

Thanks to decidability, there is an algorithm that takes a temporal logic for-

mula and a Kripke structure and outputs “yes”—the formula evaluates to true over

the structure—or “no”—it doesn’t. If it does, we usually simply say the structure

satisfies the formula. In light of this terminology, it is important to distinguish

model checking from satisfiability checking, where the input is a formula, and the

goal is to check whether a satisfying structure exists. The worst-case complexity of

satisfiability checking for common temporal logics is as least a high as that of model

checking.

Model checking is—in principle—complete, i.e. a failed proof attempt means

the formula is indeed violated. We would like the model checker to produce evidence

of the violation in such cases. This evidence is called a counter example. The

possibility of generating it is one great asset of model checking, as it facilitates

debugging of designs immensely.1 For the common case of invariance properties—

something that is to hold at any time during execution—, a counter example takes

the form of a path to a system state exhibiting the violation. We note that a

counter example is not possible or feasible for all formulas. For instance, a counter

example for a formula that claims the reachability of a state with some property is

tantamount to a witness for any such state’s unreachability, which cannot in general

be delivered succinctly.

Historical note. In mathematical logic, there are (unfortunately) many ways of

saying that a formula evaluates to true in some environment. One is to say that the

environment is a model of the formula. This formulation originally led to the term

model checking. In verification, this use of the word model can be confusing, since
1In fact, although originally designed as a proof technique, model checking has become really

popular as a bug-finding method. Model checking runs on immature designs that end with “no bug
found” are often grounds for suspicion.

13

model also refers to a representation of something, in the most general sense. For

example, a transition graph can be a model of a program. This sense of model has

nothing to do with satisfaction and is in fact meaningful beyond model checking.

To avoid the potential for ambiguity, in this dissertation we use model always in the

representation sense (section 2.1) and say a structures satisfies a formula if it does.

2.1 Finite-State Models of Systems

Model checking can be informally described as a sophisticated exhaustive graph

search method. Exhaustiveness can generally only be guaranteed for finite objects.

Thus, to apply model checking we must represent the program or system in ques-

tion as a finite graph-like object. Such objects, called Kripke structures, fulfill two

purposes: (i) they describe the behavior of the system through transitions between

states, and (ii) they ascribe a meaning to states by assigning to them basic atomic

propositions. Purpose (ii) is what distinguishes Kripke structures from graphs: the

atomic propositions provide the glue between the transition system and the tempo-

ral logic that is supposed to express properties over the transition system. We see

how this is done in section 2.2.

2.1.1 Kripke Structures

Let AP be a finite set, interpreted as the universe of atomic propositions that a

state can possibly satisfy. A Kripke structure over AP , often denoted by M (for

“model”), is a triple (S,R,L), with the following components:

• S is a finite set,

• R is a subset of S × S, and

• L is a function that maps each element of S to a subset of AP .

14

These components are interpreted as follows.

S is called the set of states of the Kripke structureM . It more or less precisely

reflects the set of configurations that the system under investigation can be in. In

practice, in order to be able to apply model checking we must be able to describe a

run of the system as a sequence of state changes. Thus, the first step in modeling

is to assign a notion of state to the system. Suppose, for example, the system is

given as a program over a set of finite-range variables that are changed through

assignments. One can define a state of this system as one particular valuation of all

program variables. We emphasize that model checking may well be applicable to

a system with apparently infinitely many configurations; the art of model checking

is to map these configurations into a finite set of states that retain enough system

information to allow the verification of the property in question.

R is called the transition relation of the Kripke structure M . Since S is finite,

R is also finite. Set R reflects the behavior of the system under investigation. Once

the set of states S is defined, the definition of a transition is usually automatic: every

atomic behavior that causes a state change is a transition. A nonempty sequence

of states p = (p0, p1, . . .) is called a path provided that adjacent states along p form

a transition, i.e. for every i ≥ 0, (pi, pi+1) ∈ R. Paths may be finite, in which case

i’s range is restricted in the obvious way. The length of a finite path p, denoted |p|,

is the number of its transitions; a path of a single state thus has length zero. We

denote by pi→ the suffix of p starting at position i; for a finite path p, this is defined

only for i ≤ |p|.

Since R is a relation, as opposed to a transition function, we can represent

reactive systems: given a specific system configuration, the step to take may de-

pend on an environment choice that the system has no control over. At the Kripke

structure level, this means that the state that models the configuration has several

possible successors—the structure is nondeterministic. On the other hand, a con-

15

figuration may have no successor, indicating rightful termination of the system or

a deadlock; the corresponding Kripke structure fails to be total. Curiously, a non-

total structure may satisfy temporal properties in an unintuitive way; we discuss

this phenomenon in section 2.2.4.

Kripke structures also allow us to model ongoing behavior. The goal of oper-

ating systems and flight controllers is not, as in traditional sequential programming,

to compute a value, print it and quit, but rather to monitor and regulate the in-

terplay of system components such as processes. Such systems are designed to run

forever; termination may signal a crash or a deadlock. At the Kripke structure level,

ongoing computation is modeled by infinite paths, i.e. by paths with cycles.

L is called the labeling function of the Kripke structure M . It is mainly there

for formal reasons, to facilitate the definition of the semantics of temporal logics with

respect to Kripke structures. Such logics express properties that change over time,

along paths in the structure. The base case of defining their semantics is what is

true at the current state. This information is in practice extracted directly from

the state, i.e. from the values of the state variables. The labeling function abstracts

this process by assigning to each state a subset of the set AP of predefined atomic

propositions, namely those propositions assumed to be true at that state.

Suppose we are designing an operating system and are contemplating whether

we need a disambiguation mechanism for simultaneous resource requests. We thus

want to check whether states are reachable in the system with the property that

two processes have a pending resource request. This property, call it contention,

is atomic in the sense that to evaluate it of a state, we need to look at that state

only, not at its successors or predecessors. The labeling function formally assigns

the predicate contention to all states satisfying this property.

A Kripke structure sometimes has a fourth component: an initial state of the

system. Temporal logic formulas that require a unique “start state” (most notably

16

CTL, see section 2.2.2) can then by default use the initial system state as the start

state. In this dissertation we omit the initial state from the definition of the Kripke

structure. The reasons are that the convention to use the initial state as start state

fails to make sense if a system has several initial states, and that some logics do not

require a start state at all (most notably LTL, see section 2.2.1).

Figure 2.1 shows an example Kripke structure of five states and six transi-

{C,D}{B}

{B} {}{A}

Figure 2.1: A Kripke structure

tions. States are labeled with the atomic propositions true at them; one state has an

empty label. As we see, different states can be labeled with the same set of atomic

propositions, and a single state can be labeled with several atomic propositions. The

state labeled {C,D} has two successors—the structure is nondeterministic. Each

state has at least one successor—the structure is total. The dashed edges form a

cycle and can be unfolded into an infinite path.

Kripke structures form the theoretical foundation for modeling systems as a

finite-state machine. In the rest of section 2.1 we review how such structures are

represented in a computer program such as a model checker. The motivation behind

many of these design decisions is the state-explosion problem.

2.1.2 Explicit-State Representations of Kripke Structures

As a Kripke structure is a graph-like object, it stands to reason to use well-studied

graph data structures to encode a Kripke structure. Early implementations of model

17

checking translated the given program into an adjacency list representing the transi-

tion relation and a “dictionary” to look up atomic propositions true at a state. This

approach has an obvious disadvantage: it is exposed mercilessly to state explosion

in that every state that is just conceivable amounts to a piece of memory being

occupied. Any valuation of the program variables in accordance with the variables’

declarations constitutes a conceivable state. If the conceivable state space is huge,

such an implementation becomes infeasible.

The main reason why it is not necessary to pre-generate the conceivable state

space is that, given some initial state, there is no need to consider unreachable states.

In practice, the unreachable part of the state space can be significant. Consider a

system of n processes, each of which can be in l different local states. Suppose we

have l counter variables n1, . . . , nl ∈ [0..n], such that nL counts how many processes

are currently in local state L. The conceivable state space of the counter system

is of size (n + 1)l. By construction, however, the counters satisfy the constraint

Σl
L=1nL = n. There are much fewer than (n + 1)l counter tuples satisfying this

constraint. Thus, the reachable state space is much smaller than the conceivable

one.

In practice, model checking is therefore rarely done by first computing and

representing a set of states and of transitions in a graph data structure such as an

adjacency list. A program can itself be viewed as a high-level and compact repre-

sentation of the Kripke structure’s transition graph. Given a Kripke structure state,

we can compute successors by mapping the state back to a program state, applying

the rules of the program to obtain successor program states, and mapping those to

Kripke structure states. This may seem costly, but if the correspondence between

program states and Kripke structure states is tight, the mappings may amount to

the identity function. This procedure is known as on-the-fly model checking. Out

of the three components (S,R,L) of a Kripke structure, none is realized in full:

18

States are only created on the fly, as they are encountered, and R and L exist only

conceptually. In particular, instead of looking up whether a state is labeled with P ,

we apply the expression defining P to the state in question. For complex properties

that require exploring parts of the state space several times, we thus may evaluate

this expression several times for the same state. This evaluation is often linear in

the size of the state and is thus feasible.

A Kripke structure encoding in which each state is represented explicitly by

its own piece of memory is called an explicit-state encoding. Surprising at first,

it is possible to encode a set of m states in much less memory than, say, a list of

length m would require. Such implicit representations are known as symbolic and

are discussed next.

2.1.3 Symbolic Representations of Kripke Structures

The main idea to achieve a Kripke structure representation more compact than an

explicit enumeration of states is to use constraints. Such a representation has be-

come known as symbolic since it is based on formulas. Consider a system with two

variables, v, w ∈ {A,B,C}. The set of states Z = {(v, w) : v = w}, where the

variables have the same value, can be represented extensionally by enumerating the

three states it contains: {(A,A), (B,B), (C,C)}. It can also, however, be repre-

sented using its defining constraint: v = w. This method is sound and complete:

every closed-form Boolean constraint over the program variables represents a unique

set of states. Conversely, every set Z of states can be represented by a constraint,

for example by the constraint
∨
s∈Z constr(s), where constr(s) encodes the state s.

This idea can be extended to represent sets of transitions using constraints.

A transition (s, t) ∈ R is written as the constraint constr(s) ∧ constr(t); to be able

to distinguish variables that define s from those defining t we attach a prime ′ to

each variable used in defining t. For example, consider a system of two Boolean

19

variables x and y and the statement if x then y := true. Encoding s using x and y,

and t using x′ and y′, the statement defines the set of transitions (s, t) that obey

the relation

R(s, t) = R(x, y, x′, y′) = ((x ∧ y′) ∨ (¬x ∧ y′ = y)) ∧ x′ = x . (2.1)

Variables x and y are sometimes called current-state copies of the state variables,

x′ and y′ then are the next-state copies. The example shows an important charac-

teristic of symbolically represented transitions: variables that do not change must

be constrained such that their current-state copy equals their next-state copy. For

example, variable x is invariant under the if statement above. In many program-

ming languages, it is implicit that unassigned variables are unchanged. In contrast,

omitting the constraint x′ = x in the expression above results in a transition where

the next-state value of x is nondeterministically chosen—it is unconstrained.

Once the transition relation is represented as a Boolean formula over two

copies of the state variables—current and next—, we have to think about a suitable

data structure to encode this formula. Since we want to use the transition relation

for model checking, the choice of data structure depends on the operations we want

to perform on such a formula. In addition to basic set-theoretic operations such as

union and intersection, we need to be able to test two formulas for equivalence, and

we need to be able to compute successors and predecessors of states. In principle,

a straight-forward conjunctive normal form (CNF) suffices; there are model checking

algorithms that use this encoding. However, equivalence checking can be expensive

in CNF. We discuss next an alternative encoding that is very popular with model

checking algorithms and also used extensively in this dissertation.

20

2.1.4 Binary Decision Diagrams

Binary decision diagrams—BDDs—were introduced by R. Bryant [Bry86] as a flex-

ible notation for Boolean formulas that allows all of the above operations, in par-

ticular equivalence checking, fairly efficiently. In addition, it turned out that for

many practical systems, the corresponding transition relation can be represented

succinctly in such a diagram. “Succinctly” here means: with a number of dia-

gram entries that is far below the number of truth value assignments that make

the formula true, i.e. far below the number of objects represented by the diagram.

If P 6= NP, we cannot expect succinctness for all propositional formulas; crucial is

succinctness in many practical cases.

Representing a Formula as a BDD

Given a formula, its BDD is obtained from an intermediate representation called

binary decision tree through a sequence of simplifications that remove redundancy

in the tree. Suppose k variables occur in the formula. The decision tree is a complete

binary tree of depth k. All nodes at level i are labeled with the ith variable. The

left subtree of a node corresponds to the subformula obtained by instantiating the

variable attached to the node by false (0) in the formula, analogously for the right

subtree. This way, for any node at level k + 1, each variable in the formula has

a value. We can label the node with F if the formula evaluates to false, and T

otherwise. Figure 2.2 (left) shows the binary decision tree for formula (2.1).

F F T F F F F F F F F F T F T T F F TT

F F1

01

0

0 1

1

01

0

0 1

1

01

0

0 1

1

01

0

0 1

0

1

01

0

0 1

0 1 1

10

1 0 1

0 1x :

y′ :

x′:
y :

0

Figure 2.2: Binary decision tree (left) and decision diagram (right) for formula (2.1)

21

Such a binary tree is of size roughly 2k+1 and thus not very compact. It con-

tains, however, much redundancy. For example, consider the node corresponding

to the partial assignment (x, x′) := (0, 1) in the left half of the tree in figure 2.2.

All leaves reachable from this node are labeled F, so we can as well label the inner

node F and stop expanding the tree. Now consider the node corresponding to the

partial assignment (x, x′, y) := (1, 1, 1) on the far right of the tree. Its subtree is

not redundant, but identical to the subtree of the node corresponding to the partial

assignment (x, x′, y) := (1, 1, 0). Thus we can ignore variable y and make the node

corresponding to the partial assignment (x, x′) := (1, 1) point directly to (a single

copy of) that subtree.

This procedure is performed repeatedly until no more simplification applies,

resulting in the binary decision diagram on the right in figure 2.2. A binary decision

diagram is a directed acyclic graph (DAG) that is generally much smaller than

the original decision tree. For example, formula (2.1) is seen to be unsatisfiable if

x 6= x′. This is reflected in the subtrees for (x, x′) := (0, 1) and (x, x′) := (1, 0)

pointing to F; variables y and y′ are not considered at all in those subtrees. In

practice, the compression is taken a step further by having only a single leaf labeled

F and a single leaf labeled T (not done in figure 2.2 for legibility).

BDD Variable Order

The succinctness of the BDD in figure 2.2 owes, of course, to the choice to consider

variables x and x′ before y and y′. Indeed, if we changed the variable order to

y, y′, x, x′ and constructed the corresponding BDD, we would see that it is by two

nodes larger. The dependence of BDDs on a favorable variable order is one of the

disadvantages of this data structure, in particular since it is generally expensive to

determine what a good order is. In practice, implementations use heuristics such

as keeping current-state and next-state copies of a variable close together in the

22

order. Another option is dynamic reordering : if, as a result of Boolean operations,

a BDD grows too large during its lifetime, it is converted into an equivalent one

with a different variable order, hoping that the new order allows for a more compact

diagram.

It has proved useful to require that in all BDDs existing in the program,

variables are read in the same order from the root to any leaf, up to omissions of

variables.2 One motivation for this requirement is that then operations that combine

BDDs can be performed reasonably efficiently. Another motivation is that given a

fixed variable order, any truth table has a unique BDD. This has the consequence

that two formulas are equivalent exactly if their BDDs are identical. This property

greatly simplifies equivalence checking, an important operation in model checking

algorithms. In practice, BDD packages may even attempt to never keep two copies

of the same BDD. That is, if some operation results in a BDD that already exists,

the return value of the operation is simply a pointer to the existing BDD. It requires

some runtime commitment to stick to this protocol. The benefit is not only minimum

memory needs, but also equivalence checking now being a constant-time operation:

the pointers of the two BDDs are compared.

Operations on BDDs

We finally sketch how operations important in connection with Kripke structures

can be implemented on BDDs. We have already discussed checking equivalence of

two formulas. A formula is satisfiable exactly if its BDD is different from the BDD

for the formula false, which is just an isolated leaf node labeled F. The negation of a

formula is computed by re-labeling the F-node T and vice versa. Two-place Boolean

functions can be implemented with the help of the Shannon expansion with respect
2Due to the fixed variable order, BDDs are also called ordered binary decision diagrams.

23

to any variable xi:

f(x1, . . . , xk) = (¬xi ∧ f(x1, . . . , xi−1, 0, xi+1, . . . , xk))

∨ (xi ∧ f(x1, . . . , xi−1, 1, xi+1, . . . , xk))
(2.2)

This equivalence suggests a recursive procedure to compute, say, the conjunction

f1 ∧ f2 of two Boolean formulas given as BDDs. We rewrite both f1 and f2 using

Shannon expansion with xi being the variable at the root level. Since ∧ distributes

over the ∨ in equation (2.2), we have split the problem f1∧f2 into two subproblems,

amounting to the conjunction of the two respective parts of the Shannon expansion.

When the recursion reaches the leaves, the result is the BDD for the constant func-

tion false or true, depending on the label of the leaf.

Suppose Z is a set of states given symbolically as a Boolean constraint,

which in turn is represented as a BDD. For model checking, it is critical to be able

to compute the set of successors, with respect to a transition relation R, of states

in Z. This is done in three steps: (i) Compute the set A = R ∧ Z of pairs (x, x′)

in R such that x ∈ Z. We now have to project the pairs in A to their second

components. To this end: (ii) Compute B = ∃~x : A, which eliminates, by existential

quantification, the current-state variables ~x in pairs in A. B is the result we seek,

except that it is expressed in terms of next-state variables (second components of R).

Thus: (iii) Rename every (next-state) variable in B to its current-state counter part.

Predecessor computations and a few other operations typically needed in connection

with Kripke structures can be performed on BDDs in a similar fashion.

2.1.5 Modeling Systems with Many Components

This dissertation considers systems of many concurrently existing components, such

as processes in an operating system. Such a system can be described by specifying

the behavior of each component, along with a characterization of the concurrent

24

execution model. Each component can be viewed as an open subsystem, one whose

behavior is determined in part by an environment, i.e. by the other components.

The overall concurrent system, on the other hand, is closed.

In this dissertation we always assume an asynchronous concurrent execution

model. This means that a state change in the system (and, equivalently, in the

derived Kripke structure) is given by a change in exactly one component. The reason

for this assumption is that this execution model is most common for concurrent

systems of processes, which are the main area of application of the results of this

dissertation. Synchronous execution is important with digital circuits, where some

or all gates may fire at the same time.

Each system component usually has a set of variables that it manipulates; we

call them local variables. Each valuation of the local variables determines the local

state of the component. For synchronization purposes, the system has in addition

a set of global variables. Formally, assuming l local states, the state space of such

a system’s Kripke structure is given by a vector ~v of global variables, say with

combined domain V , followed by a vector of n variables specifying the local state

of each of the n components: S = V × [1..l]n. We can write a state s of this

Kripke structure in the form (~v, s1, . . . , sn), where si ∈ [1..l] is the local state of

component i. For a local state L, we often use the notation Li to denote the atomic

formula si = L. For example, the expression ∀i : Li expresses that every component

of the system resides in local state L.

In this dissertation, we in particular consider systems of many replicated

components, where the behavioral descriptions of the components are essentially the

same. The description is in this case a program that is parameterized by the name

of the executing component. Allowing such a parameter increases the expressiveness

of this type of system model. For example, we can model a solution to the mutual

exclusion problem using a global token variable that contains the name of the next

25

process allowed to enter the critical section. We can enforce fairness by incrementing

the token in a circular fashion every time a process leaves the critical section.

Using the abstraction mechanism from above, which suggests to compress

the valuations of local variables into local states, we can describe the parameterized

program as a graph known as a synchronization skeleton [CE81]. We show an

example in figure 2.3. Each node in the skeleton represents a local state, each edge

CiTi
tok = i

tok := (tok (mod n)) + 1

Ni

Figure 2.3: Synchronization skeleton for a solution to the Mutual Exclusion problem

a change between local states. To achieve synchronization, a skeleton’s edges can

be labeled with guards (shown in the figure above the edge) and actions (shown

below the edge). Guards are Boolean-valued expressions on local states of processes

and global variables. Actions are assignments to global variables. The actions are

executed after the local state change. The skeleton in the figure allows process i

to enter its critical section C if the token currently points to the process (tok = i).

Upon leaving C, the token is passed on to the next process.

We can think of a synchronization skeleton as a succinct notation for a con-

current program where valuations of local variables of a process are abstracted into a

local state, and assignments to those variables are represented as local state changes.

Sequential code executed by a process atomically (not interleaved with other pro-

cesses) is abstracted into a single local transition. Given a number n, a synchroniza-

tion skeleton gives rise to a Kripke structure modeling a system of n asynchronously

executing processes. We make use of the skeleton notation in chapter 6, at which

time we give a formal definition of the derived Kripke structure.

26

This concludes the discussion of finite-state models of systems and how they

are represented in programs suitable for model checking. The second ingredient of

any formal verification procedure is a specification of the properties that we want

to check the system for. We treat this topic next.

2.2 Specifying Properties of Systems

In the previous section we have seen how a system can be modeled as a Kripke

structure, which is a state transition graph augmented by atomic properties that are

attached to the states. An (infinite) computation of the system is thus represented

as an (infinite) path through the transition graph. Every state along the path is

labeled with some atomic propositions. The path can be viewed as a timeline that

characterizes each point in time through the atomic propositions true at that time.

A property of a computation specifies changes in the truth of atomic proposi-

tions. One aspect of change is change over time, addressed using temporal operators.

They allow us to express that something is true next time (after one transition),

or at some time (after a finite number of transitions), or always (now and after ev-

ery transition). A different aspect is change of truth due to the branching nature of

nondeterministic programs. For example, consider a concurrent system of two pro-

cesses. The truth of the property, “After one time unit, process 1 performs I/O”,

likely depends on the direction in which the system goes, i.e. which process is sched-

uled for execution. More generally, branching causes the existence of infinitely many

futures, i.e. paths starting from the current state. We may want to express temporal

properties for specific futures, which is done using path quantifiers. At the coarsest

level, we can state that there exists a future satisfying some temporal property,

or that all futures do.

Temporal logics are defined by selecting which temporal operators and path

quantifiers are allowed in what combinations. We formally describe two of the more

27

frequently used such logics, known as LTL and CTL.

2.2.1 Linear Temporal Logic

Linear temporal logic (LTL) was the first to be used in describing and reasoning

about reactive programs. It appeals through its simplicity, as it allows temporal

operators, but no path quantifiers:

Definition 1 Given a set of atomic propositions AP, LTL is the smallest set of

formulas satisfying the following conditions:

(base formulas) The propositional constants false and true are LTL formulas. For

P ∈ AP, P is an LTL formula.

(closure under propositional connectives) If f is an LTL formula, so is ¬f .

If g and h are LTL formulas, so are g ∧ h, g ∨ h, etc.

(closure under temporal operators) If f is an LTL formula, so are X f and

G f . If g and h are LTL formulas, so is gUh.

An LTL formula is evaluated over an infinite path through a Kripke structure:

Definition 2 Given a set of atomic propositions AP, let f be an LTL formula,

M = (S,R,L) a Kripke structure over AP and p an infinite path of M . Path p is

said to satisfy f , written p |= f , depending on the form of f as follows:

1. p |= true. For P ∈ AP, p |= P iff P ∈ L(p0).

2. p |= g ∧ h iff p |= g and p |= h, analogously for the other connectives.

3. p |= Xh iff p1→ |= h.

4. p |= Gh iff for all i, pi→ |= h.

5. p |= gUh iff there exists i such that pi→ |= h and for all j < i it is pj→ |= g.

28

The case f = false is not mentioned; thus no path satisfies the formula false. An

atomic proposition P is satisfied if the path’s first state is labeled with P . The

semantics of propositional connectives is standard. X is the next-time operator;

p1→ denotes the suffix of p after the first state. The formula gUh can be read as

“g until h”. It expresses that there is a moment i along the path at which h holds,

and at all moments before that, g holds. Additional temporal operators can be

introduced; a common one is Fh := true Uh. G and F can intuitively be interpreted

as always and eventually.3 We note that for finite paths some adjustments are

necessary; for example p |= Xh requires |p| ≥ 1.

Below are some typical examples of LTL formulas; we assume suitable atomic

propositions execs, req , grant and “x < 0”:

(A). “Statement s is infinitely often executed.” GF execs

(B). “Every resource request is followed by a grant.” G(req ⇒ F grant)

(C). “There is a point after which never x < 0.” FG¬(x < 0)

Example (B) is a good occasion to make oneself aware of the distinction between

the Boolean connective ⇒ and the next-time temporal operator X.

It is important to keep in mind that the semantics of LTL is defined with

respect to a single computation path. Reactive programs usually have infinitely

many such paths. When given a program, modeled as a nondeterministic Kripke

structure, and an LTL formula, it is up to the implementation of the model checker

to decide whether “the formula is true” means “it is true for some computation” or

“it is true for all computations”, or maybe even something else. Usually, though,

it is intended to mean that the formula holds along all paths; we sometimes say an

LTL formula has an implicit universal path quantifier.
3As a mnemonic, we can think of G and F as globally and finally.

29

The convention of the implicit universal path quantifier causes a dilemma:

when evaluated over a Kripke structure, LTL is not closed under negation. For

example, while the property “P is invariantly true” can be written as GP (with

an implicit universal path quantifier added by the model checker), the negation of

this property, “¬P is reachable along some path”, is not expressible in LTL, again

with the implicit universal path semantics. To use an LTL model checker to check

this formula, we need to check the original formula GP and negate the outcome

“manually”.

Obviously, this manual negation generally works only as long as the formula

we intend to check over the structure does not use both universal and existential path

quantifiers. This limitation of LTL was one of the motivating factors for introducing

another temporal logic, CTL.

2.2.2 Computation Tree Logic

Computation tree logic (CTL) followed LTL a few years later in an attempt to allow

the explicit specification of branching in a program. It turned out that if the way

temporal operators and path quantifiers can be combined is restricted to certain

forms, we obtain a logic for which the complexity of model checking is actually

much lower than it is for LTL.

Definition 3 Given a set of atomic propositions AP, CTL is the smallest set of

formulas satisfying the following conditions:

(base formulas) The propositional constants false and true are CTL formulas.

For P ∈ AP, P is a CTL formula.

(closure under propositional connectives) If f is a CTL formula, so is ¬f . If

g and h are CTL formulas, so are g ∧ h, g ∨ h, etc.

30

(closure under modalities) If f is a CTL formula, so are EX f and EG f . If g

and h are CTL formulas, so is E(gUh).

A CTL formula is evaluated over an infinite computation tree of a Kripke structure:

Definition 4 Given a set of atomic propositions AP, let f be a CTL formula,

M = (S,R,L) a Kripke structure over AP and s ∈ S. Structure M is said to

satisfy f with respect to s, written M, s |= f , depending on the form of f as follows:

1. M, s |= true. For P ∈ AP, M, s |= P iff P ∈ L(s).

2. M, s |= g∧h iff M, s |= g and M, s |= h, analogously for the other connectives.

3. M, s |= EXh iff there exists t ∈ S such that (s, t) ∈ R and M, t |= h.

4. M, s |= EGh iff there exists a path p of M such that p0 = s and for all i,

M,pi |= h.

5. M, s |= E(gUh) iff there exists a path p of M and an index i such that p0 = s,

M,pi |= h, and for all j < i, it is M,pj |= g.

Analogously to LTL, we can introduce EF as a special case of EU, namely EFh :=

E(true Uh). We see that EX, EG, EU and EF essentially mean the same as LTL’s X,

G, U and F, respectively, except that no path is given; instead its existence is claimed.

Therefore, EX, EG, EF and EU are called existential modalities; using negation we

introduce the equally important universal modalities: AXh short for ¬EX¬h, AGh

for ¬EF¬h, AFh for ¬EG¬h and A(gUh) for ¬E(¬hU(¬g ∧ ¬h)) ∧ ¬EG¬h.

We see that while CTL allows both temporal operators and path quantifiers,

it does so only in a very disciplined way: temporal operators may not nest, they must

individually be preceded by a path quantifier. The logic CTL* mentioned below

allows arbitrary nesting. The motivation for extracting CTL as a sublogic of CTL*

has to do with the complexity of model checking and is explained in section 2.3.2.

Below are some basic examples of CTL formulas:

31

(D). “Along some future, property P is true at some time.” EFP

(E). “Along all futures, property P is true at some time.” AFP

(F). “Along all futures, property P is always true.” AGP

These three property schemata are very common in practical verification: (D) ex-

presses reachability of (a state satisfying) P , (E) inevitability of P , and (F) invari-

ance of P . The set of R-successors of a state z (or of a set of states Z) is known

as the image of z (or of Z). Likewise, the set of R-predecessors is called preimage.

Since EX f represents the set of predecessors of f -states, EX is called the existen-

tial preimage operator. Similarly, AX f represents the set of states s such that all

successors of s satisfy f ; AX is called the universal preimage operator.

2.2.3 CTL* and the Propositional µ-calculus

The logic CTL* combines the features of LTL and CTL to a formalism that is in

fact more expressive than the union of the two. Roughly speaking, CTL* formulas

allow arbitrary combinations of temporal operators and path quantifiers, except that

temporal operators may not appear at the top level of the formula. For example,

the formula (AGFP) ∨ (EFQ) satisfies this constraint and thus belongs to CTL*,

but not to LTL or CTL. Moreover, it is not even equivalent to any LTL or any CTL

formula. Despite this expressiveness, the complexity of CTL* model checking equals

that of LTL model checking, although satisfiability checking is more expensive for

CTL* than it is for the other logics.

A yet more expressive formalism is given by the (propositional) µ-calculus.

At first glance, this logic looks different from the ones we have considered so far, as

it does not use temporal operators or general path quantifiers. Instead, what gave

it its name is the use of the operators µ and ν for the least and greatest fixpoints of

32

a predicate transformer. Such a transformer is a mapping τ : 2S → 2S , i.e. it trans-

forms a set of states (a predicate) to another set of states. If the expression τ(Z) is

syntactically monotone, i.e. Z occurs under an even number of negations, then there

exists a set Z∗ such that τ(Z∗) = Z∗. Such a set is called a fixpoint of τ . Moreover,

there exists a fixpoint of τ that is contained in any other fixpoint of τ , called least

and written µZ.τ(Z). Analogously, there exists a fixpoint of τ that contains any

other fixpoint of τ , called greatest and written νZ.τ(Z). Such fixpoint operators

are very powerful and in particular sufficient to encode the temporal aspects of LTL

and CTL (for CTL, see section 2.3.2).

Model checking for the µ-calculus is an active area of research; its precise com-

plexity is unknown. Currently existing (deterministic, non-randomized) algorithms

are exponential in the size of the Kripke structure. Recent research has gradually

brought down the exponent from, originally, the number of nested fixpoint expres-

sions, to the fixpoint alternation depth (number of consecutive sequences of fixpoints

of the same type), to one half of the alternation depth. There are conjectures that

the µ-calculus model checking problem is intrinsically super-polynomial in the size

of the structure. We return to the µ-calculus when we present an algorithm for CTL

model checking in section 2.3.2.

2.2.4 Concluding Remarks

Temporal logics are a special type of modal logics (note: modal vs. model), which

generally express the phenomenon of truth values changing as a function of certain

modalities of life, such as time or space. Such logics were originally introduced by

philosophers investigating non-absolute truth. They have become an active research

field in computer science since A. Pnueli, in a milestone paper, showed how they

can be used to describe and reason about program behavior [Pnu77]. An extensive

survey of temporal and modal logics by A. Emerson can be found in [Eme90].

33

In this dissertation we mostly work with the standard versions of LTL or

CTL. These versions can, however, be enhanced along various dimensions. A fairly

straightforward addition is given by past-time operators, which are convenient to

traverse a Kripke structure in forward direction. This can be advantageous when

the forward branching degree of the structure is much lower than the backward

branching degree, such as when the structure is roughly deterministic. Other en-

hancements affect the non-temporal part of the syntax and semantics of the logics.

First-order (in contrast to propositional) versions allow variables, predicates, func-

tions etc. in addition to atomic propositions. In continuous-time temporal logic,

the timeline is not assumed to be discrete, but a dense number range such as the

rationals or even reals. The spectrum of these enhancements ranges from “syntactic

sugar” (as with the past-time operators) to the destruction of decidability (as with

too liberal first-order forms).

We mentioned in section 2.1.1 that it is desirable for a Kripke structure to be

total, i.e. every state should have a successor. The reason is that temporal logics are

designed to express properties of infinite computations. While it is mathematically

legal to evaluate properties over finite paths, the results may be absurd. Consider

the LTL formula GFP . Intuitively, if something is “always eventually” true, it means

it holds infinitely often.4 If the current state satisfies P and happens to have no

successor, this formula evaluates to true. Worse, consider the CTL formula AXQ.

If there is no successor, this formula is true no matter what Q. This phenomenon is

one instance of vacuous satisfaction and can be ruled out by requiring a structure

to be total.
4For this reason, GFP is sometimes written as F∞ P .

34

2.3 Model Checking—Algorithms and Implementation

In the previous sections we have introduced Kripke structures and temporal logics

as the principal means of expressing models of programs and properties about them.

The goal of this section is to sketch how they can be put together in algorithms that

solve the model checking problem for these logics, which are interpreted over Kripke

structures. There are numerous algorithms for model checking; the choice depends

on the temporal logic targeted and on the data structure used to represent Kripke

structures. In this section we choose two representative algorithms, one for LTL

and one for CTL, which are actually used in tools and which also play a rôle in this

dissertation.

2.3.1 Automata-Theoretic LTL Model Checking

One popular approach to the LTL model checking problem is using Büchi automata.

Such automata are standard finite-state automata; what differs is that their notion of

acceptance is defined with respect to infinite words. It turns out that such automata

can be used to represent both a Kripke structure and a temporal logic formula;

solving the model checking problem is then a matter of applying standard automata-

theoretic and graph-theoretic techniques.

A finite-state (Büchi) automaton is a quintuple (Σ, Q, δ,Q0, F), specifying

an alphabet Σ, a finite set of states Q, a transition relation δ ⊆ Q×Σ×Q, a set of

initial states Q0, and a set of designated accepting states F . A run of the automaton

on an infinite word w ∈ Σω is an infinite sequence of states r = (r0, r1, . . .) such that

r0 ∈ Q0 and for each i ≥ 0, (ri, wi, ri+1) ∈ δ. In words, a run on w is a path through

the automaton that follows edges with labels given by w. A run is accepting if it

has infinitely many occurrences of accepting states. Since Q is finite, an accepting

run actually contains at least one accepting state infinitely often. An infinite word

w is accepted by the automaton if there is an accepting run on w. The language of

35

an automaton is the set of infinite words it accepts.

Such an automaton bears obvious resemblance with a Kripke structure: it

is a form of state transition diagram, with infinite paths and nondeterminism. The

difference between the two models is the labeling of edges with symbols vs. the

labeling of states with atomic propositions. It is straightforward to turn a Kripke

structure M = (S,R,L) into an automaton AM over the alphabet 2AP . States

and transitions are retained; an edge of the automaton is labeled with the atomic

propositions that are true in the successor state.5 We let every automaton state be

accepting. As a result, the language of the automaton is the set of all infinite paths

through the Kripke structure, projected to the atomic propositions true at states

along the paths: L(AM) = {L(p) : p is a path in M}.

An LTL formula f is represented as a Büchi automaton Af (over the same

alphabet 2AP) such that L(Af) = {L(p) : p |= f}. That is, the property automaton

accepts exactly the signatures of paths that satisfy f . The general algorithm for

building such an automaton is known as tableau construction. This algorithm is quite

involved; instead of presenting it here, we give examples for typical LTL formulas

using the basic temporal operators (figure 2.4). The set of atomic propositions AP

in these examples is {P}, {P} and {P,Q}, respectively.

∅, {P}

∅

{P} ∅{P}
{Q}, {P,Q

}

∅
{P}

Figure 2.4: Büchi automata representing the formulas XP , GP and P UQ. A node
without outgoing edges is meant to have a self-loop labeled with all subsets of AP

Given an LTL formula f , consider now a model checking problem of the

form M, s |= f with the “implicit universal path quantifier” semantics. The prob-

lem is equivalent to checking that no path through M , starting at s, satisfies ¬f .
5Some adjustments are necessary to correctly simulate the labeling of the initial state, i.e. the

state with respect to which a formula is to be verified.

36

To this end, we translate M into an automaton AM , assuming s as the initial state

of M . We also translate ¬f into an automaton A¬f using the tableau construction.

The goal is then to check that no run of AM (which is by construction accepting)

violates f , i.e. that is an accepting run of A¬f . We thus want to check whether

L(AM) ∩ L(A¬f) = ∅.

We have now reduced LTL model checking to the sequential composition

of two standard automata-theoretic problems: (i) the intersection problem: given

two automata (here: AM and A¬f), build a composite automaton that accepts the

intersection of their languages, and (ii) the emptiness problem: given an automaton

(here: AM ∩ A¬f), check whether its language is empty; if not generate a run that

is accepted. Problem (i) is solved by building an automaton that executes AM and

A¬f in lock-step. Problem (ii) is solved by realizing that an infinite path through

one accepting state exists exactly if there exists a reachable accepting state whose

strongly connected component is nontrivial. Thus, (ii) is solved by a reachability

analysis on the SCC-quotient of AM ∩A¬f .

Counter examples. Consider now an accepting run of the composite automaton

AM ∩A¬f . By construction, this run represents a path through M that satisfies ¬f ,

i.e. that violates f . Such a path thus serves as a counter example to the original

model checking problem M, s |= f . The path can be written down as a finite path to

the reachable accepting state with a nontrivial strongly connected component, fol-

lowed by any loop through this component. Such a loop exists since the component

is nontrivial.

Complexity. This algorithm for LTL model checking can be shown to have worst-

case complexity O(|M | · 2|f |). Converting a Kripke structure M into an automaton

amounts to little more than writing down the result AM . Converting an LTL for-

mula f into the property automaton Af , the tableau construction, is worst-case

37

exponential in the size of the formula. Despite this complexity, the LTL model

checking algorithm presented here is widely used. The final property automaton is

often much smaller than the intermediate tableau constructed. Further, since |f |

is usually much smaller than |M |, the exponential complexity in |f | has a limited

impact in practice. Finally, the algorithm presented is suitable to be implemented

space-efficiently in an on-the-fly fashion (see end of section 2.1.2).

2.3.2 Symbolic CTL Model Checking

In this section we sketch a model checking algorithm that exploits the special struc-

ture of CTL formulas. As mentioned in section 2.2.3, CTL can be embedded into

the µ-calculus using fixpoints of predicate transformers, like all other temporal log-

ics presented so far. Before we show the CTL embedding, we introduce a common

(abuse of) notation. Consider a fixed Kripke structure M = (S,R,L). When work-

ing with predicate transformers, we can extend CTL’s preimage modalities EX and

AX to operate on a set of states Z ⊆ S (as opposed to on a formula) as follows:

EXZ = {s : ∃t : R(s, t) ∧ t ∈ Z} , and (2.3)

AXZ = {s : ∀t : R(s, t) ⇒ t ∈ Z} . (2.4)

Given a fixed Kripke structure M , a CTL formula can be identified with the set

of states that satisfy it: f 7→ {s : M, s |= f}. The formula notation is often more

elegant than the set-theoretic one. In light of this elegance, we allow an expression

like f ∨ EXZ, which is a mixture of logical and set-theoretic notation, to stand for

the set of states {s : M, s |= f} ∪ EXZ.

What makes CTL’s embedding into the µ-calculus special is the simplicity

38

of the fixpoint expressions used to encode the logic’s basic modalities:

EFh = µZ.h ∨ EXZ

EGh = νZ.h ∧ EXZ

E(gUh) = µZ.h ∨ (g ∧ EXZ)

AFh = µZ.h ∨ AXZ

AGh = νZ.h ∧ AXZ

A(gUh) = µZ.h ∨ (g ∧ AXZ)

(2.5)

(The period “.” in the fixpoint operators has the lowest binding power.) For example,

the equation EFh = µZ.h ∨ EXZ characterizes the set of states satisfying EFh as

the least fixpoint of τ(Z) = h ∨ EXZ, i.e. as the smallest set of states Z such that

Z = h∨EXZ. It is easy to see that all predicate transformers in (2.5) are monotone:

for any sets A,B ⊆ S with A ⊆ B, it is τ(A) ⊆ τ(B). Let us denote by τ i(C) the

i-fold application of τ to the set C, with τ0(C) = C. Using induction, it follows

from monotonicity that τ i(∅) ⊆ τ i+1(∅) for any i:

∅ = τ0(∅) ⊆ τ1(∅) ⊆ τ2(∅) ⊆ . . . ⊆ S . (2.6)

Since the set of states S is finite, this sequence cannot increase at every stage,

i.e. there is an index m such that τm(∅) = τm+1(∅). Again by induction it follows

that in fact for every i ≥ m, it is τ i(∅) = τ i+1(∅), i.e. sequence (2.6) converges.

It can be shown that the limit is precisely the least fixpoint of operator τ .

The elegance of these easy-to-prove statements is that they are constructive:

we can use sequence (2.6) to compute the least fixpoint of τ using a routine that

applies τ until no change in value can be observed. This procedure is shown in

algorithm 1 (a). An analogous reasoning applies to the greatest fixpoint of any

monotone τ ; the resulting procedure is shown in (b). The only difference to (a)

is that the sequence starts with the full set of states S; transformer τ successively

reduces Z until the sequence converges.

The implementation of these algorithms has become known as symbolic model

checking. We need to be able to efficiently copy sets of states (lines 1 and 3), test

39

Algorithm 1 Computing fixpoints of a monotone predicate transformer
Input: monotone predicate transformer τ ; set of states S

(a)

Least fixpoint:

1: Z := ∅
2: repeat
3: Z ′ := Z
4: Z := τ(Z)
5: until Z = Z ′

6: return Z

(b)

Greatest fixpoint:

1: Z := S
2: repeat
3: Z ′ := Z
4: Z := τ(Z)
5: until Z = Z ′

6: return Z

two sets for equality (line 5), and perform whatever the predicate transformer τ

requires. According to the equations in (2.5), this includes set-theoretic and preim-

age operations. As illustrated in section 2.1.4, all these operations can be applied to

binary decision diagrams (BDDs) in time at most linear or low-degree polynomial in

the size of the argument BDDs. Specifically, the equality check in line 5 amounts to

a BDD equivalence check, and we discussed how to compute predecessors as needed

for EX and AX. If the number of BDD nodes is much smaller than the number of

elements in a set Z, then these operations can be expected to be cheaper with BDDs

than with an explicit data structure for sets, such as lists or even balanced trees.

Complexity. We estimate the complexity of symbolic CTL model checking as

a function of the size of the structure |M | and the size of the CTL formula |f |.

Recall that in the µ-calculus embedding of CTL using fixpoints, the argument Z

of the predicate transformer is used only in the form EXZ and AXZ, which are

simple image computations. It is not used in expressions that themselves require a

fixpoint evaluation. For this reason, to evaluate a formula, we can cleanly separate

all fixpoints that appear in it, and evaluate them from the inside out, without

interleaving. For example, the formula AG EFP (“It is always possible to reach a

40

state satisfying P”) has the µ-calculus form

νZ . (µY.P ∨ EXY) ∧ AXZ . (2.7)

We first compute Y0 := µY.P ∨ EXY . We then substitute Y0 into equation (2.7)

and compute νZ.Y0 ∧ AXZ. For each fixpoint calculation, we need at most |M |

iterations of the loop in algorithm 1. Overall, the algorithm is linear in |M | and

linear in |f |. Compare this with the complexity of the LTL model checking algorithm

we presented, which is exponential in |f |.

2.3.3 Model Checking Tools

To conclude section 2.3, we mention some popular model checkers and their scope,

and discuss additional related work.

Mur ϕ [MD] is an explicit-state verifier for reachability analysis and dead-

lock detection and as such not a full temporal logic model checker. Mur ϕ explores

a model’s state space in a highly optimized fashion and can scan millions of states

in a few seconds. Its C-like input language is quite comfortable and includes if

statements and loops. A program is a collection of rules, one of which is nondeter-

ministically chosen in each round and executed. Since Mur ϕ only analyzes reach-

ability of states and deadlocks, fair scheduling is of no concern. The significance of

Mur ϕ for this dissertation is that it is one of the first serious implementations of

symmetry reduction (see chapter 4); we return to it in section 8.4.

Spin [Hol97] is an explicit-state LTL model checker. It targets mainly special-

purpose software such as asynchronous concurrent systems of processes. Spin’s input

language, Promela, is a widely-used protocol description notation, with influence

on the verification community beyond the Spin model checker.

41

Spin uses the tableau construction to extract a property automaton from

an LTL formula that accepts exactly all paths conforming to the formula. For

verification, the goal is to check whether there exists a run of the model automaton

that violates the formula. Such a run lies in the intersection of the languages of

the model automaton and the complement of the property automaton. In order

to avoid the complementation of the property automaton, which can be expensive,

Spin solicits the input of a never claim: a property that characterizes bad behaviors.

Using a tableau, this property is translated into an automaton, which is intersected

with the model automaton; the result is checked for emptiness. Any path in the

intersection is presented as a counter example.

Spin achieves efficiency beyond straightforward model checking using partial

order reduction [HP94], a technique that reduces the number of interleavings of

execution threads in asynchronous systems. Incidentally, this reduction technique

shares some aspects with symmetry reduction—the main focus of this dissertation—,

as investigated by A. Emerson, S. Jha and D. Peled [EJP97].

NuSMV [CCB+] is probably the most comprehensive freely available sym-

bolic model checker today. It is a substantial re-implementation of Smv, a model

checker implementing the ideas of symbolic model checking developed by K. McMil-

lan [McM93]. Using the fixpoint characterization of CTL, NuSMV is a complete

model checker for this logic.

The system modeling language is somewhat restricted, but allows the spec-

ification of complex synchronization and coherence protocols. Unlike Mur ϕ and

Spin, however, NuSMV can be used with both synchronous and asynchronous ex-

ecution models. The model is converted into symbolic form using binary decision

diagrams. Like the tool developed as part of this dissertation (chapter 8), NuSMV

relies on the Cudd BDD library [Som].

42

What started as a C++ re-implementation of McMillan’s Smv has by now

become a giant model checking tool that incorporates many recent developments in

the area of formal verification. NuSMV allows the specification of various types of

fairness and extends CTL by past-time and real-time temporal operators. Moreover,

properties can also be given in LTL.

SAT-based symbolic model checking. A significant addition to NuSMV in

recent years was the implementation of symbolic model checking using SAT-checkers,

an alternative to BDD-based techniques. Both strategies require the representation

of the transition relation of the model as a Boolean formula. Unlike with BDDs, for

SAT-based model checking the formula is kept in CNF format. Given a bound k up

to which to explore the state space, the transition relation can be unfolded k times,

resulting in a (rather large) formula representing all paths of length k from the

initial states. Any satisfying assignment to the variables in this formula proves

reachability of some condition and can thus be understood as a counter example (of

length at most k) to a safety property. To find bugs, the procedure can be repeated

with increasing k; but unless a suitable upper bound is known, this method cannot

actually prove a safety property correct.

This routine was the first to use SAT methods for symbolic model checking

and has become known as bounded model checking [BCCZ99]. It was soon thereafter

extended by K. McMillan to general—unbounded—model checking. Using quantifier

elimination, image operations like AX g can be reduced to a SAT problem. This

paves the way for full symbolic CTL model checking; see [McM02] for more details.

BDD-based and SAT-based symbolic model checking are often complementary—

examples exist for which one representation is exponentially more succinct than the

other, and vice versa.

43

Chapter 3

Abstraction

Overview. In this chapter we provide background on abstraction, a generic term

for a collection of techniques to attack model checking’s greatest enemy, the state

explosion problem. We first introduce its most basic form, existential abstraction,

and then derive from this form special cases of abstraction. The different degrees of

proximity between the original and the abstract model are discussed.

Abstraction refers to a class of methods to reduce a given model of the system

to a smaller one, usually by omitting some detail, such that information relevant for

the verification of the property is nevertheless retained. In this context, the original

model is called concrete, the smaller one—abstract. Such methods have one critical

additional potential: to obtain a finite-state model from an infinite-state one, thus

rendering model checking principally applicable. As a classical example, consider

a program with an unbounded integer variable x with initial value 0, and suppose

we want to know whether its value can ever become odd. From the straightforward

model, which treats x as an integer, we can build an abstract one with a variable

X ∈ {even, odd}. We assess, for every operation in the program, how it affects

the parity of x and update X accordingly. The resulting trivial system of only two

44

global states can now be checked to see whether the state X = odd is reachable.

It is quite easy to turn a given model into a smaller one using a general

procedure, as described in section 3.1. The question is, of course, how much resem-

blance the reduced model bears with the original one, and which properties we can

accordingly equivalently verify on the reduced model; this is discussed in section 3.2.

Finally, if we find that we cannot verify or falsify the property on the reduced model

because it is over-simplified, we have to adjust the abstraction; a popular approach

is sketched at the end of the same section.

3.1 Existential Abstraction

Removing detail from a model means to consider states identical that differ only

with respect to some apparently unimportant features. Technically, we define an

equivalence relation ≡ on the concrete state space; each equivalence class becomes

an abstract state. There is a transition between two abstract states, i.e. between

two equivalence classes [s] and [t], if there exists a concrete transition between some

state in [s] and some state in [t]:

Definition 5 Let M = (S,R,L) be a Kripke structure over AP and ≡ an equiva-

lence relation on S. Let AP ⊆ AP be the set of atomic propositions that respect ≡.1

The quotient of M with respect to ≡ is the structure M = (S,R,L) (over AP) with

S = {[s] : s ∈ S} (set of equivalence classes of ≡) (3.1)

R = {([s], [t]) ∈ S × S : ∃s0 ∈ [s], t0 ∈ [t] : (s0, t0) ∈ R} (3.2)

L([s]) = L(s) ∩AP . (3.3)

Among the atomic propositions that respect ≡, the labeling function assigns to an

equivalence class all those that are true in some and hence in all states in the class.
1That is, for every equivalence class [s], all states in [s] agree on propositions from AP .

45

Due to the restriction to AP , the mapping L is well-defined.

Let us return to the discussion about integer variable x from above. Fig-

ure 3.1 (left) shows a four-state Kripke structure for some program manipulating

this variable. A state is labeled even if x is even, analogously for odd . State u1

v1 {odd}

u2 {even}

u1 {even}

v2 {odd}

{even}
[u]

{odd}
[v]

Figure 3.1: A Kripke structure M (left) and an abstraction M of it (right)

is the initial state. Suppose we want to check whether along all futures, x even-

tually assumes on odd value: M,u1 |= AF odd . We define an equivalence that

relates two states if the parity of x is the same. The quotient structure derived

according to definition 5 is shown in figure 3.1 on the right. It has two states [u]

and [v] and satisfies the property M, [u] |= AF odd since every future from [u] goes

through [v]. This property is also satisfied by the original structure M . Is this a

coincidence, or does M always inherit the verification result from M? Suppose we

now want to check whether along all futures, after one time unit x is invariably odd:

M,u1 |= AX AG odd . A quick look at the concrete structure shows that this is indeed

the case. There is, however, an abstract path from [u] to [v] and back to [u], which

is labeled even → odd → even, so verifying this second property on the quotient

would give us a wrong answer.

Most forms of abstraction change the behavior of the program. That is, there

may be paths in the abstract model that cannot be mapped to a path in the concrete

model, or vice versa. The majority of model checking applications involve checking

whether a state violating a certain safety constraint is reachable. For this reason,

a fundamental requirement of abstraction techniques is that they be conservative:

46

they must not remove behavior from the system, since this could lead to unsafe

states being unreachable and thus go undetected. Instead, abstractions typically

add behavior, i.e. transitions, to the model.

This explains what happened in figure 3.1: States v1 and v2 were considered

equivalent since they are both labeled odd . They differ, however, in that from v2

there is an edge back to a state labeled even, while from v1 there is not. The

abstraction, through the edge [v] → [u], essentially adds to M an edge v1 → u1.

This addition turned out to be relevant for the second model checking problem

above, rendering the abstraction inappropriate. We discuss in section 3.2.2 what we

can do in this situation.

3.2 Relationships between Concrete and Abstract

Models

In this section we concretize the intuition we obtained from previous examples about

relationships between models and their abstractions.

3.2.1 Simulation

Structures M and M of the example in section 3.1 do not satisfy the same temporal

logic formulas. On the other hand, they are related since every path p through M

can be mapped to a path p̄ in M by mapping each state along p to its equivalence

class under ≡, and the labels in corresponding states along the two paths are the

same. In particular, each state reachable in M is reachable in M , in the form of

the corresponding equivalence class. We say that M has more behaviors than M ,

or—more technically—it simulates M :

Definition 6 Let M1 = (S1, R1, L1) and M2 = (S2, R2, L2) be two Kripke structures

over AP1 and AP2 ⊆ AP1, respectively. A relation ∼ ⊆ S1 × S2 is a simulation

47

relation if s1 ∼ s2 implies:

1. L1(s1) ∩AP2 = L2(s2), and

2. for every t1 ∈ S1 such that (s1, t1) ∈ R1, there exists t2 ∈ S2 such that t1 ∼ t2

and (s2, t2) ∈ R2.

If ∼ is a simulation relation, we say that M2 simulates M1.

(This notion of simulation is distinct from the notion of simulation used in software

and hardware testing.) Before we discuss how a simulation relation benefits us,

we give some motivating comments. A simulation relation often relates states that

agree on “interesting” atomic propositions, but not necessarily on all. Set AP2

declares which propositions in AP1 are interesting. The reason for the intersection

operator in (1.) is to allow disagreement on other propositions. Regarding (2.), for

every successor of s1 there must be a “corresponding” successor of s2. This intuition

captures the ability of M2 to simulate M1.

In practice, we are usually given structure M1—presumably large—, con-

struct a new structure M2—presumably smaller—, and prove that M2 simulates M1.

In fact, we have already seen one such construction:

Theorem 7 Let M = (S,R,L) be a Kripke structure and ≡ an equivalence relation

on S. Let M be the quotient structure of M with respect to ≡ (see definition 5).

The relation ∼ := {(s, [s]≡) : s ∈ S} is a simulation relation.

That is, an equivalence relation on S immediately induces a simulating structure—

the quotient— that is often smaller, depending on how coarse the equivalence is.

For example, structure M from figure 3.1 simulates structure M in the same figure.

Given that M2 simulates M1, we surmise that every behavior of M1 is also

present in M2. Consider the sublogic of CTL* that uses only the universal path

quantifier; this logic is called ACTL*. If we can prove a formula in ACTL* over M2,

we expect it to hold over M1, too:

48

Theorem 8 Let M2 = (S2, R2, L2) (over AP2) simulate M1 = (S1, R1, L1) (over

AP1 ⊇ AP2) via relation ∼, and let f be an ACTL* formula over AP2. For any

s1 ∈ S1 and s2 ∈ S2 such that s1 ∼ s2, M2, s2 |= f implies M1, s1 |= f .

Given M1, once a structure M2 is found that simulates—and is smaller than—M1,

we attempt to verify f over M2. Towards this purpose, formula f must be expressed

over AP2. (Thus, when defining M2 and AP2, the atomic propositions of f must

be included in AP2.) The theorem says that if the verification attempt succeeds,

we can conclude that f is also true over M1. In the example of the previous section,

this was the case with the property AF odd .

3.2.2 Abstraction and Refinement

If the verification over the simulating structure M2 fails, theorem 8 gives no clues. In

the example of the previous section, this was the case with the property AX AG odd .

Fortunately, the model checker can in this case present a counter example (this is

always possible for an ACTL* formula), namely the path [u] → [v] → [u]. We

must now investigate whether this counter example can be mapped to the concrete

system. Without going into details on how to accomplish this, we establish that it

cannot: the abstract counter example is spurious (unrealizable in the concrete). We

say the abstraction is too coarse—it must be refined. The abstract counter example

tells us that the problem is in [v]: the two states it represents are distinct in their

ability to lead back to an even-labeled state. Guided by this observation, we may

decide to split [v] into its two constituents, while keeping the equivalence class [u]

intact. On the refined structure, with three states, property AX AG odd evaluates to

true, as it does on the original structure.

This process is known as (counterexample-guided) abstraction refinement. It

may turn out that after one refinement, the abstract model still allows spurious

counter examples. In this case we may have to refine again. This loop is guaranteed

49

to terminate; in the worst case this happens when the refinement results in the

original system, in which case spurious paths are not possible any more. In practice,

the number of iterations depends critically on how smart the abstract model is

refined; it can be accelerated using human assistance.

3.2.3 Bisimulation

In the previous section we have seen an approach to remedying the problem of over-

simplification, by repeated refinement until the model is precise enough to rule out

spurious paths. Another option is to avoid this problem from the beginning—by

using an exact abstraction. While surprising at first, it is sometimes possible to

abstract a model into a smaller one that satisfies exactly the same CTL* properties.

Consider the two structures in figure 3.2 (a). The two B-labeled states in

B

C

BB

A

C

A

(a)

A

C

B

C

A

B B
(b)

Figure 3.2: (a) Bisimilarity; (b) Simulation-equivalence but not bisimilarity

the left structure seem redundant: they have the same label, and their respective

predecessors and successors seem to correspond as well. Since CTL* cannot count

that the structure on the left has two paths A → B → C, it cannot distinguish

the left structure from that on the right, which has one such path. Formally, the

structures are bisimilar, which is nothing but a stronger version of similarity:

Definition 9 Let M1 = (S1, R1, L1) and M2 = (S2, R2, L2) be two Kripke structures

over AP. A relation ≈⊆ S1 × S2 is a bisimulation relation if s1 ≈ s2 implies:

1. L1(s1) = L2(s2),

50

2. for every t1 ∈ S1 such that (s1, t1) ∈ R1, there exists t2 ∈ S2 such that t1 ≈ t2

and (s2, t2) ∈ R2, and

3. for every t2 ∈ S2 such that (s2, t2) ∈ R2, there exists t1 ∈ S1 such that t1 ≈ t2

and (s1, t1) ∈ R1.

If ≈ is a bisimulation relation, we say that M1 and M2 are bisimilar.

In figure 3.2 (a), the natural bisimulation relation relates states with the same label.

Before we discuss benefits of bisimilarity, some remarks are due. Bisimilarity

is a symmetric relation over the set of all structures; simulation is not. Bisimilarity is

stronger than simulation. It is, in fact, stronger than simulation in both directions;

the latter property is sometimes called simulation equivalence. An example of two

non-bisimilar structures for which we nevertheless can find two separate relations

that show mutual simulation is given in figure 3.2 (b).

The relationship between two bisimilar structures is a strong one:

Theorem 10 Let M1 and M2 (over AP) be bisimilar via relation ≈, and let f be

a CTL* formula over AP. For any states s1 ∈ S1 and s2 ∈ S2 such that s1 ≈ s2,

M1, s1 |= f exactly if M2, s2 |= f .

In other words, verification over M1 produces exactly the same results as verification

over M2 does, for any formula we can express in standard temporal logics. This

means that once we have model-checked a formula over either structure (e.g. the

smaller one), we never have to worry about spurious paths or refinement. We point

out that the benefits of bisimulation differ from those of simulation in two aspects:

(i) bisimulation is about any CTL* formula, not just ACTL*, and (ii) bisimulation

gives us an “if and only if”, not just a result in one direction.

From a more theoretical point of view, theorem 10 means that CTL* cannot

distinguish two bisimilar structures. Conversely, if two structures are not bisimilar,

one can construct a CTL* formula that distinguishes them. As an example, consider

51

the structures in figure 3.2 (b) and the formula AX EXC, which in fact belongs to

CTL. With the A-labeled state as start state, this formula is true on the right but

not on the left.

Bisimulations are very valuable, but generally hard to come by in practice.

Simulation relations are more frequent because they usually allow greater reduction.

An exception to this empirical statement is the very topic of this dissertation: Sym-

metry, which we introduce next, is in part so popular because it allows a bisimilar

quotient structure.

52

Chapter 4

Symmetry and Symmetry

Reduction

Overview. In this chapter we lay the foundation for the contributions made by

this dissertation. We introduce the concept of symmetry, derive an abstraction

mechanism known as symmetry reduction, and also discuss in detail the problems

that this reduction has faced in practice, and that we have set to tackle in this dis-

sertation. We conclude the chapter with a short but broad appreciation of symmetry

across culture and science.

Symmetry appears virtually everywhere in arts and sciences. Unlike many

other ubiquitous phenomena, the characteristics that one intuitively associates with

it are surprisingly close to the technical definition we will establish for symmetries

of Kripke structures. Namely, an object has symmetry if some aspects of it are

immune to certain transformations. If we are interested in those aspects only, then

for us the object is immune to the change brought about by the transformations.

Consider a concurrent system of many processes, and suppose the processes

are all running the same program, just under different names. It appears we may

53

view the processes as interchangeable: a transformation that interchanges them

consistently throughout the system may not actually change the system itself. More

precisely, it may not change the system’s transition relation, i.e. the set of behaviors.

Once symmetry characteristics have been established, we can think about

how to exploit it for verification. The idea is that states that are identical up to

aforementioned interchanges of processes don’t have to be distinguished and can be

collapsed into one state of a new reduced system. As for the potential of symmetry

reduction, we will see that, given n processes, as many as n! (n factorial) of the

original states may be collapsed into a new state. The reduced system is thus expo-

nentially smaller than the original, accounting much for the popularity of symmetry

reduction.

4.1 Symmetry of a Kripke Structure

To formalize the intuitive ideas of symmetry, we first define a notion of transforma-

tion and how it interchanges processes. Let M = (S,R,L) be a Kripke structure

modeling a system of n concurrently executing processes. We model interchanges

of the n processes using permutations.

4.1.1 Permutations and Groups

A permutation on a set Z is a bijective mapping of Z onto itself. Permutations on a

set form a group with function composition as the operation. That is, the inverse of

a permutation and the sequential composition (product) of two permutations on Z

are again a permutation on Z. Further, the identity permutation is its own inverse

and is also the neutral element with respect to the group operation. We denote the

group of all permutations on a set Z by Sym Z. The set Sym [1..n] has cardinality n!

(n factorial).

Permutations acting on [1..n] can be extended to act on the state space S of

54

a Kripke structure. Recall from section 2.1.1 that a state s ∈ S can be represented

as s = (~v, s1, . . . , sn), where ~v is a vector of global variables and si comprises the

values of all local variables of process i, collectively known as i’s local state. For a

permutation π : [1..n]→ [1..n], we define

π(s) = π(~v, s1, . . . , sn) = ((~v)π, sπ(1), . . . , sπ(n)) . (4.1)

That is, a permutation acts on a state (i) by acting on the global variables in a way

described in the paragraph below, and (ii) by acting on the processes’ indices by

interchanging their local states. For example, let s = (A,B,C) for a three-process

system over local states A, B, C. The left-shift permutation acts on s by left-shifting

the local states in s:

π =
1 2 3

2 3 1
⇒ π(s) = (B,C,A) . (4.2)

For global variables, things are a bit more complicated. Some of them are

unaffected by a permutation. Consider a binary semaphore that monitors access to

a critical code section in a synchronization protocol. The semaphore is set to true

whenever some process executes the critical code, and is false otherwise. A per-

mutation interchanges the processes’ local states, but does not affect whether some

process executes critical code (only who does). We call such variables ID-insensitive;

a permutation acts on them like the identity.

Now revisit the token ring example from figure 2.3 (page 26). The global

variable tok ranges over process indices: its value is the identity of the one that is

allowed to enter its critical section next. We call such variables ID-sensitive.

How does a permutation act on an ID-sensitive variable, say v? That is, if i is

the value of v in state s, how do we define the value j of v in state π(s)? Intuitively,

the permutation exchanges the rôles of processes i and j. Thus, the local state of

55

process i in state s must be the same as that of process j in state π(s), so we have

to solve the equation si = sπ(j) for j. The only general solution of this equation is

given by π(j) = i, or equivalently j = π−(i). Thus, we define the value of v in state

π(s) to be π−(i).

For example, consider the state (3, N, T, C) of the three-process concurrent

system derived from the skeleton in figure 2.3. Processes 1, 2 and 3 are in local states

N , T and C, respectively, and tok has the value 3. The left-shift permutation π from

equation (4.2) changes the state to (2, T, C,N). As a result, the process possessing

the token is in local state C, before and after applying the permutation.

It can be shown that with definition (4.1), π : S → S is a bijection. In par-

ticular, this means that π(S) = S. How does π affect the transition relation R when

we apply it element-wise to the states?

4.1.2 Symmetry

Intuitively, a system of the above form has symmetry if its set of transitions re-

mains invariant when processes are interchanged by certain permutations. Such

permutations are called automorphisms:

Definition 11 An automorphism of a structure M = (S,R,L) is a permutation

π : S → S such that (s, t) ∈ R implies (π(s), π(t)) ∈ R.

That is, applying an automorphism to any transition again results in a valid tran-

sition. A permutation acts on a transition by consistently interchanging the com-

ponents in source and target. Revisiting the example in equation (4.2), suppose

the system being modeled allows any process to transit from local state A to lo-

cal state D, such that (A,B,C) → (D,B,C) is a valid transition. Applying the

left-shift permutation given in the example, we obtain (B,C,A)→ (B,C,D), which

must also be a valid transition for the left-shift to be an automorphism.

56

With this definition in place, symmetry is simply defined as the existence

of a (nontrivial) set G of automorphisms. We require that the candidate set G of

permutations be a group; the reason is revealed in section 4.2.

Definition 12 Let G be a group of permutations on [1..n]. Structure M = (S,R,L)

is symmetric with respect to G if every π ∈ G is an automorphism of M .

Since the automorphisms of a structure themselves form a group, denoted Aut M ,

we can rephrase this definition by requiring that G be a subgroup of Aut M .

We mention some important cases of symmetry. In applications where pro-

cesses are completely interchangeable, all permutations are automorphisms, so we

can choose G := Sym [1..n]. Such systems are referred to as fully symmetric. When

processes are arranged in a ring, such as in the dining philosopher’s problem, we

may be able to rotate the ring without changing the structure. For G, we can

choose the group of the n rotation permutations; we speak of rotational symmetry.

Finally, symmetry groups occurring in practice are often orthogonal products of

smaller groups. Consider a solution of the Readers-Writers synchronization prob-

lem. In this problem, the participating processes are partitioned into a set of r

readers and a set of w writers. Within each set all processes are interchangeable;

we can choose G := Sym [1..r] × Sym [r+1..r+w]. In general, we would like to rec-

ognize as much symmetry as possible and choose the entire automorphism group of

M for G. Sometimes, however, the exact group Aut M is unknown or expensive to

determine; definition 12 only requires G to be a subgroup of it.

We finally observe the following property, which can be concluded from the

“groupness” of Aut M :

Property 13 If π is an automorphism, then (s, t) ∈ R exactly if (π(s), π(t)) ∈ R.

The condition “(s, t) ∈ R iff (π(s), π(t)) ∈ R” can be written as R = π(R). Since

also S = π(S), we obtain the concise characterization M = π(M) for an automor-

57

phism π.1

4.1.3 Detecting and Verifying Symmetry

Before we discuss how we can make use of symmetry towards reducing state explo-

sion, we take a look at how we establish in practice whether a system is symmetric.

There are two dimensions along which to consider this problem. One is the tradi-

tional “function problem” vs. “decision problem”: Is our job to detect (quantify)

symmetry, without any prior conjecture about the symmetry group, or to verify

that some given group is a subgroup of Aut M . The other dimension is the level

of abstraction at which the system is considered: a high-level program or a Kripke

structure.

Generally, detection and verification of symmetry are expensive when per-

formed at the full Kripke structure level. In addition, we usually want to avoid

building the structure up front. An approach that detects symmetry (or violations

of it) on the Kripke structure in an on-the-fly fashion is presented in chapter 10.

Most techniques detect or verify symmetry on the level of the input pro-

gram. The justification for doing so is that an automorphism of the program text—

intuitively, a permutation that leaves the program invariant—is also an element of

Aut M for the induced Kripke structure M ; see the discussion of the symmetry

principle at the end of chapter 4. A popular way to verify symmetry is to establish

syntactic rules for the program and show that every program written in this syntax

yields a symmetric Kripke structure. A compiler then verifies that a given program

abides by the rules. In chapter 6 we present an example for such an approach. In

that chapter, the syntax rules are imposed on the local state transition diagram.

One problem with detecting or verifying symmetry at the program text level

is that the Kripke structure may have more symmetries than the program promises.
1We can define π to leave the labeling function L of M invariant.

58

Recalling the discussion of on-the-fly techniques in section 2.1.2, we can weaken

the symmetry condition π(R) = R to reachable transitions (those with reachable

source state) of the system. The program may have statements in it that are never

executed; thus the transitions corresponding to such statements can be ignored in

the symmetry condition.

In summary, one has to strike a balance between the cost of detecting/verify-

ing symmetry, and the reduction it promises. Choosing a less-than-optimal symme-

try group is legal according to definition 12 and may be more efficient than insisting

on first finding the full group Aut M .

4.2 Symmetry Reduction—An Instance of Existential

Abstraction

So far we have seen what symmetry is, and how one can recognize it or at least

conjecture its presence. In this section we discuss how to exploit it, towards the

general goal of reducing the impact of state explosion.

Fortunately, with the background information given in sections 3.1 and 3.2,

we have all necessary ingredients at our disposal. We discussed that an equivalence

relation on the state space immediately yields a quotient structure that is able to

simulate the original structure (theorem 7). Symmetry reduction is an instance of

building (in one way or another) this canonical quotient structure. And it is more:

we will see that (i) the quotient can be shown to not only simulate the original, but

in fact be bisimilar to it, and (ii) due to the way the equivalence is defined, we can

make certain estimates about the size of the quotient structure compared with the

original.

The equivalence that all builds upon is known as the orbit relation. Consider

a symmetry group G of a structure M = (S,R,L). For two states s, t ∈ S, we write

59

s ≡ t if there exists a permutation π ∈ G such that π(s) = t. In other words, the

orbit relation relates two states if they are identical up to the particular arrangement

of the processes in them. We have seen the state vectors (D,B,C) and (B,C,D)

near definition 11. They are equivalent under the orbit relation provided the left-

shift permutation is part of the symmetry group G. The equivalence class—orbit—of

a state s is the set [s]≡ = {π(s) : π ∈ G}.

The requirement that G be a group guarantees that ≡ is an equivalence:

(i). Since G contains the identity permutation, ≡ is reflexive.

(ii). Since G is closed under inversion, ≡ is symmetric.

(iii). Since G is closed under product, ≡ is transitive.

4.2.1 Symmetric Atomic Propositions

An equivalence relation gives us a quotient structure. In order to apply definition 5

(45) and derive a quotient, however, we have to design the set ĀP ⊆ AP of sym-

metric propositions, those that respect the orbit relation ≡. By definition, those

are the propositions that all states within an orbit agree on:

ĀP = {P : ∀s ∈ S, ∀π ∈ G : P ∈ L(s)⇔ P ∈ L(π(s))} . (4.3)

In practice, atomic propositions are usually given as propositional formulas over the

local states of the processes (or more generally over simple expressions involving the

local variables). In this case, membership in ĀP simply means that the propositional

formula is invariant under permutations in G. Typical symmetric atomic proposi-

tions quantify over the processes indices, rather than mention any index explicitly.

Examples of such propositions include

(a) ∀i : Ni (b) ∃i : Ci (c) ∃i, j : i 6= j ∧ Ci ∧ Cj . (4.4)

60

Atomic proposition (c), for instance, states that no two processes are in their critical

section, indicated by local state C. Intuitively, the symmetry of this formula is

reflected by the indifference towards the identity of the two processes.

In these examples, the quantifier expressions such as ∃i directly precede

the indexed propositional expressions such as Ci, rendering the whole proposition

symmetric. This succession is critical. Consider the CTL formula AG ∀i : (Ti ⇒

AFCi), which expresses that whenever a process is in local state T , it will eventually

proceed to local state C. In this formula, the indexed propositional expression Ci is

also under the scope of a quantifier. The quantifier is, however, separated from Ci

by the temporal operator AF. The unquantified expression Ci does not respect the

orbit relation ≡ (since different states are labeled with C1 than with π(C1) = C2 for

the flip permutation π = (1 ↔ 2)). Also, we cannot push the quantifier ∀i inward

in front of Ci, since this changes the semantics of the formula. There is no way to

extract symmetric atomic propositions from this formula.

In contrast, the weaker formula AG ∀i : (Ti ⇒ AF ∃jCj) expresses that when-

ever a process is in local state T , there will eventually be some process that proceeds

to local state C. Since the expression behind the ⇒ operator is independent of i,

we can equivalently rewrite this formula as AG(∃iTi ⇒ AF∃jCj). This time we can

choose ∃jCj as atomic proposition, which does respect ≡; the same holds for ∃iTi.

4.2.2 The Symmetry Quotient

Given the orbit relation, the quotient M of M according to definition 5 is in this

context known as symmetry quotient. By theorem 7, it simulates structure M , via

the canonical simulation relation associating states with their orbits. It turns out

that the two structures are even bisimilar:

Theorem 14 Let M be a structure symmetric with respect to a group G. The

quotient structure M , derived from the orbit relation, is bisimilar to M .

61

Proof : This theorem, while well known, lies at the heart of symmetry reduction,

so we include the short proof. Let B := {(s, [s]) : s ∈ S}, and consider a pair

(s, [s]). We show parts 1 through 3 of definition 9. Property L(s) = L([s]) holds

by construction (L was shown to be well-defined). For any t such that (s, t) ∈ R,

consider [t]. It is (t, [t]) ∈ B and also ([s], [t]) ∈ R by construction (definition 5).

Part 3 is more involved. For any orbit [t] such that ([s], [t]) ∈ R, we know there

exist s1, t1 ∈ S such that (s1, t1) ∈ R, s1 ∈ [s] and t1 ∈ [t]. From s1 ∈ [s] we

conclude that there exists π ∈ G such that π(s1) = s. Now choose t0 := π(t1).

Since t0 ≡ t1, it is t1 ∈ [t0]. Since also t1 ∈ [t], we conclude [t0] = [t], and therefore

(t0, [t]) = (t0, [t0]) ∈ B. Also, (s, t0) ∈ R: it is π(R) = R and (s1, t1) ∈ R; applying

π to this transition yields (s, t0). �

Figure 4.1 depicts a small example structure and its quotient. To assess

TTCTCTCTT

TTT

M : M :

TTT

CTT
TCT
TTC

Figure 4.1: An example of a symmetry quotient construction

the significance of theorem 14, we recall theorem 10, which tells us in this case

that structure M and its symmetry quotient M satisfy the same CTL* formulas.

Thus, given a verification problem of the form M, s |= f with CTL* formula f over

symmetric atomic propositions (equation (4.3)), we can replace it by the equivalent

verification problem M, [s] |= f .

The motivation for verifying over the quotient is of course that the quotient

is smaller, often by much: an orbit can comprise up to n! concrete states. This is

the case under full symmetry and for concrete states where the n processes are in

pairwise distinct local states; there are n! distinct permutations of these local states.

62

On the other hand, consider a fully symmetric state, i.e. of the form (A, . . . , A);

its orbit has size 1. The total number of orbits (reachable or not), i.e. the size of

the quotient state space, is given by the following property:

Property 15 For symmetric M over n processes and l local states, the quotient

with respect to the orbit relation has
0@ n+ l − 1

n

1A many states.

This property can be proved using a combinatorial argument. The quantity in

property 15 can easily be shown to be at most ln (the size of the concrete state

space), and much smaller than that if n and l get large.

The reduction effect dwindles with decreasing size of the symmetry group.

For example, under rotational symmetry, orbits have no more than n members, so

we can expect savings of at most a linear factor.

4.3 The Symmetry Quotient in Practice

This section discusses some refinements to the setup of symmetry reduction towards

implementing the technique in model checkers. We then show that the construction

of the quotient structure faces a fundamental complexity hurdle, which motivates

part of the work in this dissertation.

4.3.1 Orbit Representatives

Our description of symmetry reduction so far seems to suggest the following algo-

rithm to verify a system while exploiting its symmetry: (i) build a formal model M ,

(ii) derive a reduced abstract model M , (iii) model-check M . Recall the definition

of M ’s transition relation:

R = {([s], [t]) ∈ S × S : ∃s0 ∈ [s], t0 ∈ [t] : (s0, t0) ∈ R} . (4.5)

63

Although states of the reduced model, such as [s] and [t], are formally defined as

equivalence classes, it is unreasonable to encode them this way. Instead, we can

define S to be a fixed set of representatives of each equivalence class. This has the

practically useful and simplifying consequence that the abstract states are embedded

in the concrete state space: S ⊆ S; no new modeling scheme is required for the

abstract state space. The definition of R changes in that the condition s0 ∈ [s]

in equation (4.5) becomes s0 ≡ s. Finally, the quotient labeling function labels a

representative with the same atomic propositions as the concrete labeling function

does:

S = fixed set of representatives of ≡’s equivalence classes (4.6)

R = {(s, t) ∈ S × S : ∃s0 ≡ s, t0 ≡ t : (s0, t0) ∈ R} (4.7)

L(s) = L(s) ∩ ĀP . (4.8)

A quotient structure defined this way is of course isomorphic to the canonical quo-

tient defined over equivalence classes. We therefore do not need to repeat the con-

clusions in section 4.2. For the rest of this dissertation, we consider M to be defined

as above, over representative states.

4.3.2 Detecting State Equivalence

In connection with symmetry reduction, the most important operation is to decide

whether two states are equivalent, i.e. identical up to a permutation. We need this

operation for example in s0 ≡ s to build the quotient transition relation (equa-

tion (4.7)). Under arbitrary symmetries, state equivalence is known to be as hard

as the graph isomorphism problem. This problem, while considered tractable in

practice, causes a lot of overhead for symmetry reduction that reduces its value

considerably.

64

Fortunately, there are important and frequent special cases where state equiv-

alence detection is possible reasonably efficiently. Given the full symmetry group,

we can determine whether the vector (s1, . . . , sn) is a permutation of (t1, . . . , tn)

by lexicographically sorting both and then comparing them for equality. For exam-

ple, (A,C,A,B) and (B,A,A,C) are equivalent local state vectors because their

lexicographically least permutations are both (A,A,B,C). This can certainly be

determined in O(n log n) time. We note that this method detects whether there is a

permutation mapping one state to the other without actually finding this permuta-

tion. For a small symmetry group, such as the rotation group, it is possible to just

try all permutations to see whether one maps the first vector to the second.

4.3.3 The Orbit Problem of Symbolic Model Checking

For symbolic model checking using BDDs, the state equivalence problem is much

worse. To implementR as in equation (4.7) symbolically, we need a propositional for-

mula f(s, s) that detects whether its arguments are symmetry-equivalent. That is,

f has the form f(s1, . . . , sn, s1, . . . , sn) and evaluates to true exactly if the vec-

tor (s1, . . . , sn) of local states is a permutation (from the group G) of the vector

(s1, . . . , sn).

It turned out that for many symmetry groups, including the important full

symmetry group, the binary decision diagram for this formula is of intractable size

[CEFJ96]. More precisely, for the standard setting of n processes with l local states

each, the BDD for the orbit relation under full symmetry is of size at least 2min{n,l}.

The practical complexity of the orbit relation can be much worse; even if, say, the

number of local states l is small, the size of its BDD tends to be intractably large.

As an intuition for this lower bound, consider the related problem of building

a finite-state automaton that reads a word of the form (s1, . . . , sn, s1, . . . , sn) and

accepts it exactly if the first n letters are a permutation of the remaining n. One way

65

is to let the automaton memorize, in its states, which of the ln possible vectors it read

until the nth letter, and then compare this information with the remaining n letters.

Such memorization requires about ln different automaton states. Another way is to

let the automaton count: While reading the first n letters, the counter for the read

letter is increased. While reading the remaining n letters, the corresponding counters

are decreased; an attempt to decrease a zero-valued counter means rejection. The

set of possible values for all counters must be encoded in about nl states. Either

way, the automaton is of size exponential in one of the parameters.

4.3.4 Ameliorating the Orbit Problem

The motivation for detecting equivalent states is that we want to collapse them in

order to reduce the size of the state space. Suppose we were to collapse only some

of the equivalent states. This is quickly shown to be legal, since not collapsing some

equivalent states does not lose information. Further, we still achieve some reduction.

Finally, it may be easier to represent a sub-relation of the orbit relation given by the

definition of “some”. Intuitively, only few of the potentially n! permutations must

be tried in order to determine equivalence: we tolerate some oversights.

This scenario is depicted in figure 4.2 (b). An orbit may now have multiple

(b)(a)

Figure 4.2: Unique (a) or multiple (b) representatives

representatives (black disks), and a single state may be associated with multiple of

them. This approach has, accordingly, become known as multiple representatives

66

[CEFJ96]. An obvious disadvantage is that the symmetry reduction effect is nega-

tively impacted by allowing several representatives (i.e. abstract states) per orbit.

In fact, for full symmetry, typical choices of the refined equivalence relation make

the reduction effect approach a linear factor, down from the original exponential

potential of symmetry.

Permitting multiple representatives per orbit is a cosmetic change that ame-

liorates the orbit problem only to the extent that the benefits of symmetry reduction

are diminished. The accomplishment of parts of this dissertation, in particular chap-

ter 5, is to demonstrate that there is a deeper cause for the orbit dilemma, and that

we can in fact solve this problem by making more fundamental changes to the way

symmetry is exploited.

4.4 Symmetry: A Look Beyond

Symmetry appears virtually everywhere in arts and sciences. In the images of

M. C. Escher, geometric symmetry is used as an expression of beauty. Rotational

symmetry is abundant in nature, especially in plants, but also in some primitive

animals like jelly fish and sea stars. Many higher organisms, including mammals,

fish and birds, have reflectional symmetry.2 Permutation symmetries, as they are

used in concurrent systems of processes in this dissertation, occur frequently in

mathematics: sums, products and chains of equality are invariant under arbitrary

permutations of their arguments. As a result, we find full permutation symmetry

in the sine rule and the set of three cosine rules, in binomial rules and many more.

In physics, the symmetry principle is a special case of the equivalence princi-

ple (equivalent causes have equivalent effects). The symmetry principle states that
2It has been observed that organisms with reflectional symmetry are generally more advanced

than those with rotational symmetry.

67

in a causal relationship, symmetry in the cause is preserved in the effect. In formal

verification, we can view a program text as a cause and the derived Kripke structure

as the effect. As discussed before in section 4.1.3, this means that we can predict

symmetries of the structure by looking at the program. This is significant since the

program text is usually much smaller than the structure.

On the other hand, the effect, the structure, may very well have more sym-

metries than the cause, the underlying program. This seems to suggest the opposite:

to look at the structure directly to find its symmetries, rather than at the program.

In practice, this suggestion finds applications in on-the-fly techniques, which gener-

ate the (reachable part of the) Kripke structure as the program is simulated. Such

techniques suffer less from the size of the structure and may indeed be able to ex-

tract, and make us of, more symmetry in the structure than the program seems to

promise. An example of such a technique is given in chapter 10.

For a broad and entertaining treatment of symmetry, the reader may wish

to consult the books by J. Rosen [Ros75, Ros95].

68

Part II

Efficient Approaches

to Symmetry Reduction

69

In this part of the dissertation we present principal solutions to the main

obstacle in symmetry reduction: the apparent impossibility to efficiently compute

and represent the orbit relation. In the previous part we have seen the theory

underlying symmetry reduction. It is an instance of existential abstraction, leading

to a quotient structure that is bisimilar to the original structure. We have also,

however, seen that the quotient is expensive to build, especially with symbolic data

structures. The difficulty is that the most fundamental relationship between states,

the orbit relation, cannot be represented succinctly as a propositional formula in

binary decision diagram format. This is, however, essential in order to build and

subsequently model-check the symmetry quotient structure. Due to this deficiency,

symmetry reduction was deemed uncombinable with compact data structures and

performed mainly with explicit-state model checkers such as Mur ϕ, Spin or Smc.

Part II presents solutions to this problem by breaking with the traditional

abstraction paradigm of (i) modeling, (ii) reducing, and (iii) checking. Chapter 5

shows an approach that is equivalent in effect to symmetry reduction, but avoids

building the reduced model and thus building a representation for the orbit relation.

It can be seen as an interleaving of steps (ii) and (iii) above. Chapter 6 demonstrates

how a technique that is by itself not new can help us solve the symbolic symmetry

reduction problem. This technique performs the reduction step before the modeling,

i.e. it reduces the original program text. It is elegant and efficient if applicable, but

has a somewhat limited scope in practice. Chapter 7, thus, enhances the technique

by cheap but effective analysis methods that precede even the reduction step. We

then present DySyRe, a tool that combines many ideas from this part of the disser-

tation for efficient symbolic model checking under symmetry. Finally, in chapter 9

we show experimental results obtained with DySyRe that demonstrate the effect

of the developed techniques on many example programs.

70

Chapter 5

Dynamic Symmetry Reduction

Overview. In this chapter we show an approach to symmetry reduction that

avoids building the symmetry-reduced model and thus building a representation

for the orbit relation. We first present this approach as an algorithm for symbolic

reachability analysis under full symmetry and then generalize it to full CTL model

checking given a broader class of symmetry groups.

The approach to be presented can be seen as an interleaving of the reduction

and model checking steps. Let us think for a moment about such an interleaving in

the context of symbolic models, say using BDDs. In order to leverage the power of

BDDs to obtain an entire set of successor states in one step, we must have computed

the BDD representation of the transition relation—we cannot build this BDD on

the fly. In other words, we have to perform the symbolic modeling step before

anything can be done. Folklore seemed to extend this requirement to abstraction:

it was believed that with the apparent rigidness of BDDs, abstraction steps cannot

be performed on the fly. In our case, such steps include collapsing equivalent states

to their representatives.

This chapter breaks with tradition by demonstrating how a compactly rep-

71

resented model can very well be reduced on the fly. We will use BDDs in some

unconventional ways that go beyond Boolean or image operations. Not all algorith-

mic problems can be solved efficiently with compact data structures, but that of

detecting equivalent states can.

5.1 Symmetry Reduction without Symmetry Quotient

As mentioned near the end of part I of this dissertation, the straightforward method

to apply symmetry reduction seems to be to build a representation of the quotient

structure M and then model check it. Algorithm 2 (a) shows the standard fixpoint

routine (an instance of algorithm 1 (a) on 40) to compute the representative states

satisfying EF bad , assuming we have a BDD representation of the quotient transition

relation R. We use bad to denote the representatives of orbits of bad states of M .

Algorithm 2 Two ways to compute the representative states satisfying EF bad

(a)

1: Y := ∅
2: repeat
3: Y ′ := Y
4: Y := bad ∪ EXR Y
5: until Y = Y ′

6: return Y

(b)

1: Z := ∅
2: repeat
3: Z ′ := Z
4: Z := bad ∪ α(EXR Z)
5: until Z = Z ′

6: return Z

This algorithm is unsuitable for symbolic model checking. The reason is that

the construction of the BDD for the quotient transition relation R (equation (4.7))

requires the orbit relation, which is of intractable size.

An alternative is to modify the model checking algorithm. Consider the

version in algorithm 2 (b). It is identical to (a), except that it uses the operation

α(EXR Z) in the computation of the next iterate: It first applies to Z the backward

image operator with respect to R, rather than with respect to R. It then employs

72

some mechanism α that maps the results to representatives, formally defined as

α(T) = {t ∈ S : ∃t : t ∈ T : t ≡ t}. (5.1)

We can understand algorithm 2 (b) in the context of abstraction in general. The

symbol α denotes the abstraction function, mapping a set of concrete states to the

set of corresponding abstract states. The idea employed by the algorithm is that

abstract images, i.e. successors of an abstract state under the quotient transition

relation, can be computed without the quotient transition relation, using the follow-

ing three steps: (i) the given abstract state is mapped to the set of concrete states

it represents using the concretization function γ; (ii) the concrete image is applied

to those states; and (iii) the result is mapped back to the abstract domain using α.

What does this procedure look like in our context? Symmetry affords the

simplification that γ can be chosen to be the identity function, since abstract states—

representatives—are embedded in the concrete state space; they represent them-

selves. Thus step (i) can be skipped. In algorithm 2 (b)), we can apply EXR (the

concrete backward image operator) directly to the set Z of abstract states, obtaining

a set of concrete successor states. Applying α produces the final abstract backward

image result.

To concretize this intuition, we prove that the two versions of algorithm 2

compute the same result. We only postulate that α maps the states of its argument

set to representatives.

Lemma 16 Let α be defined as in equation (5.1). Then, for an arbitrary set P̄ ⊆ S

of representatives, EXR P̄ = α(EXR P̄).

Proof : In the proof, we slightly overload the symbol α and write α(t) for the unique

73

representative of a single state t, i.e. the unique element of α({t}).

s ∈ α(EXR P̄)

⇔ 〈def. of backward image and function application〉

∃s, t : s = α(s) ∧ (s, t) ∈ R ∧ t ∈ P̄

⇔ 〈“⇒”: t := t and note t ∈ P̄ ⊆ S, so t = α(t) = α(t)〉

〈“⇐”: s := π(s′) for π : π(t) = t. Then α(s′) = α(s), π(s′, t) = (s, t) ∈ R〉

∃s′, t, t : s = α(s′) ∧ t = α(t) ∧ (s′, t) ∈ R ∧ t ∈ P̄

⇔ 〈def. of R〉

∃t : (s, t) ∈ R ∧ t ∈ P̄

⇔ 〈def. of backward image〉

s ∈ EXR P̄ . �

Corollary 17 The two versions of algorithm 2 return the same set (and they do so

with the same number of iterations of the repeat loop).

Proof : Let Yi and Zi denote the ith iterates of the two algorithms. We show by

induction that Yi = Zi for all i; the two claims of the corollary then follow. It is

Y0 = ∅ = Z0, and

Yi+1 = bad ∪ EXR Yi
(IH)
= bad ∪ EXR Zi

(L16)
= bad ∪ α(EXR Zi) = Zi+1.

Here, (IH) uses the induction hypothesis, and (L16) uses lemma 16. The lemma is

applicable since for any i, Zi ⊆ S (by the definitions of bad and α). �

Given different implementations of α, algorithm 2 (b) actually represents

a family of symmetry reduction algorithms. The definition of α (equation (5.1)) is

based on the orbit relation and is therefore inappropriate as a recipe for an algorithm.

An alternative is to use the forward image under a precomputed representative

relation ξ = {(s, r) ∈ S × S : s ≡ r}. This technique was used in [CEFJ96] in

74

connection with multiple representatives; the authors describe ways to obtain such

a relation without explicitly using the orbit relation ≡. In contrast, in this chapter

we show how to compute the set of representatives of a set of states dynamically

during the execution of symbolic model checking algorithms, instead of a priori

statically. This has two advantages:

1. We avoid computing and storing, at any time, the table ξ associating states

with representatives, which is expensive.

2. We do not need the complete set of representatives S, which is required for the

computation of ξ. Rather, we only track representatives encountered during

the computation.

The algorithm to compute α depends on the type and underlying group of

symmetry. In the following section, we first describe in detail the algorithm for the

most common and important case of full symmetry. Later, in section 5.5, we present

extensions to other symmetries and also generalize the dynamic algorithm to full

CTL model checking.

5.2 Computing the Representative Mapping

A scheme for defining representatives frequently used under full component symme-

try is the following. Recall that an orbit consists of all states that are identical up

to permutations of components, which amounts to permutations of the local states

of the processes. Given some total order among the local states, there is a unique

state in each orbit where the local states appear in increasing order. This state can

be computed by sorting the local state vector of any orbit member.1

How can this be accomplished symbolically? Not every sorting algorithm

lends itself to symbolic implementation. Compared with an explicit-state algorithm,
1We assume for now that there are no symmetry-relevant global variables; section 5.5 generalizes.

75

instead of sorting one vector of local states, we want to sort an entire set of local

state vectors in one fell swoop. One algorithm that allows this efficiently is Bubble

Sort, as we motivate in the paragraph below. Bubble Sort is a comparison-based

sorting procedure that rearranges the input vector in-place by swapping adjacent

out-of-order elements. To symbolically bubble-sort a set of vectors simultaneously,

we proceed as follows: Instead of comparing two elements of the input vector, the

algorithm forms a subset of vectors for which the two elements in question are out

of order. Instead of swapping one pair of out-of-order elements, we apply the swap

operation to all vectors in the subset, in one step.

The operation of swapping two items turns out to dominate efficiency. Its

complexity depends heavily on the distance, in the BDD variable order, of the bits

involved in the swap. In order to keep this distance small, we exploit one key

feature of Bubble Sort: it is optimal in the locality of swap operations—it swaps

only adjacent elements. Section 5.3 contains a more detailed efficiency analysis.

Let ≤ be a total order on the set of local states. For a fixed global state z,

this order induces a total order ≤z on the set [1..n] of process indices via

p ≤z q iff zp ≤ zq. (5.2)

Given ≤z, the set of representative states (i.e. states with increasing components)

is defined as

S = {z : ∀p : p < n : p ≤z p+ 1} =
⋂
p<n

{z : p ≤z p+ 1}. (5.3)

For our algorithm, the exact definition of ≤z is irrelevant; we only need it to

be a total order on the local states. This flexibility turns out to be useful in situations

where considering just the local states of processes is insufficient to characterize

representative states; these situations are discussed in section 5.5. The sorting

76

algorithm looks for states z with components that are not in correct order with

respect to ≤z, and swaps them. This is repeated until a fixpoint is reached, see

algorithm 3.

Algorithm 3 Computing the representative mapping α using subroutine τ

α(T):

1: Z := T
2: repeat
3: Z ′ := Z
4: Z := τ(Z)
5: until Z = Z ′

6: return Z

τ(Z):

1: for p := 1 to n− 1 do
2: Zbad := Z ∩ {z : p >z p+ 1}
3: if Zbad 6= ∅ then
4: Zgood := Z \ Zbad

5: Zswapped := swap(p, p+ 1,Zbad)
6: Z := Zgood ∪ Zswapped

7: return Z

For p ranging from 1 to n − 1, the predicate transformer τ computes Zbad ,

the set of states in Z in which components p and p+ 1 are not in the correct order

(line 2 on the right). If Zbad is nonempty, the algorithm first saves the set of states

in Z in which p and p+ 1 are in correct order (line 4) and then swaps components p

and p+ 1 in all states in Zbad (line 5). The simultaneous swapping can be achieved

by swapping the bits that store components p and p+ 1 in the BDD for Zbad , which

effects all states in Zbad . This is the expensive step of the algorithm; it benefits

from these bits being close together (see section 5.3). Finally, the untouched and

the swapped states in Z are combined to give the new value for Z (line 6).

5.3 Correctness and Efficiency of the Algorithm

The dynamic algorithm is an instance of algorithm 2 (b). We have already shown

more generally that that algorithm computes the same result as algorithm 2 (a).

It remains to prove that the implementation of α does what is expected of an

abstraction function:

Lemma 18 Algorithm 3 computes α satisfying equation (5.1).

Proof : see appendix A.1. �

77

Corollary 19 Algorithm 2 (b), using the computation of α in algorithm 3, correctly

implements backward reachability analysis on the quotient structure.

Efficiency Considerations. The set {z : p ≤z p + 1}, which is by definition

{z : zp ≤ zp+1}, needs to be calculated only once for each p. The condition zp ≤ zp+1

can be expressed symbolically with a BDD of size O(l2), for the number l of possible

local states.

As indicated earlier, the swap operation in line 5 of algorithm 3 (τ(Z)) is

a bottleneck. In BDD terms, it corresponds to pairwise swapping of all bits that

represent the two items to be swapped. The complexity of swapping two bits in all

elements of a set Zbad , i.e. computing

Zswapped = {(. . . xj . . . xi . . .) : (. . . xi . . . xj . . .) ∈ Zbad} , (5.4)

depends exponentially on the distance d of xi and xj in the BDD variable order. To

substantiate this claim, we observe that in the BDD for Zbad , every subtree rooted

at a node labeled xi contains at most 2d nodes labeled xj . Each such node labeled xj

has an immediate subtree that corresponds to one of the cases affected by the swap,

namely (xi, xj) = (0, 1) and (xi, xj) = (1, 0). These 2d subtrees must be moved. In

the illustration in figure 5.1, these are the 22 = 4 subtrees B, D, E and G.

BDD variable orders usually have the property that it is possible to index

the components as 1, . . . , n such that the distance between corresponding bits of

components p and q is proportional to |p− q|. Consider, for example, the following

frequently used orders:

concatenated: b11 . . . b1 log l b21 . . . b2 log l bn1 . . . bn log l

interleaved: b11 . . . bn1 b12 . . . bn2 b1 log l . . . bn log l

(5.5)

where bij denotes the jth bit of component i. For the concatenated order, the

78

10

0 0 00 1 1 1 1

1 10

10

0 0 00 1 1 1 1

1 100

xj :

xi:

E DB ED G

0

C F H A HFBGCA

ZswappedZbad

Figure 5.1: Swapping variables in a BDD

distance between the jth bit of component p and the jth bit of component q is

log l · |p− q|; for the interleaved order, it is |p− q|.

Bubble Sort, among the numerous sorting procedures, enjoys the unique

feature of swapping only adjacent components. The distance |p − q| is hence one,

for every swap operation, thus minimizing the complexity of swapping. This attests

to Bubble Sort’s optimality for implementation using BDD.

5.4 Lifting Abstract Error Traces

Suppose the verification of the formula EF bad succeeds; we then have discovered

an initial state from which an error state is reachable in the quotient structure.

Provided the algorithm has kept a record of the sets of states encountered after

each step, an abstract path from the initial to the error state can be reconstructed.

Since symmetry reduction is an exact abstraction technique, we can lift this error

path back to the concrete system.

The generation of an abstract error path and the lifting to the concrete

system can be combined using algorithm 4. The inputs are the initial state i that

was backward-reached during the computation of EF bad , and the list L of sets of

79

Algorithm 4 Computing a concrete error path after quotient exploration
Input initial state i, set-of-states list L

1: s := i; p := (s) //p is the path to be constructed
2: for all sets Z in L in reverse order do
3: T := ImageR(s) //concrete forward image
4: t := some element of α(T) ∩ Z
5: s := some element of Orbit(t) ∩ T
6: push s to the end of p
7: return p

representative states encountered during this computation, excluding the final set

(when i was reached). The path construction algorithm itself proceeds forward.

It builds a path p as a sequence of states s, beginning with i. After obtaining

all successors of s (line 3), a state t is extracted from the current iterate Z that

represents one such successor in the quotient (line 4). The next state s of the error

path is computed in line 5 as a successor of the old s, call it sold , that is represented

by t. The states sold and s satisfy (sold , s) ∈ R and α(s) ∈ Z.

A slight twist in this algorithm is the computation of the orbit of a state in

line 5. This is easy to do if the representative function (or relation) ξ = {(s, r) ∈

S × S : s ≡ r} is available. We mentioned ξ in section 5.1 as a means of computing

the abstraction function α, namely as forward image with respect to ξ. Likewise,

we can use the preimage with respect to ξ to map a representative state to its orbit:

Orbit(t) = {t : (t, t) ∈ ξ} = PreImξ(t) . (5.6)

How do we compute the orbit of a state when ξ is unavailable, such as when per-

forming dynamic symmetry reduction? We can here fall back on the algorithm that

was proposed in [CEFJ96] to compute the orbit relation. Starting with the identity

relation {(s, s) : s ∈ S}, we apply generators of the underlying symmetry group to

the right hand side of the pairs until a fixpoint is reached. We adjust this approach

slightly, as shown in algorithm 5, which computes the orbit of a state t.

80

Algorithm 5 Symbolically computing the orbit of a state t
Input representative state t

1: Z := {t}
2: repeat
3: Z := {g(z) : z ∈ Z, g group generator}
4: until fixpoint
5: return Z

Why do we get away with using a procedure similar to the one used for

computing the orbit relation, which we wanted to avoid by all means? The answer

is two-fold. First, we apply the above routine only to an individual state t found

during error path construction, not to a (large) set of states. Second, the result

we compute is a set of states, not a relation over states; the latter is much more

expensive to deal with symbolically.

5.5 Generalizations

We have so far presented dynamic symmetry reduction for the frequent but special

case of reachability analysis under full symmetry. In this section, we generalize it

to other types of symmetry and to full CTL model checking. We also demonstrate

the impact of symmetry-dependent global variables on the dynamic method.

5.5.1 Other Types of Symmetry

The idea of sorting to obtain unique orbit elements only applies to full component

symmetry. We show in this section how to compute α for other, less lucrative, but

still somewhat common types of symmetry.

For any symmetry group, a unique representative can be chosen as the lexi-

cographically least member of an orbit. The solution for full symmetry generalizes

as follows. Call a symmetry group G of permutations on [1..n] nice if there exists

a “small” subset F of G with the following property: A state z is lexicographically

81

least in its orbit exactly if there is no π ∈ F with π(z) <lex z. Given this property,

choosing lexicographically least states as representatives is tantamount to defining

S = {z : ∀π : π ∈ F : π(z) 6<lex z} =
⋂
π∈F
{z : π(z) 6<lex z} . (5.7)

Many common symmetry groups are nice. For full symmetry, F can be chosen as

the set of n−1 transpositions of i and i+1, for 1 ≤ i < n. Set F also happens to be

a generating set for the full symmetry group. If G itself is small, F := G is a viable

choice. This applies, for example, to the n rotations generated by the left-shift cycle

% := (1 2 . . . n). Note that here the generating set {%} is an invalid choice for F :

The vector z := (BCA) is not lexicographically least, yet applying the generating

permutation does not make z smaller (π := %2 does).

Given a nice group G, consider the algorithm to compute α as before in

algorithm 3, but with subroutine τ as shown in algorithm 6. Again, Zbad in line 2

Algorithm 6 Subroutine τ for nice symmetry groups

τ(Z):

1: for π ∈ F do
2: Zbad := Z ∩ {z : π(z) <lex z}
3: if Zbad 6= ∅ then
4: Zgood := Z \ Zbad

5: Zswapped := {π(z) : z ∈ Zbad}
6: Z := Zgood ∪ Zswapped

7: return Z

selects the states z in Z that are not lexicographically least. By the niceness of G,

this means that for some π ∈ F , π(z) <lex z. Line 5 applies π element-wise to Zbad .

The algorithm for α using the new τ terminates because <lex is a strict order on the

finite set of local state vectors. For partial correctness, we reuse the observations

(i) and (ii) from the proof of lemma 18: α(T) ⊆ S follows with the same argument,

except that the definition of S is now given by equation (5.7). Observation (ii) holds

without change, and so does the conclusion that α(T) = {t : ∃t : t ∈ T : t ≡G t}.

82

If G is nice, we expect to have a small set F of permutations to be traversed

in line 1. The direct application of π in line 5 may be expensive. Any permutation

can, however, be expressed as a product of at most 1/2n(n − 1) transpositions of

adjacent elements, often much fewer than that. As argued in section 5.3, these are

the least expensive permutations, as for implementation using BDDs. The important

point is that algorithm 6 operates in place, and it only swaps neighboring processes,

provided the permutations in F are rewritten appropriately.

5.5.2 ID-Sensitive Variables

In section 4.1 we have seen ID-sensitive global variables, which contain process in-

dices such as the identity of a process holding a token. In this case, the condition

∀p : p < n : zp ≤ zp+1 is insufficient to guarantee that z is a unique representative

state. Consider, for instance, the two states (1, A,A,B) and (2, A,A,B) of a three-

process system with one ID-sensitive global variable (listed first). Since components

1 and 2 are both in local state A in both states, the permutation that flips 1 and 2

proves the states symmetry-equivalent. The local states appear in increasing lexi-

cographical order: (A,A,B). Yet, the states differ, compromising uniqueness. The

solution is to define the unique representative as the orbit element with increasing

local states where the ID-sensitive variables have minimal values (1, in the example

above). In this case, p ≤z p + 1 means for state z and the local states of p and

p+ 1 that either zp < zp+1, or zp = zp+1 and none of the ID-sensitive variables have

value p + 1. This condition is violated for z := (2, A,A,B) with p := 1. Thus, the

permutation 1↔ 2 will be applied to z, whereupon it turns into (1, A,A,B).

5.5.3 Full CTL Model Checking

The abstraction mapping α (algorithm 3) was used in section 5.1 towards an effi-

cient strategy to compute EXR Z for backward reachability analysis. This algorithm

83

generalizes to all CTL formulas as follows. Recall from section 2.3.2 that existen-

tial modalities (EG, EF, EU) have a fixpoint characterization based on existential

backward images. For example, EG f can be calculated as the greatest fixpoint of

the predicate transformer λ(Z) = f ∩ EXZ. To compute these modalities over the

quotient structure, a routine similar to algorithm 2 (b) can be used.

The universal backward image AXR Z cannot be replaced by an analogous

construct involving α. Suppose we wish to compute the representative states satis-

fying AG good on the quotient structure. A routine similar to algorithm 2 (a) exists,

which computes the greatest fixpoint of λ(Z) = good ∩AXR Z. In general, however,

α(AXR Z) $ AXR Z. The underlying problem is that the abstraction function α

distributes over set union, but not intersection:

α(P ∪Q) = α(P) ∪ α(Q), but

α(P ∩Q) $ α(P) ∩ α(Q) (in general).
(5.8)

The solution is to reduce universal to existential modalities. Care must be

taken in that over the quotient structure, negation corresponds to complementation

with respect to S, the set of representatives:

AXR Z = ¬(EXR ¬Z) = S \ EXR(S \ Z) = S \ α(EXR(S \ Z)). (5.9)

This solution requires the set S of all representatives. Depending on the application

and the definition of representatives, the BDD for this set can be (but is not always)

large. It can be computed as α(true), but the direct way based on the expression⋂
p<n p ≤z p + 1 is often more efficient. In section 5.5.4, we discuss situations in

which the computation of S can be avoided. Other than S, the above equations

only involve Boolean primitives, existential backward image with respect to R, and

the abstraction function α. This makes the dynamic technique complete for CTL.

84

5.5.4 Computing Representative Sets for Atomic Propositions

The mapping α can be used to convert atomic propositions into their representative

form, such as bad into α(bad) = bad in order to compute EFR bad . Since the set of

bad states is, per symmetry requirement, invariant under permutations, it contains

all representatives of bad states, making it a superset of bad . Thus, it seems that we

can “conservatively” replace bad by bad as the starting point for backward search,

saving us one application of α. This would be beneficial when we need the negation

of an atomic proposition. Suppose instead of the set of bad states, an application

defines what good states are. Since computing AGR good requires the potentially

unwieldy set S of representative states (see section 5.5.3), we want to compute

EFR bad instead. Unfortunately, bad must be computed as S \ good (negation in the

quotient) and thus requires S as well. In this situation, we would like to simply run

algorithm 2 (b) with bad replaced by bad = ¬good , avoiding the computation of S

altogether.

The justification for this replacement is as follows. Consider two sets of states

Z and V that are identical up to permutations, i.e. Orbit(Z) = Orbit(V). Such sets

are indistinguishable in the quotient; in particular, quotient image operators yield

the same result when applied to Z and to V :

Theorem 20 For Z and V with Orbit(Z) = Orbit(V), α(EXR Z) = α(EXR V).

Proof : We show “⊆”; the other direction follows by commutation.

Assume t ∈ α(EXR Z), i.e. t is the representative for some t ∈ EXR Z. Thus

there is an element z ∈ Z with (t, z) ∈ R. Let z̄ be the representative state of z, then

z̄ ∈ Orbit(Z) = Orbit(V). Hence, there is an element v ∈ V symmetry-equivalent

to z̄ and thus to z, say v = σ(z). By symmetry of R, we can apply σ to (t, z) to

obtain (σ(t), σ(z)) = (σ(t), v) ∈ R, thus σ(t) ∈ EXR V and t ∈ α(EXR V). �

Suppose now we replace bad by bad in algorithm 2 (b). Let Zi be the ith iter-

85

ate of the original algorithm, and Vi be the ith iterate after the replacement. An easy

induction proof shows that for all i, Orbit(Zi) = Orbit(Vi) (enabling theorem 20),

Zi ⊆ Vi, and Vi\Zi ⊆ bad \bad . Thus, the algorithm after the replacement produces

the same result as the original algorithm 2 (b), except for some additional elements

from bad \ bad . A similar result can be shown for the AXR operator, computed as

in equation (5.9).

The additional, non-representative states must be taken into account when

interpreting the result, which often amounts to checking whether the computed

set of states contains any initial states, such as checking whether init ∩ EFR bad

is nonempty. Fortunately, for two sets of representative states Ī and B̄ and over-

approximations Ĩ ⊇ Ī and B̃ ⊇ B̄ that do not contribute any new orbits,

Ĩ ∩ B̃ = ∅ iff Ī ∩ B̄ = ∅ . (5.10)

Thus, for backward reachability analysis, we can start from bad instead of bad and

compare the backward-reachable states against init instead of init . This optimiza-

tion avoids having to compute the set of representative states S and still achieves

an exact verification result. We found that the overhead by carrying around extra

states (from bad \ bad) is not noticeable.

5.6 Conclusions and Bibliographic Notes

Dynamic symmetry reduction is a symbolic abstraction technique that avoids pre-

computing the abstraction function by instead using an efficient symbolic algorithm

to map concrete to abstract states on the fly. As such, it also benefits from gen-

erating only reachable abstract states, which may be few if an error is detected

soon after the start of the exploration. We present experimental evidence for these

claims in chapter 9, where we compare the dynamic with other symmetry reduction

86

techniques.

Bubble Sort is usually regarded simple-minded and inept for large sorting

problems. However, the efficiency of an automated solution to a problem is always

a synergy between the algorithm and the data structure. In our case, the main

expectation of the data structure—BDD—is that it be concise. This feature of

BDDs (over extensional representations) is paid for by forgoing efficiency of certain

operations that are otherwise considered elementary, such as arbitrary exchanges of

elements in an array. We believe the locality of Bubble Sort to be paramount, i.e.

its affecting only nearby elements and being in-place.

Dynamic symmetry reduction was first presented in [EW05] and compares

with other work as follows. E. Clarke, R. Enders, T. Filkorn and S. Jha proposed the

admission of multiple orbit representatives [CEFJ96] to alleviate the orbit problem.

We discussed this approach briefly in section 4.3.3. It affords the possibility to map a

state to that representative of its orbit for which this mapping is most efficient. The

relation, call it ξ, associating a state with all of its potential representatives, is pre-

computed in a BDD. This method, albeit an improvement, is ineffective for systems

of interesting size. This is in part because the BDD for ξ is generally still huge, and

in part because of the multiplicity of the representatives, such that symmetry is not

exploited to the fullest extent. In comparison, the method presented in this chapter

computes representatives of states dynamically, embedded in the model checking

process. This has the important advantage that there is no need to compute, let

alone store for the lifetime of the program, the representative mapping ξ. Further, we

only maintain representatives actually encountered during the computation, which

might be few. In contrast, pre-computing all representatives may consume a lot

of resources, only to find during model checking that a state close to an initial

state already has a bug. As an added benefit, the dynamic solution preserves the

87

uniqueness of orbit representatives.

Another, and very different, attempt to implement symmetry reduction for

symbolic model checking is due to S. Barner and O. Grumberg [BG02]. Their ap-

proach mainly targets falsification, i.e. (like with testing) discovering the presence

of errors, instead of proving their absence. If too large, the set of reached represen-

tatives is under-approximated, which renders the algorithm inexact. Also, this work

employs multiple representatives, forgoing some of the achievable compression.

A technique to apply symmetry reduction in SAT-based model checking—

another form of symbolic reasoning—was proposed by D. Tang, S. Malik, A. Gupta

and N. Ip [TMGI05], incidentally in the same year as, but a few months later than,

dynamic symmetry reduction. The authors exploit that in each round of bounded

model checking (see section 2.3.3), only the final state of a potential path to an

error needs to be constrained to be a representative. Since intermediate sets of

states are never explicitly enumerated, but represented implicitly in the unrolled

formula for the transition relation, the potential for state explosion is shifted from

the state space to the SAT-solving algorithm. SAT-based and BDD-based model

checking techniques are generally considered complementary, which is why there is

a justification for symmetry reduction (or most any abstraction technique, for that

matter) in both domains. For the same reason, the dynamic technique and symmetry

reduction for SAT-based model checking are hard to compare since the differences

in the results are blurred by the different conciseness of the model representation

(CNF vs. BDD).

Dynamic symmetry reduction switches back and forth between the concrete

state space S and the abstract state space S of representatives. The theory that

establishes the relationship between these two domains is known as abstract inter-

pretation and goes back to P. and R. Cousot [CC77]. That paper also formalizes

the notions of the abstraction and concretization functions α and γ.

88

Chapter 6

Symmetry Reduction with

Generic Representatives

Overview. In this chapter we present an efficient and elegant but demanding

alternative method for circumventing the orbit problem in symbolic model checking.

It involves a translation of the input program into one whose Kripke structure

contains the symmetry quotient of the Kripke structure of the original program as

an isomorphic embedding. Since this translation can be complicated, we begin by

presenting this process in detail for a simple example program. We then describe the

formal procedure to translate the input program and show that the Kripke structure

derived from the result can be represented compactly as a BDD.

The following two chapters are about fully symmetric systems, or systems

orthogonally composed of fully symmetric subsystems. Thus, when we speak of

symmetry, we always mean with respect to the full symmetry group.

89

6.1 Quotient Structure Revisited

Full symmetry, where the symmetry group contains all permutations on [1..n], occurs

quite frequently in practice, whenever a system is composed of unordered, pairwise

interchangeable components. This is the case for clique networks of processes, but

also for star topologies where components communicate via a centralized hub, such

as in some cache coherence protocols. In the latter cases, the hub can be “factored

out”: instead of treating it as a privileged process that destroys the symmetry,

we can store its local state in global variables. The remaining processes then are

indistinguishable, such that full symmetry reduction can be applied to them.

The basic operation in symmetry reduction is and remains to detect whether

two states are equivalent. In general, this means to check whether there exists a

permutation in the group that maps one state to the other. In the case of full

symmetry, the group equals Sym [1..n], so the question becomes whether the vector

of local states in one process is any permutation of that of the other.

A permutation, viewed as an operation on a finite sequence of objects, rear-

ranges those objects, but does not change the number of objects of any given type

in the sequence. In our case, this means that for any state s and a permutation π(s)

of its local state vector, the number of occurrences of each local state (= type) is

the same. The key observation for the technique presented in this chapter is that if

all permutations are eligible, the inverse of the above statement is also true. That

is, two states s and t that satisfy the following condition are equivalent: for any

existing local state L the number of occurrences of L in s and t is the same.

The consequence of this observation is that under full symmetry, an orbit is

precisely characterized by the number of occurrences of L, for each existing local

90

state L. As an example, consider the following orbit under full symmetry:

(A,A,B,C) (A,A,C,B) (A,B,A,C) (A,B,C,A)

(A,C,A,B) (A,C,B,A) (B,A,A,C) (B,A,C,A)

(B,C,A,A) (C,A,A,B) (C,A,B,A) (C,B,A,A)

(6.1)

It is characterized by two occurrences of A, one of B and one of C (and none of

all others, if any). We can succinctly write this orbit as the counter tuple (2, 1, 1).

Such a tuple is called a generic representative in [ET99]: it represents the orbit just

like a traditional representative does, but it is generic in the sense that it does not

single out any specific orbit member.

This idea can be used to build a representation of the symmetry quotient.

The quotient state space is the set of generic representatives, which is the set of all

counter tuples of dimension l: for each of the l local states we have to remember the

number of processes residing in it. Thus, we define S = [0..n]l. The representation

of R is more involved. For an explicit-state model, we could find successors of a

generic representative by mapping it back to an arbitrary member of the orbit that

it represents, finding successors of that member using the concrete transition relation

R, and map the result back to the generic state space. For a BDD-based symbolic

model, however, this procedure is infeasible since the generic state space cannot be

embedded into the specific state space—the spaces are disjoint.

The solution is to translate the given program text before building a model.

That is, the program P , whose behavior is given by local state changes of processes

and perhaps by assignments to global variables, is rewritten into an equivalent pro-

gram P̂ whose behavior is given by updates to global counter variables and perhaps

by assignments to other global variables. If successful, the reachable part of the

new program’s Kripke structure M̂ is isomorphic to the quotient M of the Kripke

structure M of the original program P . The advantages are evident:

91

1. We never need the orbit relation, since the reduction step is not performed on

the Kripke structure of the program, but on the program text itself.

2. We never build the Kripke structure of the original program (unlike with

dynamic symmetry reduction).

3. We don’t need to use a special algorithm for model checking under symmetry;

standard model checking can be applied to M̂ (unlike with dynamic symmetry

reduction). In particular, we never need to check equivalence of states.

Achieving the translation is, however, more complicated than it may appear.

We therefore give an example for a simple program in the next section before we

describe the general procedure (section 6.3). We assume programs are given in “pre-

processed” form as synchronization skeletons. That is, the behavior of the processes

is represented abstractly in terms of local state changes. Global variables can be

used in guards and can be assigned as usual. Both parts—processes and global

variables—of the skeleton contribute to the difficulty of the translation process, in

different ways. Global variables pose an algorithmic challenge, as exhibited in the

example below and detailed in the formal translation procedure. In chapter 7, we

address the problem of extracting a synchronization skeleton from a conventional

program, and the care that must be taken in order to avoid a particular flavor of

state explosion that can accompany counter abstraction.

6.2 Counter-Abstracting Symmetric Programs—

An Example

Consider a token-ring solution to the n-process Mutual Exclusion problem with a

global variable tok ∈ [1..n], as depicted in figure 6.1. The skeleton allows a process

to enter its critical section C if it currently possesses the token (tok = i). Upon

92

CiTi
tok = i

Ni

tok :∈ [1..n]

Figure 6.1: Skeleton for a token-ring solution to the Mutual Exclusion problem

leaving C, it sets tok to a nondeterministic value in [1..n]. The skeleton induces a

concurrent system in which the processes asynchronously execute local transitions

and update variable tok , depending on their current local state and satisfaction of

the transition guards. The Kripke structure of this system is fully symmetric, as

we see in the next section for skeletons written in a specific input syntax. For this

example, we content with the hint that the skeleton does not refer to any process

identifier other than that of the executing process (i).

We now want to construct a new program based on counters. Instead of a

local state variable for each process, we conversely declare global counter variables

for each local state, calling them nN , nT , nC . A slight challenge is provided by

the tok variable with range [1..n]. Since the counter variables deliberately ignore

process identities, we cannot check a guard like tok = i any more. Recall, however,

the discussion about ID-sensitive global variables, such as tok , from section 4.1. The

motivation for the definition of a permutation action on such variables was that the

local state of the process that the variable points to must not change. For example,

the states (tok = 2, N, T, C) and (tok = 3, N,C, T) are equivalent, which should be

reflected in the counter program to be built. This observation comes to the rescue in

the translation effort: Instead of the variable tok ∈ [1..n], we create a new variable

TOK that records just the local state of the token process. Thus, TOK ranges over

{N,T,C}.

The translated program consists of the variables and statements shown in

figure 6.2. The values of the counter variables range from zero to the number of

93

//Variables:
nN , nT , nC : [0..n]
TOK : {N,T,C}

//Initial values:
(nN , nT , nC) := (n, 0, 0)
TOK := N

//N → T :
if nN > 0 :

if TOK = N :
if nN = 1 :

TOK := T
else

TOK :∈ {N,T}
end if

end if
nN := nN − 1
nT := nT + 1

end if

//T tok=i−→ C:
if nT > 0∧TOK = T :

TOK := C
nT := nT − 1
nC := nC + 1

end if

//C → N , tok :∈ [1..n]:
if nC > 0 :
nC := nC − 1
nN := nN + 1
TOK :∈ {L : nL > 0}

end if

Figure 6.2: Generic version of the token-ring solution to the Mutual Exclusion
problem

processes, n. The initial values of the counter variables and that of variable TOK

follow from all processes starting out in local state N .

All transitions in the new program require that the counter of the source

local state is positive, since the transition can be taken only if there is a process in

that local state. The first transition, N → T , has apparently nothing to do with the

token, since tok does not explicitly appear in it. The process executing it, however,

might be the one possessing the token, in which case the new variable TOK must

be updated from N to T . If TOK = N and nN = 1, we know the executing process

has the token, and we set TOK to T . If TOK = N and nN > 1, then the process

executing the transition may or may not be the one possessing the token, so we

must set TOK to T , or TOK must remain at N , respectively. Hence, the new

program has two transitions in this case, which we abbreviate by a nondeterministic

assignment TOK :∈ {N,T}. Finally, the actual local state change is reflected by

decreasing nN and increasing nT . A similar but simpler reasoning motivates the

translation of the other two transitions. In the last statement, the condition nL > 0

94

in the nondeterministic assignment to TOK ensures that only local states in which

at least one process resides are considered.

The property to be verified also needs to be translated into counters. As an

example, compare the mutual exclusion (safety) and communal progress (liveness)

requirements in specific and generic notation:

specific generic

Safety: AG ∀i, j : i 6= j : ¬(Ci ∧ Cj) AG(nC < 2)

Liveness: AG(∃iTi ⇒ AF∃jCj) AG(nT > 0⇒ AFnC > 0).

The liveness property states that if there is some process in its trying region, then

in any possible future, there should eventually be some process entering its critical

section. This property is weaker than progress of an individual process, formally

AG ∀i : (Ti ⇒ AFCi). The latter formula is, however, asymmetric, as we have seen

in section 4.2. It can therefore not directly be verified over a symmetry-reduced

structure. One approach to overcoming this problem is to factor out one of the

processes and treat its local variables as global. The progress property is formulated

for this process, and symmetry reduction is applied to the remaining ones. This

approach is described in more detail by A. Pnueli, J. Xu, and L. Zuck [PXZ02],

incidentally for counter-abstracted programs.

To see that implementing the above translation is tantamount to performing

symmetry reduction on the program text, notice that all states from one equiva-

lence class of the original system are mapped by the translation to the same tuple

(TOK , nN , nT , nC) over counters. This tuple can therefore be viewed as an “unusual

notation” for the representative of the orbit—we adopt the term generic represen-

tative coined in [ET99]. The new program can now be transformed into a Kripke

structure, represented by BDDs and model-checked, without any further considera-

tion of symmetry.

95

6.3 Formalizing the Translation Process

In this section we present a general procedure that translates a program given as

a synchronization skeleton into an equivalent counter program. We specify the

requirements that the skeleton must satisfy in order for the translation to make

sense. We derive a Kripke structure from the skeleton and finally formalize the

notion of equivalence between the programs via equivalence between the Kripke

structures they induce. ID-sensitive global variables like tok play a particular rôle

during the translation process, as the example in the previous section has indicated.

A structure induced by a synchronization skeleton is a promising candidate

for symmetry, since all processes execute the same parameterized program. This

fact alone, however, is insufficient: guards and actions on local state transitions can

depend on the identity of the executing process in a way that limits or destroys the

otherwise apparent symmetry. For instance, the action tok := (tok (mod n)) + 1 of

the skeleton in figure 2.3 is intuitively invariant only under the n rotation permuta-

tions. To ensure full symmetry of the Kripke structure to be derived later, we have

to place conditions on the synchronization skeleton syntax.

6.3.1 Input Program Syntax

We assume a program P in the form of the following parameters: (1) the number n

of processes, (2) any number of ID-insensitive global variables, given as a single

vector ~v with range V (cross product of individual ranges), (3) any number z of

ID-sensitive global variables, given as ~d = (d1, . . . , dz) with range [1..n]z, and (4) a

synchronization skeleton, parameterized by i. The latter is a finite directed graph,

each node of which represents (and is identified with) a local process state; call their

number l. The edges may be labeled with a guard and an action (which default to

true and no-op, respectively).

96

Syntax of guards. Guards are arbitrary Boolean combinations of basic guards,

which in turn are expressions over local states and global variables. Basic guards

over local states are required to be fully symmetric:

Definition 21 For a quantified Boolean formula h over atoms of the form Li,

i ∈ [1..n], and a permutation π on [1..n], define π(h) by π acting upon the indices.

Formula h is fully symmetric if for every π, h⇔ π(h) is a tautology.

Some basic guards satisfying this definition are listed in table 6.1. This table also

no. Basic Guard Counter version Meaning
1 ∀i : ¬Li nL = 0 none
2 ∀i : Li nL = n all
3 ∃i, j : i 6= j : Li ∧ Lj nL ≥ 2 at least two

Table 6.1: Fully symmetric basic guards on local states

shows expressions over local state counters for these guards, as we will use them

later for the translation. As an example, the guard exactly one process is in local

state L, formally (∃i : Li)∧ (∀i, j : Li∧Lj ⇒ i = j), is equivalent to the conjunction

of the negation of basic guards 1 and 3 from the table. It is more succinctly written

as nL = 1 over counter variables.

Any (syntactically valid) expression over ID-insensitive global variables is

by nature fully symmetric and thus a legal basic guard. As for an ID-sensitive

variable d, we allow the expressions d = i and d 6= i as basic guards (recall that i is

the parameter of the synchronization skeleton).

Syntax of actions. An action consists of at most one assignment to each of

the global variables. The semantic model for the assignments—e.g. parallel or

sequential—is left to the implementation, since it is irrelevant for the translation

of the source program into generic representatives.

As with guards, to ensure full symmetry the syntax of actions must be re-

stricted. Any (syntactically valid) assignment to the ID-insensitive variables is legal,

97

since it does not affect the symmetry of the program. For an ID-sensitive variable

d we allow the following three types:

d := i d :∈ [1..n] d :∈ ([1..n] \ {i}) . (6.2)

The last two actions intuitively assign a nondeterministic value in the given set to d.

The asynchronous execution semantics of such a program is given by the

derivation of a Kripke structure:

Definition 22 A program specified in the above syntax defines a Kripke structure

M = (S,R,L) as follows: S = V × [1..n]z × [1..l]n, and R contains all pairs (s, t)

with

s = (~x,~k, s1, . . . , si−1, X, si+1, . . . , sn), t = (~x′,~k′, s1, . . . , si−1, Y, si+1, . . . , sn)

such that there is an edge e : X → Y in the skeleton with a guard that evaluates

to true for ~v = ~x, ~d = ~k and local states as in s, and e’s action A satisfies the

Hoare triple 〈~v = ~x ∧ ~d = ~k〉A〈~v = ~x′ ∧ ~d = ~k′〉. Finally, L labels a state with

fully symmetric expressions (over local state variables and the ID-insensitive global

variables) that are true at that state.

The following theorem shows that symmetry reduction can be applied to M .

Theorem 23 Given the permutation action

s = (~x, k1, . . . , kz, s1, . . . , sn)

⇒ π(s) = (~x, π−(k1), . . . , π−(kz), sπ(1), . . . , sπ(n)) ,
(6.3)

structure M is fully symmetric, i.e. π(M) = M for every π.

Proof (sketch): We have to show for an arbitrary permutation π that π is an

automorphism of M . By definition 11, this means that for any two states s and t,

98

(s, t) ∈ R implies (π(s), π(t)) ∈ R. To accomplish this, we apply definition 22 to

(s, t) and conclude that there is an edge e = A→ B in the skeleton and an index i

such that the local state change of process i from A to B in global state s accounts

for the transition (s, t). We have to again find an edge e′ and an index i′ that

account for the transition (π(s), π(t)). We choose e′ := e and i′ := π−(i). A case

analysis over the allowed guards and actions attached to e shows the legitimacy of

(π(s), π(t)) in R. �

6.3.2 Input Program Translation

We are now ready to describe the translation of program P from its components

(1) through (4) (beginning of this section): The new program P̂ consists of the

same variable ~v with range V , further variables d̂r, r ∈ [1..z] with range [1..l] and

variables n1, . . . , nl with range [0..n]. Every edge of the skeleton is translated into

a statement as follows:

action AX
guard g

Y

if nX > 0 ∧ ĝ then

update1 (g)

nX := nX − 1

nY := nY + 1

update2 (A)

(6.4)

The condition nX > 0 ensures that there is a process in local state X. Guard g

is translated into ĝ by translating its constituent basic guards, as follows. Each

basic guard on local states is replaced according to table 6.1. Expressions over ~v are

unchanged. For an ID-sensitive variable d, guard d = i is replaced by d̂ = X, guard

d 6= i by d̂ 6= X ∨ nX ≥ 2. As an intuition for this last translation, if nX ≥ 2, there

is a process i in local state X with d 6= i; guard d 6= i is true for that process.

As we have seen in the example in section 6.2, in some situations updates of

an ID-sensitive variable d̂ are necessary merely because the local state of a process

99

changes, although d is not assigned in the original program. (In fact, if it is assigned,

the following updates can be skipped, as they will be overwritten.) Function update1

performs these updates on d̂:

g d = i d 6= i otherwise

update1 (g) d̂ := Y no-op

if d̂ = X then

if nX = 1 then

d̂ = Y

else

d̂ :∈ {X,Y }
The “otherwise” column includes the case that d does not even occur in the guard.

This part of the translation looks cumbersome; we motivated it in the example in

section 6.2.

Function update2 implements updates of global variables that are due to

action A itself. It leaves no-op and assignments to ~v unchanged. Assignments to an

ID-sensitive variable d are translated as follows:

A d := i d :∈ ([1..n] \ {i}) d :∈ [1..n]

update2 (A) d̂ := Y

if nY = 1 then

d̂ :∈ ({L : nL > 0}\{Y })

else

d̂ :∈ {L : nL > 0}

d̂ :∈ {L : nL > 0}

Applying the translations described to program P, we obtain a program P̂

whose execution semantics is inherited from that of P: at every cycle, a statement

is nondeterministically chosen and executed. (If the guard of the statement is not

satisfied, its execution is equivalent to a no-op.) To show that P and P̂ are in some

sense equivalent, we compare their Kripke structures:

Definition 24 Program P̂ defines a Kripke structure M̂ = (Ŝ, R̂, L̂) as follows:

Ŝ = V × [1..l]z × [0..n]l, and R̂ contains all pairs (ŝ, t̂) such that there is a (nonde-

terministic) statement in P̂ and an execution of it that modifies ŝ into t̂. Finally,

100

L̂ labels a state with fully symmetric expressions (over local state variables and the

ID-insensitive global variables) that are true at any specific state represented by ŝ.

6.4 Verifying the Generic Program

In anticipation of using M̂ for verification, we first show that it is much smaller

than M :

Theorem 25 Let M be the quotient of the original program’s structure M and M̂

the structure from definition 24. M is subgraph-isomorphic to M̂ via the mapping

b : S → Ŝ : b(~x, k1, . . . , kz, s1, . . . , sn) = (~x, sk1 , . . . , skz , n1, . . . , nl) .

with nL := |{j ∈ [1..n] : sj = L}| for 1 ≤ L ≤ l.

Proof (sketch): We have to show that M is isomorphic to a subgraph of M̂ . This

subgraph is obtained from M̂ by restricting the counter tuples (n1, . . . , nl) to the

set Ŝ# of tuples that add up to n, the number of processes1. Intuitively, this is an

obvious invariant of the counter-abstracted program, since the sum of all counters

equals the total number of processes. The induced subgraph M̂# of M̂ therefore

comprises M̂ ’s reachable part, independently of the initial state(s).

One now shows that b is a bijection between S and Ŝ# ⊆ Ŝ, which follows

from completeness and uniqueness of the representatives chosen from the symmetry

equivalence classes. The isomorphism property between M and M̂# then follows

since the unique orbit representatives in S and the counter tuples in Ŝ# are just

different notations for the same concept: a complete choice of states such that no

two are identical up to permutations of processes. �

1See also the example given earlier in section 2.1.2 on 17.

101

Function b in theorem 25 maps every state to its unique generic representa-

tive. Isomorphism is of course a stronger property than bisimulation; one difference

is that bisimulation can exist between structures of vastly different sizes and is

therefore a concept valuable for abstraction.

Since M is bisimilar to M (standard symmetry reduction) and M is isomor-

phic to (the reachable part of) M̂ (theorem 25), it follows by transitivity that M

is bisimilar to M̂ . As a corollary to theorem 25, since M is smaller than M by a

factor of about n!, so is M̂ . This paves the way for efficiently verifying properties

of the original program P.

Consider a model checking problem of the form M, s |= f . Formula f is

formally defined as a temporal logic property with atomic propositions that are fully

symmetric expressions on local state variables and expressions on the ID-insensitive

variables. In practice, a model checking algorithm that explores M̂ is easier to

implement by translating f into a formula over counter expressions. That is, the

fully symmetric expressions on local state variables are treated like basic guards and

translated as in table 6.1.

We summarize with the remark that the translation of the program as well

as of the formula can be done fully automatically using the rules established in this

and the previous section. The complexity of the translation is roughly linear in the

size of the program text or the formula, respectively.

6.5 BDD-Complexity of the Generic Program

In this section, we show how the statements of the generic program, obtained in

section 6.3.2, can be encoded in a BDD. After all, the main motivation for this

work is to circumvent the orbit problem for symbolic model checking. We remark,

however, that the generic program is also useful with explicit-state model checking:

the advantages mentioned near the end of section 6.1 apply to it, too; the situation

102

is just not as desperate as it is for symbolic model checking, where the orbit relation

complexity essentially annihilates the benefits of symmetry reduction when applied

naively.

We also estimate the sizes of those BDDs as a function of the number of

processes n, the number of local states l and the size of the input synchronization

skeleton. In this section we ignore the existence of the ID-insensitive variable ~v:

since expressions involving it are subject to no restrictions, BDD sizes cannot be

estimated. However, those expressions are unaffected by the translation; hence they

do not contribute any change in BDD size. As usual, we use the prime notation, as

in d̂′, to indicate the next-state value of a BDD variable.

The generic structure M̂ = (Ŝ, R̂, L̂) is the disjunction of statements of

the form in (6.4) in section 6.3.2. BDDs that implement those statements can

be obtained as follows:

if-then-else: this statement can be implemented using a common operation (ITE)

for BDDs. The complexity is low-degree polynomial in the complexity of the

condition and the then and the else part.

nX > 0: it holds iff there is at least one true bit among the dlog(n + 1)e bits rep-

resenting nX . This can be implemented as a disjunction over all those bits.

The resulting BDD size is linear in the number of participating bits: O(log n).

ĝ: it is a propositional combination of basic generic guards. Guards from table 6.1

can be realized as above with a BDD that compares the constant bit-wise

against the counter variable; size O(log n). Basic generic guards involving the

ID-sensitive variable have the form d̂ = X or d̂ 6= X ∨ nX ≥ 2, which can

again be verified bit-wise; these BDDs thus have maximum size O(log l log n)

(d̂ ∈ [1..l], nX ∈ [0..n]).

update1 (g): The expressions inside the if-then-else for the (most complex) “other-

103

wise” case are comparisons against constants. The entire statement can thus

be encoded in a BDD of size O((log l)α · (log n)β), for small constants α and β.

nL := nL ± 1: since the right-hand side is not a constant, a bit-wise comparison is

impossible. The increment can be implemented by searching (using existential

quantification) for a bit position i at which nL is 0, n′L is 1, for all preced-

ing bits nL and n′L are identical, and for all succeeding bits nL is 1 and n′L

is 0. The worst-case BDD size over two variables of dlog(n+ 1)e input bits is

22dlog(n+1)e = O(n2).

update2 (A): assignment d̂ :∈ {L : nL > 0} can be realized with a BDD for the

expression
∨
L∈[1..l](n

′
L > 0 ∧ d̂′ = L) of worst-case size O((log n log l)l). The

BDDs for all operations in update2 (A) then have about this worst-case size.

We see that all parts of the translation of an edge can be expressed with a BDD

that is low-degree polynomial in n, although it can be exponential in l. The latter

complexity is subsumed by the complexity of the overall BDD for the transition

relation R̂, which is also worst-case exponential in l. The reason is that the syn-

chronization skeleton can have about l2 edges; R̂ is thus a disjunction of up to l2

expressions composed of the above forms. A disjunction operation can double the

size of the BDD, but this worst case tends to be rare in practice.

Let us investigate how the relative sizes of n and l influence the benefit

of generic representatives. Because of the n log l input variables of the BDDs for

traditional local state vector representations of states (n variables of range [1..l]),

an upper bound to the BDD size of the transition relations R and R is roughly ln.

For the generic method, we have l variables of range [0..n], resulting in a worst-case

BDD size for R̂ of roughly nl. It can thus be assumed that the generic method is

most useful if n is larger than l. Asymptotically, this is the case if l is a constant

and n is considered a parameter. This situation occurs frequently in practice, since

for a given application the number of local states is often fixed. When we evaluate

104

the generic and the other techniques experimentally in chapter 9, we present such

an instance.

6.6 Conclusions and Bibliographic Notes

The use of generic representatives, as vectors of local state counters are called in the

context of symmetry reduction, has proved elegant and efficient, but also demanding.

They are suitable for symbolic model checking of symmetric systems, provided we

have the full symmetry group at our disposal. Experimental evidence scrutinizing

the usefulness of counter abstraction is deferred until chapter 9, at which time we

will have introduced the tool platform for such experiments.

In this chapter we have presented a translation scheme for a somewhat lim-

ited input language—we have assumed the program is preprocessed into local state

transitions. Converting a more flexible input language, such as a programming lan-

guage, into local state transition form is easy in principle, but can lead to another

layer of state explosion if not done with care. We call this layer local state explosion;

avoiding it is the topic of the next chapter of this dissertation.

Generic representatives seem to prove useful outside the symbolic domain as

well: we translated some of the fully symmetric example programs coming with the

Mur ϕ explicit state verifier [DDHY92] into generic representatives. For some exam-

ples, we obtained savings in both time and space of several orders of magnitude over

Mur ϕ’s symmetry reduction algorithms (using unique or multiple representatives).

Finite counters have been used previously to abstractly represent states of

systems with many processes. The counters are sometimes truncated and assume

only values up to some small constant, like 1 or 2, to increase the degree of ab-

straction, in particular to build finite-state representations of unbounded systems.

A. Pnueli, J. Xu and L. Zuck used truncated counters with values 0, 1 or 2 to

105

approximate the number of processes in certain local states in reasoning about sym-

metric parameterized systems [PXZ02]. Similar examples can be found in the work

by A. Emerson and J. Srinivasan [ES90] on synthesis of parameterized programs

and by F. Pong and M. Dubois on cache protocol verification [PD95].

Emerson and Trefler were the first to suggest the use of counters in connection

with symbolic representation using BDDs [ET99]; the term generic representatives

is due to them. Chapter 6 of this dissertation can be seen as extending their work

by generalizing the syntax of input programs and establishing their full symmetry,

and by quantitatively analyzing the sizes of the resulting BDDs. These results first

appeared in [EW03].

A. Donaldson and A. Miller recently extend the generic representatives ap-

proach to probabilistic systems in connection with the Prism model checker [DM06].

106

Chapter 7

Improving Counter Abstraction

by Counting Less

Overview. The goal of this chapter is to prepare a system of many identical com-

ponents whose behavior is given in a high-level programming language for counter

abstraction. We show that the question what to count has a strong impact on the

performance of counter abstraction, and how to make the decision wisely, with the

assistance of inexpensive front-end analysis techniques.

We have seen in the previous chapter that the strength of counter abstraction

as a symmetry reduction technique comes from its ability to lower the structure

complexity from exponential in n (classical state explosion) to polynomial in n. We

have also seen that this comes at a price: the structure size is worst-case exponential

in the number of local states, l. We thus have to focus part of our attention to

making sure that this quantity does not get out of control.1 In the previous chapter

we avoided this problem by making the number of local states part of the input: we
1Making sure that the number n of processes does not get out of control is the objective of

parameterized verification, which we address in chapter 11.

107

assumed the program was given as a synchronization skeleton, which can be viewed

as a preprocessed, abstract form of a program in which values of local process

variables are compressed into local states, and local computation is compressed into

local state changes.

In this chapter we face reality: we consider a program parameterized by the

identity of the executing process, and show how to extract a synchronization skeleton

from it. This abstraction step can be viewed as a front-end to counter abstraction.

If done naively, however, the resulting synchronization skeleton can be huge, ruining

the expected benefit of the translation into local state counters. We address this

problem in this chapter and show how this explosion can be ameliorated in practice.

We first describe the problem and then present two independent remedies.

We remind the reader that this chapter, like the previous one, is about fully

symmetric systems. Thus, when we speak of symmetry, we always mean with respect

to the full symmetry group.

7.1 The Local State Explosion Problem

High-level modeling languages allow users to specify the behavior of processes in

terms of (assignments to) global and local variables. The concept of local states

is implicit and must first be extracted from the program. This is, at least in the-

ory, straightforward. A local state is given by a valuation of the local variables.

Quantitatively, let m be the number of local variables declared in a program tem-

plate, and let V1, . . . , Vm be the ranges of those variables. It follows that there

are |V1| × . . . × |Vm| possible local states of each process. If we naively introduce

one counter per local state in order to perform counter abstraction, we obtain a

number of counters that is exponential in m and hence in the input program size.

We call this phenomenon local state explosion. Even a moderately large number of

local states poses a problem since the size of the counter-abstract model depends

108

exponentially on this number.

There are two approaches to this problem. The first is an old trick in veri-

fication: if the conceivable state space is too large, generate it on the fly. Indeed,

instead of building a generic quotient structure, we could explore the state space

over the original local state variables and use generic representatives only as a means

to detect equivalence of states. This way, we build counter tuples on the fly, and

unreachable local states are never considered. This procedure is justified for its

purpose, but is, like many on-the-fly reduction techniques, not obviously realizable

with symbolic data structures such as BDDs. Those data structures require us to

declare up front the state variables (counters, in this case), so that BDD variables

can be allocated for them.

In the rest of this chapter we investigate a second approach to ameliorating

local state explosion. We present two techniques to statically analyze the program

text, before counter variables are declared and any model is built. The goal of the

analysis is to detect situations in which keeping a counter to monitor a local state

is unnecessary. Such a situation might arise because the local state is known to be

unreachable (section 7.2), or because some variable values in a local state are unused

in the program and hence irrelevant (section 7.3).

As a caveat, both techniques are generally imprecise; they perform estimates.

For instance, a comparatively cheap static analysis of the program text cannot

reveal the exact reachable local state space. It is important that the estimate be

conservative: every local state that needs to be monitored must be reported by the

techniques, possibly some more. As long as this condition is satisfied, the exactness

of counter abstraction is guaranteed; reporting more local states than required is an

efficiency concern.

109

7.2 Amelioration through Local Reachability Analysis

Suppose L is a local state (i.e. a valuation of local variables) that is unreachable,

by any process. In the counter-abstracted program, the corresponding counter nL

is invariably zero. If the unreachability of L is known a priori, we do not have to

introduce nL as a variable in the abstract program.

Formally, we define the local reachability problem as follows. Given a local

state L and a system of concurrent processes, determine whether there is a reachable

global state in which some process is in local state L. In general, this problem is

of course a model checking problem by itself, characterized by the formula M, s |=

EF ∃iLi. However, in order to perform counter abstraction we do not need to know

the exact set of reachable local states; any over-approximation suffices. The better

we approximate the set of reachable local states, the fewer counters we have to

introduce, resulting in increased efficiency.

The set of reachable local states can be approximated in several ways. One

solution is to build a Kripke model of the given program template, instantiated with

only a single process, say process 1. Conditions on local states or local variables

of other processes are treated conservatively, i.e. they are replaced by true if under

an even number of negations, and by false otherwise. For example, the condition

∃i : Ai is replaced by A1 ∨ true and hence by true, whereas ∀i : Bi is replaced by

B1 ∧ true and hence by B1. Conditions on global variables are likewise replaced

by true or false, depending on their polarity. Assignments to global variables are

discarded.

From process 1’s perspective, we can view local states of other processes and

global variables as part of an unpredictable environment. The above abstraction re-

sults in a Kripke structure that over-approximates the behavior of process 1. Since

this local structure can be expected to be exponentially smaller than the global struc-

ture of the concurrent composition of the processes, standard reachability analysis

110

can be performed on it. The outcome is the set of local states reachable in the local

structure, which is an over-estimate of the set of local states reachable globally.

7.3 Amelioration through Live Variable Analysis

In this section, we assume the program executed by the processes consists of se-

quential code with individual control points that demarcate atomic actions. In this

case, the local state space of a process contains a program counter, indicating the

statement to be executed next. Analyzing the program allows us to estimate the

way data are manipulated. We can exploit this information by only keeping track

of values of variables that can possibly be used in the future.

Definition 26 (e.g. [Muc97]) A variable x is called live at a control point if there

exists a path to a future moment at which the value of x is used, and x is not assigned

along the path. Otherwise, x is dead at the control point.2

Consider the following example. Each of n processes has two local Boolean vari-

ables, nonempty and locked , and a program counter PC ∈ [1..9]. There is a global

variable q ∈ [0..n], which counts waiting processes. Process i’s program is shown in

algorithm 7.

Algorithm 7 Program text for process i
1: nonempty i := (q > 0); q := q + 1
2: if nonempty i then
3: locked i := true //lock process i
4: wait until ¬locked i //wait for someone to unlock process i
5: //execute restricted code here
6: if q = 1 then
7: q := 0; goto 0
8: for some j : PC j = 3 do locked j := false //unlock some process waiting at ’4:’
9: q := q − 1; goto 0

2Like with the temporal operator F, “future” includes the present, i.e. the current program line.

111

Variable nonempty is live only at program line 2. It is used only there,

and it is not live before reaching 2, since it is assigned right before in line 1. The

consequence is that we do not have to remember the value of nonempty at any

program line other than 2. For instance, the two local states (4, false, false) and

(4, true, false), written in the format (PC ,nonempty , locked), do not have to be

distinguished, since they differ only in the value of nonempty , which is dead in

line 4. Notice that both local states are otherwise legitimate and in fact reachable,

so the technique from section 7.2 overlooks this redundancy. A similar argument

holds for variable locked . It turns out to be live only at line 4, and thus needs to be

remembered only at that point of the program.

How much does this analysis help counter abstraction? The straightforward

approach introduces a separate counter for each conceivable local state, of which

there are |[1..9]| × |{false, true}|2 = 36. In contrast, following the above analysis,

at all lines except 2 and 4, no local variable other than the PC matters. For line 2,

we only record the value of nonempty , and for line 4, only locked . The table below

lists the local states that the program needs to monitor, using again the format

(PC ,nonempty , locked) with ’−’ for irrelevant values:

(1, − , −) (3, −, −) (5, −, −)

(2, false, −) (4, −, false)
...

(2, true , −) (4, −, true) (9, −, −)

We have thus reduced the number of local states to keep track of from 36 to 11.

The formal justification for ignoring dead variables is as follows. Assume

each process has a program counter PC and m other local variables v1, . . . , vm. The

concurrent execution of the program P by the processes in an asynchronous fashion

defines a Kripke structure M = (S,R). Recall that a global state s ∈ S is given by

a valuation of all global variables, and by assigning a local state to each process.

112

Definition 27 Consider the binary relation ∼ on the local state space of each pro-

cess, defined as (PC x, x
1, . . . , xm) ∼ (PC y, y

1, . . . , ym) if

1. PC x = PC y, and

2. xi = yi for each i ∈ [1..m] such that variable vi is live at line PC x.

Relation ∼ can be extended to a relation ≈ on the global state space S by defining

s ≈ t if s and t agree on all global variables and for each process p, the local states

sp and tp of p in s and t, respectively, satisfy sp ∼ tp.

Theorem 28 Relation ≈ is an equivalence relation on S. Moreover, the quotient

structure M of M with respect to ≈ is bisimilar to M with the canonical bisimulation

relation B := {(s, [s]) : s ∈ S} relating a state to its equivalence class under ≈.

Proof : see appendix A.2. �

Counter abstraction of the dead-variable reduced structure M can be imple-

mented fully automatically, and without first building M , as follows. Determining

live variables is a data flow analysis problem. The result is, for each value of the

program counter, a list of the variables that are live at the corresponding line. Step-

ping through the program, we create a counter variable for each partial valuation

of the local variables of the form (PC , x1, . . . , xk) such that xi is a value of local

variable vi, and vi is live at the given PC . Dead variables are not expanded into

possible local states.

7.4 Conclusions and Bibliographic Notes

We have shown how to ameliorate the most severe efficiency issue of counter abstrac-

tion, local state explosion. Both techniques presented in this chapter are performed

efficiently on the source code of the program. The techniques are static, i.e. they do

113

not require (partial) execution of the program and ignore communication between

components. They can be understood as a fast front-end to counter abstraction. Ex-

perimental results are presented in chapter 9, where we—among others—compare

counter abstraction with and without the techniques in this chapter.

A point to note is that live variable analysis (section 7.3) requires an in-

put model with highly predictable flow of control, such as a sequential program,

as opposed to, say, a set of rules among which the next to be executed is nonde-

terministically chosen. In contrast, local reachability analysis via the local Kripke

structure (section 7.2) is fit for any input model.

Let us return to the observation that the overall benefit of counter abstrac-

tion depends on the ratio between the number of local states l and the number of

participating processes n. Since the counter-abstracted system can be shown to have

size O(nl), compared with O(ln) for the original system, the case n � l promises

most benefits. If l � n, then at any time during execution most counters are zero,

by the pigeon-hole principle. This phenomenon is orthogonal to the possibility of

local states being unreachable, or local variables being dead. A local state may

be currently unoccupied by any process, but generally reachable and refer to live

variables only. Conversely, we have argued that the technique based on live variable

analysis manages to eliminate counters for local states that are reachable, so the

counters are not always zero.

How can we address the possibility that at any time during model checking

the counter-abstracted structure, many counters are zero? For explicit-state model

checking we can use a compressed notation for the zero-valued counters. For sym-

bolic model checking we can use zero-suppressed BDDs [Min01]. However, since the

set of zero-valued counters varies over time, counters for all local states must still

be declared initially. The advantage of the techniques presented in this chapter is

that they reduce the number of counters before even building a symbolic model;

114

irrelevant ones are simply not present.

The results of this chapter were first published in [EW04]. They appear to be

unique in their improvement of counter abstraction using static analysis. Recently,

[FBG03], [WS02] and [Yor00] suggest static analysis techniques to optimize BDDs,

albeit unrelated to counter abstraction. The potential savings come from choosing

dummy values for dead variables, or from nondeterministic assignments to them.

This might reduce the size of the BDD graph, but does not diminish the number of

allocated BDD variables. In contrast, we observe that dead local variables typically

result in many redundant (equivalent) local states. All but one of them can be

eliminated, significantly reducing the number of counters. This is guaranteed to

decrease the number of BDD variables and the size of the BDD graph.

In [BR00], the use of compiler optimization techniques similar to ours is

suggested to reduce the number of BDD variables to represent reachable states, with

different BDDs for different program points. In contrast, the goal of this chapter

is to build a symbolic representation of the overall program, to enable symbolic

model checking. This is possible since counter abstraction (which is of no concern

in [BR00]) allows us to incorporate live variable information into the abstract state

representation, by creating local state counters judiciously.

Dataflow analysis is a well-investigated static technique often used by com-

pilers to increase program efficiency, such as by optimizing register allocation. An

elegant formulation of this technique is given by flow equations; the data flow infor-

mation then corresponds to fixpoints of these equations (see for example [Muc97]).

The complexity of dataflow analysis in practice is usually low-degree polynomial in

the size of the input program.

115

Chapter 8

DySyRe—Symbolic Verification

of Symmetric Systems

Overview. In this chapter we present “DySyRe” (we prefer to pronounce it like

the word “desire”), a symbolic CTL model checker and experimental platform for

finite-state systems. We begin with a general description about the intended purpose

of DySyRe, and then present its input language and the property language it

understands. Appendix B contains an example protocol description in DySyRe.

We call the tool DySyRe since it was originally an implementation of Dy-

namic Symmetry Reduction. Today it incorporates many algorithmic ideas from

part II of this dissertation, namely dynamic symmetry reduction (chapter 5) in-

cluding the lifting of error traces (section 5.4), handling of ID-sensitive variables

(section 5.5.2), and a front-end for counter-abstracting a symmetric program (chap-

ter 6). The tool also includes algorithms for plain model checking (which can be

used to verify counter-abstracted programs), as well as model checking under tra-

ditional symmetry reduction schemes such as using the orbit relation or multiple

representatives (section 4.3.3).

116

DySyRe comes with an extensive C++ library for system modeling us-

ing BDDs. The library also contains a CTL model checking engine, featuring both

future-time and past-time temporal operators. The tool uses the CUDD BDD pack-

age for the underlying decision diagram manipulations [Som].

8.1 Purpose, Scope and Features of DySyRe

DySyRe is a symbolic verifier. It offers symmetry reduction using (i) the orbit

relation, (ii) multiple representatives, (iii) the dynamic approach from chapter 5,

and (iv) (in limited form) the generic representatives approach from chapter 6. Ver-

ification without exploiting symmetry is also possible (and often more efficient than

the orbit relation and multiple representatives approaches). The generic representa-

tives technique can be thought of as a front-end to model checking. DySyRe offers

reduction with respect to the full symmetry group, the group of rotations, or any

product thereof. Other basic groups with a reasonably small set of generators can

easily be incorporated.

DySyRe especially supports experimentation. This is achieved through

• late binding of parameters in the system description (such as the number

of process components): they need only be bound to values at runtime; no

recompilation is required for different parameter values. In comparison, tools

such as Mur ϕ and NuSMV do not allow runtime parameters in the system

description.

• providing a flexible library for transition relation construction, instead of a

specialized input language (which, however, requires some familiarity with the

language of the library, C++).

• computing the set of states represented by the input CTL formula. If the

set is small, the states can be listed in a compact format, and their number

117

(i.e. the cardinality of the set) can be computed. For example, during the

model building process, the user can visualize the set of reachable states of

a small instance of a parameterized structure and thus potentially gain con-

fidence in the model. In contrast, most model checkers just return “yes” or

“no” (and possibly a counter example) in response to a formula.

The state space of the system is given through variables of structured types:

Boolean, finite ranges, enumerations, records and arrays. The library provided to

facilitate the transition relation construction offers routines to access these variables,

further Boolean and comparison operators as well as basic arithmetic. Both syn-

chronous and asynchronous systems can be modeled. DySyRe normally evaluates

CTL formulas by returning the corresponding set of states. An exception is the

specialized temporal operator INV, which carries out invariant checks and, in case

of failure, prints an error trace in terms of the original state variables. DySyRe also

accepts past-time temporal operators; for instance, invariant checks using INV can

be done in a forward (from initial states) or backward (from error states) fashion.

8.2 Input Language of DySyRe

We sketch the way programs are written in DySyRe. This chapter of the disser-

tation is no substitute for the documentation of the tool,1 which is why we abstain

from presenting a formal grammar; the goal is to provide the reader with a feeling

of what is expressible.

A DySyRe source file consists of the following regions:

[Parameters]

[Constants]

[Variabe Order]

1At the time of this writing, the tool and its documentation are available for download from
http://www.cs.utexas.edu/~wahl/DySyRe.

118

[Global Variables]

[Process-local Variables]

[Atomic Propositions]

Code

All regions except Code are optional, but one of Global Variables and Process-

local Variables must exist. The order of these regions must be as given above.

Below we briefly describe the meaning of each region; we mention again that ap-

pendix B contains an example protocol description in DySyRe for reference.

Parameters. This region specifies parameters of the system description such as

the number of processes or number of memory cells. These parameters will appear

as mandatory command line arguments in the final executable.

Constants. These are integral values that must be computable at compile time.

That is, the initialization of a constant may not refer to parameters or system

variables, only to literals and previously defined constants. The expression defining

a constant may use standard arithmetic operators.

Variable order. This specifies which BDD variable order to use. There are three

choices: concatenated, interleaved, and dynamic. The first two are typically used

variable orders and are explained in equation (5.5) on 78. In these orders, each

current-state BDD variable is immediately followed by its corresponding next-state

variable. The third choice turns on dynamic variable reordering of the underlying

BDD package CUDD. The default is concatenated.

Global variables. These variables exist exactly once in the model (are not repli-

cated). The declaration recognizes the types bool, enum (symbolic range), range

119

(integral range), array and record, with their obvious meanings. Using arrays and

records, types can be nested.

Recall from section 5.5.2 (83) the notion of ID-sensitive global variables.

These must be declared as such by the user (failure to do so cannot be automatically

detected and may lead to incorrect verification results). This also happens in this

section of the input program declaration, using a special keyword. An ID-sensitive

variable is always of type [1..n]; thus, type specifications are not allowed for such

variables. We must, however, specify which process group the ID-sensitive variable

belongs to (see below paragraph Process-local variables). This allows us to model

systems that are orthogonal products of groups of processes with interchangeable

behavior within one group. An ID-sensitive variable tracks the identity of a process

in its group.

Process-local variables. They are specified once and automatically replicated

for each process of the process group they belong to. More precisely, there can be

any number of process groups: a process group declares a set of processes that are

interchangeable, according to some symmetry group. Processes from different pro-

cess groups are not interchangeable. A process group can be either of the clique type

(all processes in the group are pairwise interchangeable) or the ring type (processes

in the group can be rotated, such as in the dining philosopher’s example).

Summarizing, a process group is specified by its type (clique or ring), the

number of processes in it (which need not be compile-time evaluable, it may refer to

parameters), and the local variables of the processes in this group. For the latter,

the same comments as for global variables apply.

Atomic propositions. They are only declared in this region of the input program;

their definition is part of the subsequent Code region.

120

Code. The purpose of this region is to define the atomic propositions (below we

collectively use P to denote them) and the transition relation R, by means of C++

code. The user must define a function named R and an analogous function with

the name P; these functions must return the BDD that encodes R or P . Each BDD

is a Boolean expression that stands for a set of states if it defines P , or a set of

transitions if it defines R. Some of the functions and operators available from the

library that comes with the tool are listed in figure 8.1. Note that some of these

functions are only suitable when defining P , some only when defining R.

In order to allow the modeling of a transition relation, each variable defined

in the previous regions exists twice internally: once for the current-state value, once

for the next-state value. Transitions are specified as pairs of current-state and next-

state values of variables. For example, a transition that is due to the assignment

y:=y-1 is modeled using the BDD returned by the function call dec(y,_y). Here,

y stands for the bit vector that stores the current-state value of variable y, which

is to be decremented. The expression _y stands for the bit vector that stores the

next-state value of the same variable, which is to receive the computed value.

8.3 Property Language of DySyRe

After the input model is read by DySyRe and compiled into a BDD, the user

is prompted to enter a “property”, i.e. an expression that evaluates to a set of

states. Such expressions are specified in DySyRe in an enriched dialect of CTL that,

among others, adds past-time and invariant temporal operators to the language.

An expression is evaluated into a set of states. DySyRe then prints whether this

set is equivalent to false or to true or none of the above. In the latter case, the

user has the option to print, in compact form if possible, the states in the set.

For example, using the forward search operator FS, one can compute the set of

bad states that are reachable from any initial state by evaluating a formula of the

121

BDD Zero(); // empty set (of states or transitions)
BDD One (); // full set (of states or transitions)

BDD !A; // negation (set complement)
BDD A & B; // conjunction (set intersection)
BDD A | B; // disjunction (set union)
BDD A.Eqv(B); // equivalence (set equality)
BDD A.Diff(B); // (A & !B) | (B & !A) (set symmetric difference)
BDD A.Exor(B); // exclusive or

BDD A.IfThen(B); // if A then B
BDD A.Ite(B,C); // if A then B else C

bool A.zero(); bool A.empty(); // true iff A is empty (false)
bool A.one (); bool A.full (); // true iff A is full (true)
bool A.subset(B); // true iff A subset B

// in the following, y may be a variable or a constant
BDD greater(x, y); // x > y
BDD equal (x, y); // x == y
BDD less (x, y); // x < y
BDD atMost (x, y); // x <= y
BDD atLeast(x, y); // x >= y

BDD dec(x, y); // y := x - 1
BDD inc(x, y); // y := x + 1

BDD invariant(x); // x = x’

// in the following, p is a process, sbn is a process group
BDD invariant (p, sbn); // p in group sbn invariant
BDD invariant_but(p, sbn); // all but p in group sbn invariant
BDD invariant_sbn(sbn); // all in group sbn invariant
BDD invariant_all(); // all invariant (globals may change)

Figure 8.1: Some of DySyRe’s functions for creating BDDs

122

form (FS init) & bad. If no bad states is reachable, the result is the empty

set. Otherwise, one can inspect the reachable bad states. If the number of bits in

the state space is small (for example when instantiating the parameters with small

values), this output is easy to grasp and can aid debugging. The print format reflects

the variable and process group layout of the system.

Understood expressions/operators include the following:

False, True: empty and full set of states

States: state space S. This differs from the BDD for True if some variables have

a domain whose size is not a power of two. For example, if a range variable

[0..2] is declared, two bits will be reserved. Since the tuple 11 is invalid (only

00, 01 and 10), it is not part of the state space and not printed by States.

! | & == => : Boolean connectives

P: name of an atomic proposition. Returns the set of states labeled P . Typical

examples include init and bad.

EX, AX, EF, AF, EG, AG, EU, AU: future-time temporal operators, with

standard CTL meaning

EY, AY, EP: past-time temporal operators, with the meanings “existential pre-

vious time”, “universal previous time”, “existential past”. For example, the

formula EP init represents the states reachable from init: from these states,

there exists a past along which eventually init is true. EY and AY are for-

ward image operators; EP can be used for forward reachability.

FS, BS: forward and backward search operators, respectively. FS and BS com-

pute the same result as EP and EF, respectively, but they use frontier set

optimization and are occasionally more efficient.

123

alpha, orbit: map the argument set of states to the set of representative states,

and to the set of symmetry equivalent states, respectively.

INV FS, INV BS: invariant checking using forward or backward search, respec-

tively. The result is either a confirmation of the invariance property, or a

failure statement, followed by a counter example trace.

R: set of transitions of the system

size: number of states represented by the argument set. This may take long if the

set is large.

The operators INV_FS, INV_BS, R and size do not compute a set of states.

These operators can be used only at the top-level, i.e. they may not appear in the

scope of any other operators.

8.4 Conclusions and Bibliographic Notes

We sketched in this chapter the DySyRe symbolic model checker, a tool that incor-

porates many of the techniques discussed so far in this dissertation. The emphasis

with DySyRe is breadth of applicability, rather than user convenience. This is the

reason for choosing a library to support modeling systems, rather than offering yet

another modeling language, or re-using one from another tool. This feature, on

the other hand, increases user demands, as knowledge of the library programming

language (C++) is required. Also, by offering a broad modeling language, we can-

not force the user to write models that are covered by the techniques implemented

in the tool. Instead, the validity of the input model must be verified by an ex-

ternal mechanism, or taken on faith. The latter option is unsatisfactory, but even

well-established tools like Mur ϕ (see below) sometimes sacrifice completeness in

favor of verification efficiency; with Mur ϕ this is the case for the (not performed)

verification of symmetry in loop statements.

124

DySyRe currently does not support fairness constraints. Liveness properties

can be checked in the form of communal progress, or under specific fair scheduling

strategies built into the model.

Distinguished examples of explicit-state model checkers using symmetry in-

clude Mur ϕ [MD], Spin [Hol97] and Smc [SGE00]. Mur ϕ contains one of the

first serious implementations of symmetry reduction. It offers unique and multiple

representatives, but is limited to invariant properties under full symmetry. A set

of processes running the same program is known in Mur ϕ as a scalar set ; several

orthogonal scalar sets can be specified in an input program. Mur ϕ avoids the

problems with equivalence detection and the orbit problem by (i) focusing on full

symmetry, and (ii) being explicit-state, rather than symbolic for which no efficient

symmetry reduction algorithms were known at the time of Mur ϕ’s inception. The

reduction strategy in Spin [BDH00] builds upon the theory of scalar sets developed

for Mur ϕ by N. Ip and D. Dill [ID96].

Smc uses a randomized algorithm to map states to representatives. Notable

are the incorporation of various fairness constraints and its support for state sym-

metry [ES96]. Due to explicit state enumeration, these tools are mostly confined to

systems with a manageable number of reachable states.

UPPAAL [HBL+03] is a real-time model checker for the verification of in-

variants and (some) liveness properties. It appears that only part of the state space

is represented symbolically. The only truly symbolic model checker that emphasizes

symmetry reduction is SYMM [CEJS98]. Like DySyRe, it offers the full range

of CTL properties, but uses a sub-optimal reduction algorithm based on multiple

representatives.

125

Chapter 9

Experimental Evaluation

Overview. In this chapter we provide experimental results that evaluate the tech-

niques we introduced in this part of the dissertation. For each technique, we empha-

size two aspects: (i) comparison of the technique against model checking without

the technique but otherwise identical, and (ii) comparison of the technique against

other techniques developed in this dissertation. The purpose of (i) is to show how

much efficiency can be gained (or lost, in some cases) as a result of employing a

technique. The purpose of (ii) is to discriminate the techniques against each other,

especially regarding the types of problems for which they are successful.

Most experiments were performed using DySyRe as described in chapter 8.

In some cases we use the Mur ϕ model checker. We reemphasize that DySyRe

builds upon the CUDD BDD package. We ran the examples on a 1400 MHz IntelTM

PentiumTM M processor with 256MB main memory. In columns titled “Problem”,

a number behind the problem name indicates the number of processes in this instance

of the (parameterized) problem. The abbreviations n and l always stand for the

number of processes and the number of local states per process, respectively.

We usually give results both for memory consumption and time. Instead of

126

measuring memory in bytes, we present a more easily reproducible figure. For BDD-

based model checking, this figure is the maximum number of BDD nodes allocated

at any time during execution (“Number of BDD nodes”). This number represents

the memory bottleneck of the verification run. Assuming the same parameters of the

BDD package (especially variable order), this number is independent of the machine

used. Computation time is measured in seconds, minutes or hours, abbreviated s,

m or h.

9.1 Generic Representatives

In this section we compare counter abstraction using generic representatives (chap-

ter 6) against “traditional” methods for symbolic symmetry reduction, namely using

the orbit relation (called “unique specific representatives”) and using multiple rep-

resentatives. We tested two examples.

The first, introductory example is a contrived mutual exclusion scenario that

allows us to show how counter abstraction scales for varying values for n and l. Each

process can be in one of the local states L1, . . . , Ll, where Ll−1 and Ll take the rôles

of the trying region and critical section, respectively. The process must go through

L1 to Ll−1 in this order before proceeding into Ll. In addition, the transition into

Ll is protected by a binary semaphore, which is released again upon the process’

return to L1:

Transition Guard Action

Li → Li+1 for 1 ≤ i ≤ l − 2 true no-op

Ll−1 → Ll !sem sem := 1

Ll → L1 true sem := 0

The second example is a variant of the list-based queuing lock with an atomic

compare-and-swap instruction presented in [MS91]. We show the original code for

127

this example in appendix C. The algorithm consists of an acquire and a release

operation for a lock with the property that a process waiting for the lock spins only

on process-local variables, instead of spinning on a global variable (like a semaphore).

According to the authors of [MS91], spins on global variables can cause memory

detention and impact system performance.

For both problems, we experimented with unique, multiple and generic rep-

resentatives. We chose the set of multiple representatives Rep as follows:

r ∈ Rep ⇔ ∃i : 1 ≤ i ≤ l : process 1 is in local state Li, and

local states Lj with j < i do not appear in r.

For instance, using the first example (mutual exclusion) with l = 3, the states

(L1, L2, L1), (L1, L3, L1), (L1, L3, L2) and (L2, L3, L2) belong to the set Rep. They

are, however, not unique per orbit, in which the superscripts have to be in order

(assuming the total order L1 ≤ . . . ≤ Ll).

For the mutual exclusion example, we verified the standard safety property

AG¬(Lli ∧ Llj) for all i, j with i 6= j, which—in generic terms—is expressed as

AGnLl < 2. For the second example, we verified that no two processes can acquire

the lock at the same time, and also that there is no deadlock in the system. The

latter means that it is never the case that all processes are simultaneously spinning

in one of the two busy-waits that are present in the operations. Such a situation

would cause a deadlock since a process cannot free itself from a busy-wait: it can

only be unlocked by another processes.

These properties were verified using the standard symbolic fixpoint charac-

terization of EF bad . The variables were ordered in an interleaved fashion; dynamic

variable reordering was disabled. Table 9.1 shows how the space requirements and

running times of the three methods of symmetry reduction compare. For the unique

specific representatives approach, we also display what percentage of the running

128

time was used to just compute the orbit relation.

Choice Unique specific Multiple specific (Unique) generic
of n, l representatives representatives representatives

Number of Time Number of Number of
n l

BDD nodes (% orbit rel.) BDD nodes
Time

BDD nodes
Time

M 8 4 114,894 8s (97%) 2,211 0s 703 0s
U 6 5 2,152,710 2:17m (97%) 6,612 0s 690 0s
T 16 16 – >15h (100%) 132,377 7s 4,876 0s
E 64 16 – – 599,561 3:18m 6,972 0s
X 128 128 – – – >15h 69,060 10s

256 128 – – – – 78,060 13s

M 3 28 113,188 2s (79%) 30,614 0s 8,209 0s
C 4 28 9,478,195 1:13h (95%) 75,604 0s 12,361 1s
S 8 28 – >15h (100%) 272,080 15s 63,113 16s
- 16 28 – – 2,417,477 1:24h 183,324 2:09s
L 20 28 – – – >15h 325,325 15:06s
K 60 28 – – – – 3,109,874 7:04h

Table 9.1: Unique, multiple and generic representatives

For multiple and generic representatives, it can be seen that there is still room

to grow memory-wise, but not necessarily so for unique representatives. Indeed,

the main motivation for research on alternatives to unique representatives was the

impractical BDD size of the orbit relation.

Further, the unique representatives approach spends nearly all of its time on

the orbit relation construction. The use of multiple representatives clearly reduces

memory and time requirements. The generic representatives solution outperforms,

by several orders of magnitude, the other two both in memory and time, and hence

in the size of problems it can handle.

Counter abstraction with and without BDDs. The purpose of the following

example is to demonstrate the potential of counter abstraction compared with the

multiple representatives approach even without using BDDs. We consider a variant

of the classical scenario of r readers and w writers that compete for access to some

data (see appendix B). The problem consists of two fully symmetric subsystems,

but the global system is asymmetric (due to the readers’ privilege to simultaneously

129

access the data). The first algorithm applied to this problem is symmetry reduction

using multiple representatives. The double column “Counter abstraction explicit-

state” lists the results of applying the Mur ϕ verifier to the counter-abstracted

program, i.e. non-symbolically. The third algorithm combines counter abstraction

and symbolic representation.

Choice Counter abstraction Counter abstraction
of r, w Multiple representatives explicit-state with BDDs

Number of Number of Number of
r w BDD nodes Time rules fired Time BDD nodes Time

8 8 19,853 1s 11,835 1s 1,082 0s
10 10 41,333 6s 25,784 1s 1,082 0s
16 16 223,770 108s 140,471 1s 1,379 0s
30 30 2,494,219 1:29m 1,482,854 2s 1,379 0s

100 100 – – 159,625,349 162s 1,973 0s
1000 1000 – – – – 2,864 2s

Table 9.2: Multiple representatives and counter abstraction w/o and with BDDs

We see from the table that counter abstraction is—even in its non-symbolic

form—more successful than the symbolic multiple representatives approach, which

suffers from symmetry reduction overhead. It should be noted that this overhead

largely stems from the computation of the a priori representative mapping, which is

oblivious of the simplicity of the transition relation of this problem. As the results on

the right show, counter abstraction was most effective when combined with BDD-

based symbolic model checking. The readers-writers scenario is characterized by

a small number of local states. In such simple cases, techniques based on local

state counters can be successful without employing front-end analysis techniques as

described in chapter 7.

130

9.2 Live Variable Analysis

In this section we show the effect of local state reduction techniques on counter-

abstracted symmetric systems (chapter 7). We use again a variant of the queuing

lock algorithm, the original specification of which is presented in full in appendix C.

The input is a program in a C-like language, with a predictable control structure.

Such a program is amenable to a static analysis that establishes logical connections

between different program locations, such as live variable analysis. The results are

presented in table 9.3.

Symbolic counter abstraction . . .
without LSR with LSR

Choice Number of Number of
of n BDD nodes Time BDD nodes Time

5 16,583 1s 3,022 0s
10 71,224 29s 9,366 1s
15 156,421 110s 17,070 2s
30 785,411 25:53m 68,332 19s
50 2,643,540 3:34h 207,370 146s
70 5,586,017 12:16h 454,360 10:18m

Table 9.3: Symbolic counter abstraction w/o and with local state reduction (LSR)

The table teaches the following lesson. Counters corresponding to local states

that have no bearing on the program behavior should be explicitly excluded from

the BDD model. The fact that some conceivable local states differ only by irrelevant

(dead) variables is not taken care of automatically.

9.3 Dynamic Symmetry Reduction

In this section, we exhibit the benefits and shortcomings of dynamic symmetry

reduction (chapter 5) compared with techniques presented earlier in this dissertation.

In table 9.4, we contrast the dynamic technique to multiple representatives and

131

Multiple Counter Dynamic sym-
representatives abstraction metry reduction

Number of Number of Number of
Problem BDD Nodes Time BDD Nodes Time BDD Nodes Time

MsLock 10 369,239 1:15m 9,366 1s 24,092 15s
MsLock 20 4,407,127 4:05h 34,170 5s 139,990 9:35m
MsLock 30 – >28h 68,332 19s 375,649 1:23h

CCP 03 16,522,710 13:12h 1,988,991 7:55m 14,088 1s
CCP 05 – >35h 4,001,573 1:49h 74,754 14s
CCP 10 – – – >18h 1,075,206 26:35m
CCP 15 – – – – 4,947,726 6:17h

Table 9.4: Multiple representatives, counter abstraction and dynamic reduction

counter abstraction. Orbit relation based methods are excluded, since they take too

much time or space for these examples.

The “MsLock” example is again the queuing lock algorithm from [MS91].

We see that counter abstraction performs better on it than dynamic symmetry

reduction. The reason is that the number of local states is very small, which is the

ideal battleground for the counter technique. We strongly emphasize, however, that

the above numbers were obtained with the optimizations through local state space

reduction in place (compare table 9.3).

The example denoted CCP refers to a version of a cache coherence protocol

suggested by S. German, see for example [LS]. This protocol, on the other hand,

is characterized by a large number of local states, which is why counter abstraction

performs much worse on it than the dynamic technique. Figure 9.1 shows the mem-

ory results (number of BDD nodes) of table 9.4, but graphically using a histogram.

The MsLock example is on the left, CCP is on the right. The number of BDD nodes

is shown on a logarithmic scale.

Table 9.5 presents examples to which counter abstraction cannot be applied.

The reason is that here permutations act upon states by not only changing the order

132

30 n20
12

lo
g 2

(#
B

D
D

no
de

s)
24

10 10 n5
12

lo
g 2

(#
B

D
D

no
de

s)

24

3

= dynamic, = counter= multiple,

Figure 9.1: Multiple representatives, counter abstraction and dynamic reduction

of local states of components, but also their values. In this case, state equivalence

cannot be detected using counting.

“C&S” (compare-and-swap) and “F&S” (fetch-and-store) are two extended

versions of the queuing lock (provided in [MS91]). The “DL” example, taken from

the Mur ϕ distribution [MD], is a distributed list protocol for processes in a FIFO

queue sending and receiving messages and acting as a relay if asked to do so. Sym-

metry exists in both the processes and the messages. In this table we also show

results of the verification run without symmetry reduction, where the intermediate

BDDs quickly become huge. It is remarkable, however, how well plain model check-

ing competes against the multiple representatives technique, which shows that the

overhead incurred by the latter may not be worth the effort. The dynamic tech-

nique invariably outperforms the other two, for large problem instances by orders

of magnitude.

133

Without sym- Multiple Dynamic sym-
metry reduction representatives metry reduction

Number of Number of Number of
Problem BDD Nodes Time BDD Nodes Time BDD Nodes Time

C&S 40 376,681 1m 157,470 25s 48,433 10s
C&S 50 – >24h 4,259,627 37:34m 419,529 4:03m
C&S 60 – – – >24h 6,246,717 2:10h
F&S 40 1,083,830 4:12m 413,036 2:02m 160,628 40s
F&S 50 – >24h – >24h 2,017,634 29:43m
F&S 60 – – – – – >24h

DL 30 861,158 28s 708,339 20s 60,394 2s
DL 40 6,380,209 4:35m 2,963,024 2:37m 213,448 5s
DL 50 – >24h 13,580,042 29:30m 271,366 11s

Table 9.5: Plain model checking, multiple representatives and dynamic reduction

134

Part III

Extending the Scope

of Symmetry Reduction

135

In this part of the dissertation we make symmetry reduction fit for more

realistic scenarios. So far we have laid the foundations for exploiting symmetry in

an ideal situation, where we are given a perfectly symmetric system of (a constant

number of) n processes. This situation does occur in practice, and many protocols

can be successfully verified or falsified using the techniques we have at our disposal

so far. We have given examples near the end of chapter 9 of part II.

But often times we are not blessed with the ideal scenario, among others for

the following two (very distinct) reasons:

1. the symmetry in the system may not be (known to be) exact, or

2. the number of components n may be variable.

Given the current pool of techniques, we have to use rather rough methods to attack

these two problems. The first can be approached by over-approximating the system.

That is, suppose the symmetry is inexact because not all transitions are preserved

by all permutations. This means that not all local state changes can be executed by

all processes. We can change the system by adding the missing behavior, to achieve

a symmetric system. It is an over-approximation of the original, i.e. any ACTL*

formula it satisfies is also satisfied by the original, but not vice versa, and we cannot

say anything about non-ACTL* formulas without extra work. The disadvantages

of this solution are obvious.

How to solve the second problem depends on how much we know about n.

If its value is left completely open, we have to resort to general parameterized model

checking. This is a very hard problem; we discuss it in chapter 11. In brief, the

overall problem is undecidable, so we cannot always find a solution. If we know at

least a range for n, such as 1 ≤ n ≤ N , we can verify the problem for all n up to

the bound N . This method is effective, but neither efficient nor elegant.

In this part of the dissertation we present better solutions to both of the above

defects of symmetry. In chapter 10 we address the issue of unknown symmetry in

136

the system. The method not only makes it unnecessary to detect the symmetry

a priori (section 4.1 on 58). It can also deal with an amount of symmetry that

cannot reasonably be expressed as a symmetry group. Instead, the solution we

present localizes symmetry reduction to specific parts of the state space that may be

unaffected by violations destroying the global symmetry, which render the principal

methods from part II inapplicable.

In chapter 11 we take a look at the parameterized model checking problem

and give a solution for the case that a bound to the parameter is known. This

solution trades generality with respect to n in for generality with respect to sys-

tem coverage. More precisely, the aggregation technique is applicable to arbitrary

systems, whether symmetric or not, whether it adheres to other constraints of ho-

mogeneousness normally required by parameterized approaches or not. The price

we have to pay is that such a solution necessarily does not apply to all size instances,

but it does if an upper bound on the size is known.

137

Chapter 10

Reducing Partially Symmetric

Systems

Overview. In this chapter we discuss the case of unknown but suspected approx-

imate symmetry. We discuss what “approximate” means in this context and give

an example. After defining some new vocabulary we introduce an algorithm for

state space exploration on an approximately symmetric Kripke structure, examine

implementation issues, and present experimental results.

All techniques for symmetry reduction we have looked at so far can be viewed

as a sequence of two steps: (i) check that the system’s Kripke structure is symmetric

with respect to some group (or find the largest such group), and (ii) symmetry-reduce

the Kripke structure to a smaller one that can be more efficiently model-checked.

The technique presented in this chapter does not require step (i) and incorporates

step (ii) into the model checking process. If we don’t verify the system’s symmetry

(be it directly on the Kripke structure or indirectly on the program text), then

we cannot a priori build a quotient structure, so performing (ii) on the fly is our

only option. Moreover, in contrast to dynamic symmetry reduction, we have to

138

check each time we reach new states whether and how they can be collapsed due to

equivalence to states seen before.

The new technique, which we call adaptive symmetry reduction, can be

viewed as on-the-fly symmetry detection and reduction in one fell swoop. This

appears more expensive than detecting symmetry up front on the program text,

and it is. The advantages of delaying the detection to the model checking run are

that (i) unreachable parts of the system’s Kripke structure have no impact on the

exploitable symmetry, and (ii) if the Kripke structure has symmetric substructures,

those can be reduced to a subquotient. Standard symmetry reduction imposes an

unreasonable punishment on systems where strict symmetry is violated merely be-

cause each process has, say, one transition that distinguishes it from other processes

while all other behavior may be shared.

The adaptive approach to exploiting partial symmetry is to annotate each

state, space-efficiently, with information about whether and how symmetry is vio-

lated along the path to it. More precisely, the annotation is a partition of the set

of all component indices: if the path to the state contains a transition that distin-

guishes two components, their indices are put into different partition cells. Only

components in the same cell can be permuted during future explorations from the

state—the algorithm adapts to the state’s history.

Suppose a given state can be reached along two paths: one with many asym-

metric transitions and one with only symmetric ones. This state thus appears twice,

once annotated with a fine partition, once with a coarse one. In order to analyze

the state’s future, we can assume that we reached it along the symmetric path and

thus take full advantage of symmetry. The annotated state with the fine partition

can be ignored; we say it is subsumed by the other one. Subsumption allows us

to collapse many states during the exploration. The price we have to pay is that

the adaptive algorithm, by its own means, is only suitable for reachability analysis.

139

Throwing away a state subsumed by another leads to an implicit reduced structure

that is not bisimulation-equivalent to the original. This price is worth paying since

it allows us to improve the analysis of systems with respect to safety properties, a

significant and frequent type of formula.

We present adaptive symmetry reduction for the full symmetry group, G =

Sym[1..n], or orthogonal products of the full symmetry groups over subranges of

[1..n]. For smaller groups, the symmetry reduction effect is correspondingly smaller

to begin with. Partial, rather than exact, symmetry diminishes this effect further,

which is why partial symmetry reduction for non-full symmetry groups is of limited

interest. For these reasons, we omit the symmetry group G from the description in

this chapter and always mean full symmetry.

10.1 What is Partial Symmetry?

A system is asymmetric if it is not symmetric. By definition 12, this means that

the condition π(R) = R is not satisfied for all permutations. When we use the

intuitive term partial symmetry, we mean that for most transitions r ∈ R and most

permutations π, the condition π(r) ∈ R holds.

Consider r = (s, t) ∈ R and π such that π(r) 6∈ R. For an asynchronous

system, r ∈ R means that exactly one process, say i, changes its local state.

In π(r) = (π(s), π(t)), this change applies to process π(i). Since π(r) 6∈ R, pro-

cess π(i) is not allowed to perform this change, at least not in the context of the

global state π(s). Thus, we model partial symmetry in a system by the asymme-

try of some local state transitions: those whose executability depends on (i) who

requests to execute it (the process id), and (ii) what is the execution context (the

current state). We formalize this way of describing a partially symmetric system in

section 10.3.

140

Partitions. We introduce some terminology and notation that we use in this chap-

ter of the dissertation. A partition of [1..n] is a set of disjoint, nonempty subsets,

called cells, that cover [1..n]. We use a notation of the form | 1, 4 | 2, 5 | 3, 6 | to

represent the partition into the three cells {1, 4}, {2, 5} and {3, 6}. The coarsest

partition | 1, . . . , n | consists of a single cell, the finest partition | 1 | . . . |n | consists

of n singleton cells. A partition P induces an equivalence relation on [1..n]: we write

i ≡P j exactly if i and j belong to the same cell of P.

We say a partition P of [1..n] generates all permutations π on [1..n] such that

for all i, i ≡P π(i). These permutations form a group, denoted by 〈P〉. For example,

the partition | 1, 4 | 2, 5 | 3, 6 | generates a group of eight permutations. The coarsest

partition | 1, . . . , n | generates the entire symmetry group Symn . The finest partition

| 1 | . . . |n | generates only the identity permutation.

10.2 Adaptive Symmetry Reduction—An Example

We introduce the idea of the technique presented in this chapter using an example.

Consider the variant of the Readers-Writers problem shown in figure 10.1. There are

two “reader” processes (indices 1, 2) and one “writer” (3). In order to access some

data item, each process must enter its critical section, denoted by local state C.

The edge from (the non-critical section) N to (the trying region) T is unrestricted,

as is the one from C back to N . There are two edges from T to C. The first is

Ti Ci

∀j : sj 6= C

i < 3 ∧ s3 6= C

Ni

Figure 10.1: Local state transition diagram of process i for an asymmetric system

executable whenever no process is currently in its critical section (∀j : sj 6= C, for

141

current state s). The second is available only to readers (i < 3), and the writer must

be in a non-critical local state (s3 6= C). Intuitively, since readers only read, they

may enter their critical section at the same time, as long as the writer is outside its

own.

With each process starting out in local state N , the induced Kripke structure

has 22 reachable states. The adaptive method presented in this chapter, however,

constructs a reachability tree of only 9 abstract states (figure 10.2). An abstract

TTT TTC

CC |TCC |N
NNN NNT

NNC

NTT

NTC

Figure 10.2: Abstract reachability tree for the model induced by figure 10.1

state of the form XYZ represents the set of concrete states obtained by permuting

the local state tuple (X,Y, Z). Consider, for example, the abstract state NNT ,

representing (N,N, T), (N,T,N) and (T,N,N). Guard ∀j : sj 6= C of the first edge

from T to C is satisfied in all three states. Executing this edge leads to the successor

states (N,N,C), (N,C,N), (C,N,N), succinctly written as NNC in figure 10.2.

Now consider the abstract state NTC . None of the six concrete states it

represents satisfies the condition ∀j : sj 6= C. Thus, regarding steps from T to C,

we have to look at the second—asymmetric—edge, guarded by i < 3∧ s3 6= C.

Of the six represented states, two satisfy this condition with an index i < 3 such

that si = T , namely (T,C,N) and (C, T,N). In both cases, the edge leads to

state (C,C,N). We now have to make a note that this state is reached through

an asymmetric edge. The edge’s guard is invariant under the transposition (1 2),

but not under any permutation displacing index 3. We express this succinctly in

figure 10.2 as abstract state CC |N . Intuitively, permutations across the “|” are

illegal; this abstract state hence represents neither (N,C,C) nor (C,N,C) (both

happen to be unreachable in this system).

142

10.3 Representing Partially Symmetric Systems

As discussed at the beginning of this chapter, partial symmetry intuitively means

that most local state transitions can be performed by most processes in most con-

texts. Thus, we expect a great deal of overlap in the behaviors of the processes.

It is therefore economical to represent all processes’ behavior by a common program

and annotate the program with exceptions. As always, we describe the program

abstractly using a local state transition diagram. That is, the system is specified as

a number n of processes and a graph with local states as nodes. Local transitions,

called edges, have the form

A
φ,Q−→ B . (10.1)

φ is a two-place predicate taking a state s and an index i. State s defines the

context in which the edge is to be executed. The intended semantics is that φ(s, i)

returns true exactly if in state s process i is allowed to transit from local state

A to local state B. Predicate φ can be written in any efficiently decidable logic,

such as propositional logic with basic arithmetic over state variables and index i.

In figure 10.1 we have seen the predicate

φ(s, i) = i < 3 ∧ s3 6= C . (10.2)

It is asymmetric (and thus is the edge) since we can find s, i and a permutation π

such that φ(s, i) 6= φ(π(s), π(i)). On the other hand, asymmetric edges are often

symmetric with respect to a subgroup of Sym[1..n]. For instance, predicate (10.2)

is invariant under the transposition σ = (1 2), i.e. φ(s, i) = φ(σ(s), σ(i)) for all s, i.

In common variants of the r-readers/(n− r)-writers problem, the asymmetric edges

are immune to any products of permutations of [1..r] and [r+1..n]. Such permuta-

tions are generated by the partition | 1..r | r+1..n |.

Symbol Q in equation (10.1) stands for a partition generating the automor-

143

phism group of the edge, i.e. a set of permutations that preserve predicate φ. For

the asymmetric edge in (10.2), we choose Q = | 1, 2 | 3 |. In approximately symmetric

systems, Q is for most edges the coarsest partition, generating Sym[1..n]. For the

remaining edges—those that destroy the symmetry—we expect the user to provide

a suitable Q. The high-level description of the edge often suggests a group of auto-

morphisms; see section 10.7 for an example. If needed, a propositional SAT-solver

can aid the verification of the automorphism property.

Letting l be the number of local states, an asynchronous semantics of the

induced n-process concurrent system is given by the following Kripke structure:

S := [1..l]n, and R is the set of transitions (s1, . . . , sn) → (t1, . . . , tn) with the

property that there is an index i ∈ [1..n] such that

1. there exists an edge si
φ,Q−→ ti with φ((s1, . . . , sn), i) = true, and

2. ∀j : j 6= i : sj = tj .

Note that Q is irrelevant for the definition of the Kripke structure. Extending the

method to work with global variables is discussed in section 10.8.

Asymmetry in practice. Asymmetry is introduced into systems through re-

strictions on what process can perform what local state changes in what contexts,

formalized by the edge condition φ(s, i). In practice, predicate φ may express con-

ditions such as the following:

Informal predicate: Formal predicate: φ(s, i) =

“process 1” i = 1

“all but process 1” i 6= 1

“all processes whose right neighbor is busy” si+1 = busy

“all processes if all processes are free” ∀j : sj = free

The first two predicates often occur in systems with a hub process, such as a coor-

dinator in a coherence protocol. Note that if φ(s, i) does not mention index i, the

144

edge that φ appears on does not violate symmetry; the last predicate above is an

example. Even if φ does mention i, full symmetry may be unaffected. In fact, we

have seen in chapter 6 conditions on the predicates that guarantee this. If these

conditions are violated for just one edge, the generic technique from that chapter

cannot be applied. The point of the current chapter is to make the reduction process

more flexible. Parts of the state graph that do not use any of the violating edges

should be able to undergo full symmetry reduction.

10.4 Orbits and Subsumption

The goal of this chapter of the dissertation is an efficient exploration algorithm

for the Kripke structure defined in the previous section. The algorithm accumu-

lates states annotated with partitions that indicate how symmetry was violated

in reaching this state. Thus, the formal search space of the exploration is the set

Ŝ := [1..l]n×Partn, where Partn is the set of all partitions of [1..n]. The partition is

used to determine which permutations can be applied to the state in order to obtain

the concrete states it represents. These permutations are those that do not permute

elements across cells, i.e. those generated by the partition (see end of section 10.1):

Definition 29 Let π be a permutation on [1..n]. For an n-tuple s = (s1, . . . , sn),

let π(s) denote the expression (sπ(1), . . . , sπ(n)), as usual. We extend π to operate

on an element ŝ = (s,P) of Ŝ in the form

π(s,P) =

 (π(s),P) if π ∈ 〈P〉

(s,P) otherwise.

This mapping defines a bijection on Ŝ. Note that π never changes the partition

associated with a state; if π is not generated by P, it does not affect (s,P) at all.

145

In standard symmetry reduction, algorithms operate on representative states

of orbit equivalence classes. Systems with asymmetries require a generalized notion

of an orbit that defines the relationship between states in Ŝ and in S:

Definition 30 The orbit of a state ŝ = (s,P) ∈ Ŝ is defined as

Orbit(s,P) = {t ∈ S : ∃π ∈ 〈P〉 : π(s) = t} .

We say that ŝ represents t if t ∈ Orbit(ŝ).

Examples. For n = 4, consider the following states and the sizes of their orbits:

ŝ = (s,P) orbit size

(ABCD , | 1, 2, 3, 4 |) 4! = 24 (standard symmetry)

(ABCD , | 1, 2 | 3, 4 |) 2× 2 = 4

(ABCD , | 1, 2 | 3 | 4 |) 2× 1× 1 = 2

(ABCD , | 1 | 2 | 3 | 4 |) 1× 1× 1× 1 = 1

If P is the coarsest partition | 1, . . . , n |, then Orbit(s,P) reduces to the equivalence

class that s belongs to under the standard orbit relation.

Subsumption. Orbits in standard symmetry reduction are equivalence classes

and as such either disjoint or equal. In contrast, the new orbit definition is not

based on an equivalence relation. For example, the orbits of the four states in the

table above form a strictly descending chain. It is unnecessary to remember all four

states if encountered during exploration: the first subsumes the others:

Definition 31 State ŝ ∈ Ŝ subsumes t̂ ∈ Ŝ, written ŝ . t̂, if Orbit(ŝ) ⊇ Orbit(t̂).

146

Examples. For n = 3, consider the following states and examples of what they

subsume and don’t subsume (Q is arbitrary):

ŝ = (s,P) ŝ subsumes: ŝ does not subsume:

(ABC , | 1, 2, 3 |) (ABC, Q), (BCA, Q) (ABB, Q)

(ABC , | 1, 3 | 2 |) (ABC, | 1 | 2 | 3 |), (CBA, | 1 | 2 | 3 |) (BAC, Q)

(ABC , | 1 | 2 | 3 |) itself only (ABC, | 1, 3 | 2 |)

Definition 31 provides no clue about how to efficiently detect subsumption.

An alternative characterization is the following. Recall that i ≡P j iff i and j belong

to the same cell within P.

Theorem 32 State ŝ = (s,P) subsumes state t̂ = (t,Q) exactly if

1. i ≡Q j ⇒ (i ≡P j ∨ ti = tj) is a tautology, and

2. t ∈ Orbit(ŝ), i.e. there exists σ ∈ 〈P〉 such that σ(s) = t.

Proof : see appendix A. �

Remark. Condition 1 is slightly weaker than the condition i ≡Q j ⇒ i ≡P j,

which states that P is at least as coarse as Q. As a hint why ti = tj is needed for an

equivalent characterization of subsumption, consider ŝ = (AA, | 1 | 2 |), which has a

finer partition than t̂ = (AA, | 1, 2 |), but subsumes t̂.

Condition 1 can, using appropriate data structures for partitions, be decided

in O(n2) time. In practice, violations are often detected much faster using heuristics

such as comparing the cardinalities of P and Q. Condition 2 requires checking

whether P generates a permutation π that satisfies π(s) = t. This can be decided

in O(n) time by treating each cell P ∈ P separately: we project both s and t to the

positions in P and use a counting argument to verify that the projections are the

same up to permutation.

147

Algebraic properties of subsumption. Relation . is a preorder : it is reflexive

and transitive. It is, however, neither symmetric (e.g. (AB, | 1, 2 |) .(AB, | 1|2 |) but

not vice versa) nor anti-symmetric (e.g. (AB, | 1, 2 |) and (BA, | 1, 2 |) subsume each

other but differ). Thus, it is neither an equivalence nor a partial order.

We can derive an equivalence relation from a preorder by making it bidi-

rectional: write ŝ ./ t̂ iff ŝ . t̂ ∧ t̂ . ŝ. How is this equivalence related to the orbit

relation on Ŝ, written ŝ ≡ t̂ if there exists π such that π(ŝ) = t̂ ?

Lemma 33 For any ŝ, t̂ ∈ Ŝ, ŝ ≡ t̂ implies ŝ ./ t̂.

Proof : Let as usual ŝ = (s,P), t̂ = (t,Q). Suppose π(ŝ) = t̂ for some π. We show

that ŝ . t̂; the converse follows with a symmetric argument.

If π ∈ 〈P〉, then π(ŝ) = (π(s),P) = (t,Q). Thus P = Q, which establishes

condition 1 of theorem 32, and π(s) = t, which establishes condition 2. If π 6∈ 〈P〉,

then π(ŝ) = (s,P) = (t,Q), so ŝ = t̂, which establishes ŝ . t̂ by reflexivity of .. �

According to lemma 33, the orbit relation achieves less compression than

subsumption: the latter is coarser, i.e. it relates more states. We note that in

perfectly symmetric systems, where each state is (implicitly) annotated with the

coarsest partition | 1, . . . , n |, the three relations ., ./ and ≡ coincide.

10.5 State Space Exploration Under Partial Symmetry

We are now ready to present an algorithm for state space exploration on the (par-

tially symmetric) structure M = (S,R). The goal is to compute the set of states

reachable under R from some initial state s0 ∈ S. Technically, algorithm 8 below

operates on elements of Ŝ; we later present a one-to-one correspondence between

the states reachable in M and the states found by the algorithm.

In line 1, the initial state is annotated with the coarsest partition (indicating

absence of symmetry violations so far) and put on the Unexplored and Reached lists.

148

Algorithm 8 State space exploration under partial symmetry
Input initial state s0 ∈ S

1: Reached := Unexplored := {(s0, | 1, . . . , n |)}
2: while Unexplored 6= ∅ do
3: let ŝ = (s,P) ∈ Unexplored ; remove ŝ from Unexplored

4: for all edges e = A
φ,Q−→ B do

5: R := glb(P,Q)
6: U := unwind(s,P,Q)
7: for all states u ∈ U do
8: for all cells R ∈ R do
9: if ∃i ∈ R : ui = A ∧ (u, i) |= φ then

10: v := (u1, . . . , ui−1, B, ui+1, . . . , un)
11: canonicalize(v,R)
12: update(v,R)

While available, one state ŝ is selected from Unexplored for expansion.

Successors of ŝ are found by iterating through all edges (line 4). We now

have to reconcile two partitions: P, expressing symmetry violations on the path to s,

and Q, expressing violations to be caused by e. Routine glb in line 5 determines

the partition R such that 〈R〉 = 〈P〉 ∩ 〈Q〉. R can be computed as the greatest

lower bound (meet) of P and Q in the complete lattice of partitions, which uses

“at-most-as-coarse-as” as the partial order relation.

Edge predicate φ may not be invariant under permutations from 〈P〉, but it

is under permutations from 〈Q〉 and thus from 〈R〉. We account for this fact by

unwinding s into a set of states to be annotated by R whose orbits exactly cover

the orbit of ŝ = (s,P), i.e. into a set U ⊆ S that satisfies

⋃
u∈U

Orbit(u,R) = Orbit(s,P) . (10.3)

The objective is of course to find a small set U with this property. In line 6, routine

unwind returns the set U = {s} ∪ {π(s) : π ∈ 〈P〉 \ 〈Q〉}, which is easily seen to

satisfy (10.3). This step can be a bottleneck; we discuss in section 10.6 how to avoid

149

it in most cases and perform it as efficiently as possible in the remaining ones.

Processes with indices in different cells of R are distinguishable; we must

consider these cells separately (line 8). Edge e can be executed if there is a process i

in local state A such that (u, i) satisfies φ. If so, we let the process proceed, resulting

in a new state v (line 10). In line 11, v is canonicalized within R: the sequence of

local states with indices in R is lexicographically sorted.

The update function determines whether to add a new state v̂ to the lists

Unexplored and Reached (algorithm 9). If some state in Reached subsumes v̂, noth-

Algorithm 9 Updating Unexplored and Reached : update(v,R)
Input newly computed state v̂ = (v,R)

1: if no state in Reached subsumes v̂ then
2: check whether v̂ represents a concrete error state
3: remove from Unexplored each ŵ such that v̂ . ŵ
4: add v̂ to Unexplored and to Reached

ing needs to be done; this also covers the case v̂ ∈ Reached . Otherwise (line 2), v̂ is

checked for errors (discussed below). Then, states that v̂ subsumes are removed from

Unexplored : such states are implicitly explored as part of v̂ and are thus redundant.

Finally, v̂ is added to both lists.

States reachable from s0 in M are related to states in Reached as follows.

Theorem 34 Let s0 ∈ S and Reached as computed by algorithm 8. A state s ∈ S

is reachable from s0 in M exactly if there exists ŝ ∈ Reached that represents s.

Proof (idea): by induction over the length of a path to a state reachable from s0

in M . The complete proof is very technical and omitted here. �

Error conditions to be checked in line 2 of algorithm 9 need not be symmetric.

For example, suppose the claim is that process 3 never enters local state X. Given

v̂ = (v,R), we determine the unique cell R ∈ R such that 3 ∈ R. An error is reported

150

exactly if the property ∃i ∈ R : vi = X evaluates to true.

If M has an error at distance d from s0, then algorithm 8, if organized

in a breadth-first fashion, detects it at distance d from the root of the abstract

reachability tree. Using back-edges from each encountered node to its predecessor,

an error path can be reconstructed and lifted to a shortest concrete path as usual.

Regarding line 3 of algorithm 9, the only reason not to remove ŵ from

Reached (but only from Unexplored) is to retain the ability to trace encountered

errors back to the initial state, for which previously subsumed states may be needed.

They are not needed for just finding errors or for termination detection.

10.6 Implementing the Exploration Algorithm

We discuss essential refinements of algorithm 8 and derive analytic results.

In approximately symmetric systems, most edges are symmetric, resulting

in a search that annotates many states with the coarsest partition | 1, . . . , n |. We

encode this partition space-efficiently using the empty string. Further, a symmetric

edge e in line 4 of algorithm 8 allows dramatic simplifications: Lines 5, 6 and 7 can

be removed, as R equals P and U reduces to {s}. The test (u, i) |= φ can be factored

out of the loop in line 8 (replacing i with 0), since it is independent of i (due to

φ’s symmetry). Almost the same simplifications apply if e is asymmetric but Q is

coarser than P (〈Q〉 ⊇ 〈P〉), which is easy to test.

If Q is finer than P, we must compute U = {s} ∪ {π(s) : π ∈ 〈P〉 \ 〈Q〉}.

Doing this by enumerating 〈P〉 \ 〈Q〉 is inefficient and unnecessary: state s likely

contains redundancy in the form of duplicate local states (especially if there are

more processes than local states). Thus, many permutations of 〈P〉 \ 〈Q〉 result in

the same state when applied to s. This redundancy can be avoided up front using

buckets, i.e. sets of process counters for each local state, separately in each cell of Q.

Permutations outside 〈Q〉 are applied to s by changing the contents of the buckets.

151

As a result, the complexity of unwind is proportional to |U |, which is usually much

smaller than |〈P〉 \ 〈Q〉|. The set U itself is large only when Q is very fine, which is

atypical for approximately symmetric systems.

To make the update function in algorithm 9 efficient, the list Reached is

sorted such that states with local state vectors that are permutations of each other

are adjacent, for example states of the forms (AAB,P1), (AAB,P2), (BAA,P3).

Given the newly reached v̂ = (v,R), we first use binary search to identify the range

in which to look for candidates for subsumption as the contiguous range of states

in Reached whose local state vectors are permutations of v. The search in line 1 of

algorithm 9 for states subsuming v̂ can now be limited to this range.

We present complexity bounds for the adaptive exploration technique. Con-

sider the abstract state space Ŝ = S × Partn, which is conceivably much bigger

than S. The adaptive algorithm, however, only explores states not subsumed by

others. Comparing the adaptive technique to standard symmetry reduction and to

plain exploration ignorant of symmetry, our informal goal is to show that

complexity(adaptive) ≤ complexity(standard) < complexity(plain) . (10.4)

If the automorphism group of the structure induced by a program is nontrivial,

standard symmetry reduction is guaranteed to achieve some compression.1 The

meaning of “≤” in (10.4) is that this compression is preserved by the adaptive

technique.

To demonstrate this, we first quantify the effect of standard symmetry re-

duction on a program in the given input syntax. Call two processes friends if they

are not distinguished by any edge, i.e. for each edge A
φ,Q−→ B there is a cell Q ∈ Q

containing both processes. Friendship is an equivalence relation on [1..n]. Each class
1We overlook the pathological case in which only states of the form (A,A, . . . , A) are reachable.

152

of friends induces a group of permutations that can be extended to automorphisms

of the program’s Kripke structure. Friends, therefore, enjoy the following property:

Property 35 Let F be a set of friends. Algorithm 8 reaches at most
0@ |F |+ l − 1

|F |

1A
local state tuples over the indices in F .

Proof (idea): The quantity in the property equals the number of representative

states under standard symmetry reduction over the group Sym F of all permutations

of F and thus follows from property 15 (63) by extending Sym F to act on the full

range [1..n]. �

The orthogonal product of all groups of the form Sym F , for a set of friends F ,

is the largest symmetry group that can be derived from the program text. As a

special case, if all n processes are friends, algorithm 8 reduces to standard symmetry

reduction and introduces nearly no search overhead.

Whether the “≤” in (10.4) is actually “<” or “�” depends on the way

symmetry is violated and is hard to quantify in general. We observe, however,

that for the adaptive technique, the notion of friends can be extended to include

processes not distinguished by edges that are actually reached (executed) during

the exploration. Unreachable asymmetric edges reduce the automorphism group,

but have no effect on the adaptive algorithm. This observation is supported by

experimental results.

10.7 Experimental Evaluation

We tested the adaptive method in a variety of experiments. We borrow a re-

source controller example from the work by P. Sistla and P. Godefroid [SG04,

p. 729ff.]. In this example, process indices are partitioned into intervals of equal

priority. In case of simultaneous requests, a server grants the resource to one of the

highest-priority processes, thus introducing asymmetry. For a process belonging to

153

the priority interval [lc..uc], we annotate each asymmetric edge with the partition

| 1, . . . , lc−1 | lc, . . . , uc |uc+1, . . . , n |, separating higher, equal and lower priority.

In a first set of experiments, we compare the memory use of the adaptive

technique with plain exploration oblivious of symmetry. Memory is measured by the

(reproducible) number of reached states (memory in bytes is linear in this number,

including the overhead due to the annotations). Figure 10.3 plots this number over

16
12

6 9 12
4
8

log2(# reached states)

15 18

20
16
12

4
8

n

3

log2(# reached states)

18159 123 6

n

20

Figure 10.3: Comparing the adaptive technique (small dots) to plain exploration
(large circles): reached states for n/2 small priority classes (left) and two large
classes (right)

various process counts n for the adaptive technique (small dots) and plain explo-

ration (large circles) on a logarithmic scale. The graphs on the left and on the right

differ in the priority scheme used. For n = 18, the plain algorithm reaches 1, 310, 716

states on the left and 3, 808, 000 on the right, whereas the adaptive algorithm reaches

only 505 abstract states on the left and 316 on the right. The right scheme allows

more compression due to larger priority classes; the 316 abstract states reached by

the adaptive algorithm very compactly represent the 3, 808, 000 concrete ones. In

all cases, the adaptive algorithm took nearly zero time; for the plain algorithm the

largest time measured is 7:16min.

In a second set of experiments, we compare the memory use of the adaptive

technique with standard symmetry reduction, based on the induced structure’s au-

tomorphism group (figure 10.4). For the highly fragmented scheme on the left, the

standard algorithm does quite poorly (thus again the logarithmic scale): for n = 18,

it reaches 78, 729 states, compared with 505 adaptively. The maximum symmetry

154

13

6 12
4
7

15 18

200

0
100

300

3

400

181596

n

reached abstract states

3 12

16

9

log2(# reached abstract states)

10

n

Figure 10.4: Comparing the adaptive technique (small dots) to standard symmetry
reduction (large circles); priority schemes as in figure 10.3

group is the product of the nine transpositions (1 2) through (17 18), yielding a

group size and expected compression factor of only 29 = 512. This effect is much

less severe for the less fragmented scheme on the right (linear scale), as is clearly

revealed by the graph.

In a third set of experiments, we directly investigate how the adaptive method

scales with increasing fragmentation; the idea for doing this is again borrowed

from [SG04]. The resource controller example with k priority classes is run with

a large number of 80 processes. The objective is to look for states where a process

holds the resource while the resource is globally recorded to be free. In a first vari-

ant, denoted “1, 1, . . . , rest”, all priority classes but the last contain a single process;

the last contains the rest. In a second variant, denoted “2, 2, . . . , rest”, all classes

but the last contain two processes; the last contains the rest. We see from table 10.1

that the number of reached states grows roughly linearly with k; computation times

are very reasonable. For fixed k, the fragmentation grows with increasing size of

the initial k classes (1 vs. 2), since then the final class (hosting the majority of the

processes) becomes smaller.

For k ≤ 5, data obtained with the GQS-based method were provided in

[SG04]. Those running times are an order of magnitude higher, although they of

course depend on the machine used. Reproducible memory data for these examples

(such as the number of reached states) were not given in [SG04].

155

“1, 1, . . . , rest” “2, 2, . . . , rest”
k n Time # states Time # states
2 80 1s 558 1s 789
3 80 2s 792 4s 1245
5 80 4s 1251 13s 2121
7 80 8s 1698 24s 2949

10 80 14s 2346 45s 4101
15 80 28s 3366 83s 5781
20 80 44s 4311 118s 7161
25 80 62s 5181 151s 8241

Table 10.1: Adaptive symmetry reduction against increasing fragmentation

10.8 Conclusions and Bibliographic Notes

In this chapter we presented a new adaptive method for exhaustive state space

exploration. It is intended for, and efficient with, approximately fully symmetric

systems, where many transitions are shared by most processes. Verification of this

feature is not required; the method is exact for any input. We introduced the notion

of subsumption: a state subsumes another if its orbit contains that of the other

one. Subsumption induces a quotient structure with an identical set of reachable

states. We focused on full symmetry, since this type is the most frequent and

profitable in practice. The adaptive method can be implemented as well for rotation

groups; critical is the ability to represent and manipulate groups succinctly. The

implementation uses an explicit state representation. We believe the algorithm

can be incorporated into the Mur ϕ model checker and extend its applicability to

asymmetric systems.

In practice, system models often use global variables for communication.

These may appear in the edge predicate φ, and they may be assigned as a side-

effect of a transition. Most global variables have no bearing on the symmetry of

the model. This includes synchronization variables such as semaphores, and the

busy variable in the resource controller example [SG04], which indicates whether

156

the server is currently serving a request. The definitions of subsumes and represents

must be modified to ensure that these global variables are identical: ŝ . t̂ requires

agreement on them.

Conditions on and assignments to ID-sensitive variables (section 4.1, 54) may

impact symmetry and must thus be taken into account when determining a suitable

partition Q for an edge A
φ,Q−→ B. Suppose, in a client-server model, after each

service to a client, control must be passed back to the server, indicated by a pointer

p reset to index 1 after each client transition. This pointer is an ID-sensitive global

variable; the assignment p := 1 implies a partition | 1 | 2, . . . , n | on the edge, or even

finer, if symmetry is violated otherwise.

The results of this chapter first appeared in [Wah07]. Among the many

related publications on the use of symmetry for state space exploration, one of the

first to deal with partially symmetric systems is [ET99]. The authors present the

notions of near and rough symmetry. In the former case, symmetry violations are

allowed for transitions originating from symmetric states. Such transitions can serve

as a tie-breaker in applications where priority decides which process gets to enter

some exclusive local state first. The second notion is defined using an involved

concept of coverage among transitions of individual components. Both near and

rough symmetry are defined with respect to a Kripke structure; especially for rough

symmetry it is unclear how to verify it on a high-level system description. Examples

are limited to versions of the Readers-Writers problem.

This work was generalized in [EHT00] to virtual symmetry, the most general

condition that allows a bisimilar symmetry quotient. A limitation of all preceding

approaches is the existence of a strict precondition for their principal applicability.

As with [ET99], it is left open whether virtual symmetry can be verified efficiently;

the techniques presented in [EHT00] seem to incur a cost proportional to the size

157

of the unreduced Kripke structure. On the other hand, bisimilarity makes these ap-

proaches suitable for full µ-calculus model checking, whereas the adaptive technique

trades “property coverage” in for “system coverage”.

We can compare the adaptive technique with virtual symmetry and its spe-

cial cases in [ET99] using the example from section 10.2. The structure induced

by the local state transition diagram in figure 10.1 on 141 is not virtually symmet-

ric and hence not nearly or roughly so [EHT00, ET99]. To see this, consider the

(valid) transition (T,C, T) → (C,C, T). Applying transposition (2 3) to it we ob-

tain transition (T, T, C)→ (C, T,C), which is invalid, but belongs to the structure’s

symmetrization [EHT00]. Virtual symmetry requires a way to permute the target

state that makes the transition valid, which is impossible here. As a corollary, this

structure is not bisimilar to its natural symmetry quotient.

Symmetry detection solves the problem of suspected but formally unknown

symmetry by inferring structure automorphisms from the program text; a recent ap-

proach is given in [DM05]. This solution is principally different from ours. A struc-

ture automorphism is global in character, being defined over the transition relation.

It ignores the possibility of a large part of the state space being unaffected by symme-

try breaches. The adaptive approach, which can be viewed as on-the-fly symmetry

violation detection, operates directly on the Kripke structure. As such, it can reduce

local substructures with more symmetry than revealed by global automorphisms.

Closest in spirit to the present work is that by P. Sistla and P. Godefroid

[SG04], who also target arbitrary systems and properties. A guarded annotated

quotient is obtained from a symmetric super-structure by marking transitions that

were added to achieve symmetry. As an advantage, this method can handle arbitrary

CTL* properties. In the technique of this chapter, annotations apply to states, not

edges, and seem more space-efficient; in [SG04] there can be multiple annotations to

a quotient edge. Further, the adaptive method does not require any preprocessing

of the program text, such as in order to determine a symmetric super-structure.

158

Chapter 11

Symmetry and Parameterized

Reasoning

Overview. In this chapter we take a look at a much wider and more general

problem in verification, known as parameterized reasoning. We discuss complexity

issues and present an efficient solution to a decidable and practically relevant variant

of this problem. This solution collapses many systems that belong to the same family

into a single aggregate system, over which we can collectively verify properties of the

family. The connection with symmetry reduction is given by the aggregate inheriting

symmetry from the members of the family. We show an easy-to-implement way to

exploit the symmetry in the aggregate.

In all techniques in this dissertation so far, we considered systems with repli-

cated components and assumed to be given a number n of processes. That is, when

presenting input to a model checker, the number n had to be instantiated to a con-

stant. To increase generality, we can instead view n as a parameter, such that a

value for n is no longer part of the input to the model checker. The parameterized

verification problem is to decide whether a given temporal-logic property holds for

159

all (i.e. infinitely many) instances of the size parameter. It is quite easy to see that

this problem is related to the Halting problem for Turing machines in a way that

makes it undecidable [AK86].

There are two principal ways of approaching parameterized verification al-

gorithmically. One is to identify decidable subclasses of parameterized systems. To

this end, many authors quite heavily restrict both the systems and the properties

and give more or less efficiently verifiable conditions under which these properties

hold for all instances. The other way is to realize that it is often possible and suf-

ficient to consider a bound on the parameter size. Some applications suggest such

a bound themselves, for example the number of components that fit on a particu-

lar circuit board. In other cases, verification engineers may find a correctness result

that holds for a large number of components acceptable if all-inclusive parameterized

techniques cannot handle their design.

In this chapter we develop a new approach to bounded parameterized veri-

fication. The goal is to verify—automatically and efficiently—temporal logic prop-

erties of an arbitrary parameterized system for a large finite range of values of the

parameter. This can be accomplished, in an unsophisticated way, by analyzing the

individual systems one by one, ignoring their common origin. This approach quickly

becomes inefficient if the range for the parameter is nontrivial: in each run, both the

modeling step and the verification are repeated, perhaps with only minor changes.

To address these shortcomings, we present a simple but effective technique to

merge all instances in the given finite range into a single aggregate structure capable

of simulating all systems from the range in one fell swoop. States of small systems

(with few components) can be embedded in states of larger systems. The key is

that we annotate each such embedding in a space-efficient way with the number of

components in the embedded state, thereby making the merging lossless. Symbolic

data structures such as BDDs can then be used to explore the aggregate structure

160

in only little more time than (sometimes the same time as) it takes to traverse the

largest of the original structures. This compares favorably with the cumulative time

to analyze all structures one by one.

It is not obvious that the aggregate method outperforms the naive one. In

fact, the findings of this method seem to contradict the principle of decomposing

large systems into small, verifiable units, and then re-composing the results into a

final report. The reason why in our case aggregation outperforms decomposition

is that the components—here: instances of a parameterized system—are of similar

form, suitable for a monolithic model. Moreover, we exert the power of symbolic

data structures to compactly represent a large number of similar structures, at a

cost much less than the sum of the costs to describe the individual entities.

The method developed in this chapter is applicable to an arbitrary, possibly

inhomogeneous, finite system family, irrespective of any restrictions on the syntax

of the system description or property. Given this much flexibility, it is well possible

that the property under investigation is true for some but not for all instances, i.e.

formulas may not be preserved across system sizes. In such cases, most traditional

parameterized techniques are unlikely to be useful. In contrast, the technique pre-

sented in this chapter is capable of reporting the exact set of parameter values for

which the property is incorrect, still with a single verification run. This provides an

invaluable hint for debugging.

In the second part of this chapter, we build a bridge to symmetry reduction

by considering the special case of families of symmetric systems. We show that the

aggregate representation of all instances Mn by a single one, M , preserves the sym-

metry. Permutations, commonly used to formalize symmetry, are restricted to those

that respect the special format of the states in the aggregate structure. We then

demonstrate that with a careful encoding of M , this restriction can be ignored in

an implementation: existing symmetry reduction algorithms can be applied without

161

any changes. We emphasize that even though for homogeneous systems full param-

eterized verification may apply, a front-end is still required that checks whether the

given system conforms to the imposed restrictions. Furthermore, this check may

very well turn out negative, since symmetry alone is insufficient. None of this is of

any concern with the aggregate method.

The aggregate approach can be viewed as a supplement to parameterized

verification. It trades the benefit of solving the verification problem for infinitely

many instances of a system, in exchange for greatly enhanced practicability. Indeed,

the technique does not require any manual reasoning, imposes no restrictions on the

input syntax, and is easy to implement.

11.1 Aggregating a Family of Systems

The goal of this chapter is to develop an approach to parameterized verification that

works for any bounded family of systems derived from a synchronization skeleton

parameterized by the number n of processes, and arbitrary CTL* properties. Let l

be the number of local states occurring in the skeleton and AP be a set of atomic

propositions to be used in temporal logic formulas. We omit global variables from

the state description for now. Their presence is mostly immaterial to the techniques

developed in this chapter, as we discuss in section 11.7. A global state s is thus a

tuple (s1, . . . , sn) of local states of processes,1 and we have Sn = [0..(l− 1)]n. Given

two states s and t, let the notation si
g→ ti ∈ SKEL express that there is an edge in

the skeleton from a node labeled si to a node labeled ti such that s satisfies guard g

(over local state variables). The transition relation Rn of the n-process concurrent
1Note that in this chapter, subscripts range over system instances and superscripts range over

processes within one instance.

162

system is defined as usual as

Rn =
{

(s, t) : ∃i : i ≤ n :
(
si

g→ ti ∈ SKEL ∧ ∀j : j 6= i : sj = tj
)}

. (11.1)

With these definitions, the skeleton gives rise to a family (Mn)n∈IN of Kripke struc-

tures of the form Mn = (Sn, Rn, Ln) with Ln : Sn → 2AP .

Let now N be an integer specifying the maximum number of processes we are

interested in, i.e. we consider n ≤ N . We represent all systems M1..MN in a single

aggregate structure by forming their disjoint union, in the following sense. A state

of a particular instance Mn is given by the local states of n processes, which can be

embedded in a local state vector of length N . In order to be able to recognize the

state as a member of Mn, we fill the remaining N − n vector positions with a fresh

local state symbol, say $. Every state vector is thus a sequence of non-$ symbols

followed by a sequence of $ symbols. Intuitively, a process resides in local state $ if

its index is outside the range of the system to which the global state belongs.

Formally, we define a new Kripke structure M = (S,R,L) over the state

space S = [0..l]N . Every state in S is a vector of length N over l + 1 local states.

The embedding of the systems Mn in M is achieved as follows.

Definition 36 For n ≤ N , the completion of a state sn = (s1, . . . , sn) ∈ Sn and of

an edge (sn, tn) ∈ Rn, respectively, are defined as

c(s1, . . . , sn) = (s1, . . . , sn, $, . . . , $︸ ︷︷ ︸
N−n

) ∈ S, c(sn, tn) = (c(sn), c(tn)) ∈ R. (11.2)

The completion of sets of states and sets of transitions is defined pointwise.

The completion upgrades states and transitions to members of the aggregate struc-

ture. We call a state s ∈ S proper if there exists a number n such that s is of the

form (s1, . . . , sn, $, . . . , $), sj 6= $ for all j ∈ [1..n]. If s is proper, this number n is

163

unique, called the width of proper state s. A state in S is proper of width n exactly

if it is the completion of some state in Sn.

We are now ready to define the transition relation of the aggregate system:

R =
⋃
n≤N

c(Rn). (11.3)

R can be viewed as the disjoint union of the Rn, the disjointness being guaranteed by

the fresh local state symbol $. This definition ensures that the aggregate structure

allows only proper paths, in the following sense.

Property 37 For (s, t) ∈ R, both s and t are proper and have the same width.

Proof : It is c(Rn) = {(c(sn), c(tn)) : (sn, tn) ∈ Rn} ⊆ c(Sn)× c(Sn). States in the

completion of Sn are proper and have width n. �

Corollary 38 All states along nonempty paths in the aggregate structure M are

proper and have the same width.

Finally, the labeling function L of M is defined as follows.

L(s1, . . . , sN) =

 Ln(s1, . . . , sn) if (s1, . . . , sN) is proper of some width n

∅ otherwise.
(11.4)

We remark that L is well-defined since the width of a proper state is unique.

11.2 Efficiently Constructing the Aggregate System

In this section we illustrate how to efficiently implement the system representation

outlined before with symbolic data structures such as BDDs. The main result is

that building a BDD for the aggregate R differs only moderately from building a

BDD for any Rn.

164

The first step is to make sure there is enough space to accommodate the

additional (l+1)st local state, for each process. Representing state space S requires

dlog(l + 1)e bits per process, which is equal to dlog le bits unless l happens to be

a power of two. Hence, S can often be represented with no more bits than the

largest of the original state spaces, SN . When l is a power of two, the number of

bits increases by one per process, compared with SN .

Second, how do we implement the transition relation R? Equation (11.3) is

suitable for proving theorems about the aggregate system, but not for implement-

ing R, because it refers to the individual relations Rn, which we want to circumvent.

Fortunately, there exists a different characterization of R, paving the way for a better

solution.

Theorem 39 Let the family of systems (Sn, Rn)n≤N be given as a synchronization

skeleton. Then

⋃
n≤N

c(Rn) = {(s, t) : s is proper of some width n, and

∃i : i ≤ n :
(
si

g→ ti ∈ SKEL ∧ ∀j : j 6= i : sj = tj
)}
(11.5)

(In the expression si
g→ ti ∈ SKEL, guard g is evaluated over (s1, . . . , sn).)

Proof :

“⇒”: Let (s, t) ∈ c(Rn). Then by the definition of completion, s is proper

of width n, and ((s1, . . . , sn), (t1, . . . , tn)) ∈ Rn. By equation (11.1), there exists an

index i with the property required in (11.5).

“⇐”: Consider (s, t). From (11.1) and the second line in (11.5), we conclude

((s1, . . . , sn), (t1, . . . , tn)) ∈ Rn. From the properness of s, we conclude sk = $ and

hence tk = $ for k > n. Thus, c(s1, . . . , sn) = s, similarly for t, and therefore

(s, t) ∈ c(Rn). �

This theorem provides the ingredients for an efficient implementation of R.

165

The left side of equation (11.5) is identical to the expression defining R on the right

side of (11.3). The right side of (11.5) is almost identical to the right side of (11.1),

which defines the transition relation Rn of a single system. The only difference is the

requirement that s be proper. The reason for this requirement is that the width of a

proper state tells us the number n of processes in the system instance that contains

the state. This number is needed when a guard or an action of a skeleton edge refer

to it. An example is a guard like ∀i : si = T , where n determines the range for i.

Another example is the action tok := (tok (mod n)) + 1, where n determines the

value at which the token is reset to one.

To implement R, we divide the skeleton edges in two classes: those whose

guard does not refer to the system size n, such as a guard ¬sem with a global

semaphore variable sem, and those whose guard does refer to n, such as the guards

in the paragraph above. For the former class, we simply translate every edge as if it

was an edge of the largest system, MN . For the latter class, we need an additional

loop that iterates through the possible system sizes; see algorithm 10. In the figure,

e(p) stands for the propositional formula representing the size-independent skeleton

edge e executed by process p. Similarly, e(p, n) stands for the formula represent-

ing edge e executed by p in system Mn. The term proper(n) in line 10 symbolizes

the set of proper states of width n (expressed in current-state variables). It en-

sures that transition e(p, n) can only be executed from a state that belongs to Mn.

The computation of proper(n) can be pulled out of the loop beginning in line 6.

We can see that for the second class of edges, the number of systems N we

consider enters the complexity quadratically. We remark, however, that the majority

of the edges in a skeleton defining a parameterized system usually belong to the first

class, since dependence of transitions on the system size tends to destroy the regular

system structure. Moreover, quite frequently edges that seem to depend on n can

be rewritten such that the dependence goes away. Consider a conjunctive guard of

166

Algorithm 10 Implementation of the aggregate transition relation R

1: R := ∅
2: for p := 1 to N do
3: for all edges e independent of the system size do
4: R := R ∨ e(p)
5: for n := 1 to N do
6: for p := 1 to n do
7: for all edges e dependent on the system size do
8: R := R ∨ (proper(n) ∧ e(p, n))

the general form ∀i : h(i). In the context of the aggregate structure, we can think

of this guard as expressing the condition that every index i satisfy h(i) unless i is

greater than the width of the current state (i.e. i is “out of scope”). In this case the

guard is to be ignored. Thus, the formula can be rewritten as ∀i : (h(i)∨si = $) over

the entire range [1..N], independent of the actual system size. Similarly, disjunctive

guards ∃i : h(i) can be rewritten as ∃i : h(i) ∧ si 6= $.

Finally, consider a system in which no edge depends on the system size. In

this case, equation (11.5) can essentially be replaced by (11.1). In particular, the

properness requirement need not be enforced in source or target states in R, since

properness is propagated from the initial states during model checking (see next

paragraph how proper initial states are constructed). In other words, it is then

R = RN , making the solution space-optimal. Although this exact situation may be

rare in practice, it shows the asymptotic complexity of the technique as the number

of dependencies on the system size decreases.

Implementing the labeling function L amounts to computing sets of states

labeled with a particular atomic proposition. As an example, suppose I is a distin-

guished initial local state. For any n, this entails an initial global state of Mn with

components s1 = . . . = sn = I. According to equation (11.4), we can aggregate the

167

initial states of all systems Mn into the following set of initial states of M :

1. (I, $, $, . . . , $)

2. (I, I, $, . . . , $)
...

N. (I, I, I, . . . , I)

A BDD for this set can efficiently be derived from the set P of proper states using

the formula P ∧ ∀i : i ≤ N : (si = I ∨ si = $). The BDD representing the set of

proper states of a certain width n has no more nodes than there are bits used to

represent a state. It is computed with a loop over all conceivable indices 1, . . . , N .

Indices greater than n are constrained to be equal to $, all others are constrained

to be different from $. The set of all proper states (of any width) can be obtained

as the union over sets of proper states of a specific width. These BDDs are all small

in practice and have to be computed only once.

11.3 Verification over the Aggregate System

We are now ready to realize the main goal of this chapter of the dissertation: to

reduce the verification of all systems up to size N to the verification of the aggregate

system M . We accomplish this by establishing N bisimulations, one between each

Mn and M , which contain pairs of a state and its completion:

Lemma 40 For any n ≤ N , the relation sn ∈ Sn ∼ c(sn) ∈ S is a bisimulation

relation between structures Mn and M .

Proof : Let sn = (s1, . . . , sn) ∈ Sn, hence c(sn) = (s1, . . . , sn, $, . . . , $) ∈ S. (i) By

the definition of the labeling function L, we have L(c(sn)) = Ln(sn), since c(sn) is

proper of width n. (ii) For tn such that (sn, tn) ∈ Rn, we have tn ∼ c(tn). Since

(sn, tn) ∈ Rn, we get (c(sn), c(tn)) = c(sn, tn) ∈ c(Rn) ⊆ R by (11.3). (iii) Con-

168

versely, consider some t ∈ S such that (c(sn), t) ∈ R. By (11.3), there exists

m ≤ N such that (c(sn), t) ∈ c(Rm). From c(sn) ∈ c(Sm), we derive m = n,

hence t ∈ c(Sn). This allows us to conclude the existence of tn with c(tn) = t, thus

(c(sn), c(tn)) ∈ c(Rn) and (sn, tn) ∈ Rn. �

We point out that there is in general no way to define a fixed initial state

of M such that for every n, the initial states of Mn and M are bisimilar (if there

was, the Mn would all be bisimilar to each other by transitivity). Instead, for each

n an appropriate initial state of M must be chosen. This suffices for our purpose,

which is to prove that a property true of all individual systems Mn is also true of

the aggregate system M , and vice versa. For n ≤ N , let sn ∈ Sn be the state of Mn

with respect to which the property is to hold, and define

Σ = {c(sn) ∈ S : n ≤ N} . (11.6)

All states c(sn) are proper and thus suitable as a start state of a path in M .

We can now formulate the main result of this section:

Theorem 41 Let f be a CTL* formula, and sn, Σ as above. Then

∀n : n ≤ N : Mn, sn |= f iff ∀s : s ∈ Σ : M, s |= f. (11.7)

Proof : We exploit that structures with a bisimulation relation between them

satisfy the same CTL* formulas with respect to bisimilar states (theorem 10).

⇒: Given s ∈ Σ, let sn such that s = c(sn). Then sn ∼ s. Further

Mn, sn |= f as given, and hence M, s |= f follows with lemma 40.

⇐: Given n ≤ N , we have M, s |= f for s = c(sn) ∈ Σ. Since sn ∼ c(sn),

the claim Mn, sn |= f follows with lemma 40. �

169

Theorem 41 can be viewed as identifying a claim of the form “for all num-

bers n: . . . ” and a claim of the form “for all states s: . . . ”. The latter is suitable to

be approached with symbolic data structures that reason over sets of states, such as

BDDs. Indeed, if BDDf denotes the set of states of M that satisfy formula f , then

the condition on the right of equation (11.7) is equivalent to Σ ⊆ BDDf .

We remark that the meaning of formula f implicitly depends on n, namely

through the labeling functions Ln. These may assign a given atomic proposition to

different states in different systems; thus EF q may mean different things depending

on the system.

How do negative verification results over M relate to the family of structures

(Mn)n≤N? Assume the proof of ∀s : s ∈ Σ : M, s |= f (right side of (11.7)) fails.

Then there exists a nonempty set V ⊆ Σ of states s such that M, s 6|= f . By the

definition of Σ, all states in V are proper; the set width(V) = {width(s) : s ∈ V }

contains precisely the parameter values pointing to the delinquent systems. This

set can give valuable information for debugging; section 11.6 presents an example

of this phenomenon. Moreover, consider a particular n ∈ width(V). If the failed

verification of f over M admits a counterexample path, say p, then p can be mapped

to a path in Mn by projecting every state along p to the first n components. The

result is a valid counterexample path in Mn, due to the bisimulation between the

structures: the two paths correspond.

Another consequence of the path correspondence is that the diameter and

the girth of Kripke structure M , i.e. the distance between its most distant nodes

and the length of its longest simple path, respectively, are equal to the maximum

diameter, resp. girth, of any of the Mn. These numbers are important complexity

measures in symbolic model checking. For example, the diameter is an upper bound

on the number of image computations it takes for reachability analysis to converge.

As a result, the time complexity of model checking the CTL formula EF bad over M ,

170

measured in number of image steps, is equal to the maximum time complexity, over

all structures Mn, of model checking this formula over Mn.

11.4 Symmetric Families

Intuitively, due to the strong correspondence between the given system family

(Mn)n≤N and the aggregate M , one might expect that symmetry uniformly present

in all of the Mn carries over to M . In proving this conjecture, one encounters the

difficulty that the Mn have different numbers of replicated components. Thus per-

mutations act on different sets of indices and cannot be compared across the Mn or

related to M . A unifying solution is to let permutations from Sym[1..N] act on all

states, even with less than N components, after upgrading the states to dimension N

using the completion operator. This step introduces the $ symbol into the state,

which, due to its special meaning, requires special treatment: we have to make sure

permutations preserve the properness of a state. Otherwise, a transition between

proper states could be permuted into a pair of improper states (by definition not a

transition). We therefore first define a restricted permutation action, as follows.

Definition 42 For any π ∈ Sym[1..N] and s ∈ S, define

π[s] =


π(s)

if s is proper of some width n

and ∀i : i > n : π(i) = i

s otherwise,

(11.8)

where as usual π(s) = π(s1, . . . , sN) = (sπ(1), . . . , sπ(N)). This definition extends

in the pointwise fashion to transitions and to sets of states and transitions. It can

be shown that the relation s ≡ t iff ∃π : π[s] = t is an equivalence. The condition

∀i : i > n : π(i) = i guarantees that no value i is permuted across the boundary

between n and n + 1. Since si = $ for all i > n in a proper state s, it is irrelevant

171

how permutations act on such i, as long as they respect this boundary. The weaker

condition ∀i : i > n : π(i) > n has the same effect. Regarding the “otherwise”

case of equation (11.8), note that it applies not only to improper states, but also to

proper states for which π violates the boundary.

Property 43 For any π ∈ Sym[1..N] and s ∈ S, s is proper if and only if π[s] is

proper. If both proper, they have the same width.

Proof : If s is improper, then π[s] = s, so π[s] is also improper. If s is proper, but π

violates the properness boundary, then again π[s] = s, so π[s] is proper. Otherwise,

with n as in (11.8), π(i) = i > n for all i > n, hence sπ(i) = $. Due to bijectivity

of π, we have π(i) ≤ n for all i ≤ n, hence sπ(i) 6= $, so π[s] is proper; the claim of

property 43 about the same width is immediate. �

We now define the notion of uniform symmetry for a parameterized system.

In order to overcome the technical barrier that permutations acting on different

systems have different domains, we use once again completions.

Definition 44 The family (Mn)n≤N of systems is called uniformly symmetric if

∀n : n ≤ N : ∀π : π ∈ Sym[1..N] : π[c(Rn)] = c(Rn). (11.9)

It is easy to see that (Mn)n≤N is uniformly symmetric exactly if each system Mn

satisfies π(Rn) = Rn for all permutations on [1..n]. Definition 44 provides a closed

formulation of this fact and refers to only a single permutation group, Sym[1..N].

This makes reasoning about uniformly symmetric systems convenient. We point out

that in equation (11.9), permutations π[·] act according to equation (11.8), whereas

in the expression π(Rn) = Rn, they act in the standard fashion; there is no notion

of proper states in individual systems.

The main result in this section relates symmetry in the Mn and in M :

172

Theorem 45 If (Mn)n≤N is uniformly symmetric, then M is fully symmetric.

Proof : Let an arbitrary π ∈ Sym[1..N] be given; we show π[R] = R:

π[R]
(11.3)

= π

 ⋃
n≤N

c(Rn)

 (∗)
=
⋃
n≤N

π[c(Rn)]
(11.9)

=
⋃
n≤N

c(Rn)
(11.3)

= R,

where (∗) follows from function application distributing over finite set union. �

Using this result, it remains to show that the quotient of M with respect

to the orbit equivalence relation ≡ and the special permutation action from equa-

tion (11.8) is bisimulation equivalent to M , so that we can verify CTL* properties

over the quotient without losing information. This proof is similar to the argument

used in standard symmetry reduction, provides no new insights and is thus omitted

here.

11.5 Reducing Symmetric Families

Looking at the ungainly equation (11.8) defining permutation action, one might

suspect that exploiting the symmetry in the aggregate system is more difficult or

less efficient since only certain permutations can be effectively applied to a state. In

the rest of this section, we show that this is not the case: restricting permutations

in this way preserves the quotient size.

Symmetry reduction algorithms proceed by mapping an encountered state s

to a unique representative of its equivalence class Orbit(s) with respect to the orbit

relation. As discussed in section 4.3.2, a common choice for the representative is

the orbit’s lexicographically least element, minlex(Orbit(s)), given some total or-

der ≤L on the local states. For example, in a three-process system with local

states A and B, the global states (A,A,B), (A,B,A) and (B,A,A) form an orbit,

which can be represented by the lexicographically least of the three states, (A,A,B).

173

We demonstrate in the following that such representatives can be computed with-

out worrying about the special permutation action introduced in equation (11.8).

Instead, permutations can be applied in the traditional way, with the same result:

Theorem 46 Let s be a proper state. Then

minlex{π[s] : π ∈ Sym[1..N]} = minlex{π(s) : π ∈ Sym[1..N]}. (11.10)

Proof : Let n be the width of s, and let P[s] and P(s) be the two argument sets

of the minlex operator in equation (11.10). We first show P[s] ⊆ P(s): Consider

an element π[s]. If ∀i : i > n : π(i) = i, then π[s] = π(s) ∈ P(s). If not, then

π[s] = s = id(s) ∈ P(s), for the identity permutation id ∈ Sym[1..N]. From this

subset property we conclude minlex P[s] ≥ minlex P(s).

For the converse, let s = (s1, . . . , sn, $, . . . , $). Since, by the choice of the

numerical value of the special local state $, si ≤L $ for all i, the state minlex P(s)

has the form m = (m1, . . . ,mn, $, . . . , $). We have to show that m ∈ P[s], from

which then minlex P[s] ≤ m = minlex P(s) follows. To map the proper state s to m,

we can choose a permutation π that leaves all i with i > n invariant (∀i : i > n :

π(i) = i) and permutes the first n components of s into their lexicographically least

arrangement. For this permutation, m = π(s) = π[s] ∈ P[s]. �

Theorem 46 shows that in order to map a proper state s to its orbit repre-

sentative, there is no need to worry about the special permutation action. The key

is, of course, that the local state of out-of-bounds processes, represented by $, was

chosen greater, with respect to the local state order ≤L, than any other local state.

Thus, representative mappings never move this symbol to the left in the local state

vector and therefore preserve properness of states. As a result, the quotient of M

with respect to the restricted permutation action defined in equation (11.8) is of the

same size (in fact, is the same) as the standard symmetry quotient.

174

11.6 Experimental Evaluation

In this section we compare the aggregate technique quantitatively with the naive

method for verifying bounded parameterized systems, which simply considers all

systems individually (“one-by-one”). Experimental results are obtained using BDD-

based symbolic model checking. In tables, “N” refers to the parameter bound.

We discuss the relationship between the present method and general parameterized

model checking approaches in section 11.7.

The one-by-one method and the aggregate technique have the same theoret-

ical power: they can be used to verify arbitrary parameterized systems up to some

finite bound. We show experimental results demonstrating the superior efficiency of

the aggregate method.

The first example, “McsLock”, is the queuing lock algorithm we have seen

in previous chapters. This protocol has a global variable that counts processes in

the queue (such counters are disallowed by many fully parameterized techniques).

It also has a transition that causes several processes to change their local state

simultaneously; this transition depends on the number of components in the system.

We show in table 11.1 how the aggregate method scales for an increasing number

of components. As can be seen, the BDD size for the transition relation R is only

slightly bigger than that for RN . The benefit of the aggregation is to reduce the

verification time, which it does by a factor that increases with N .

The second example is a parallel program. Written for a particular cluster of

machines, such programs have a natural upper bound on the parameter: the physical

number of CPUs in the cluster. Due to the possibility of failures and down-times,

such programs are parameterized by the number of available processors. These

characteristics make them a suitable application domain for bounded parameterized

verification.

175

We present here a variant of parallel odd-even sort, taken from [KGGK94].

This algorithm proceeds in rounds; during even rounds processors compare each

even-indexed element they own with the element’s right neighbor (which may be

owned by the next processor), analogously for odd rounds. The odd-even split

ensures mutual exclusion when changing the position of elements. The initial state

is unconstrained; the number of elements to be sorted grows with N . The CTL

property we verified is of the form AF sorted .

The Kripke structure derived from this algorithm is asymmetric since the

processors have a translational (noncyclic) communication pattern. Because of this

irregularity and the liveness-type property, we believe that most existing parameter-

ized techniques are not immediately applicable to automatically verify this algorithm

correct for all size instances.

The results in table 11.1 show again clearly the time savings obtained through

the aggregate method. In contrast to the McsLock example, the BDD for the ag-

gregate happens to be of a form that allows it to be traversed with fewer live BDD

nodes compared with the one-by-one technique. Note that the number of live BDD

nodes depends strongly on implementation details in the BDD package. On the

other hand, the number of nodes of a particular BDD does not, and indeed the

sizes of RN vs. R are as expected. The differences between RN and R are bigger

than with McsLock since the sorting problem is much less homogeneous—individual

transition relations depend a lot on the instance size.

Finally, we present the response of the method to situations in which a prop-

erty is true for some but not all size instances. The sorting procedure requires

comparing each processor’s final element to the first of the next processor; the last

processor must be treated specially. The parity (even/odd) of the final element

owned by each processor alternates if the number of elements per processor is odd.

It is easy to get the communication of the boundary cases wrong. Below is the

176

One-by-one method for n ∈ [1..N] Aggregation method for N
N BDD Size Peak Number BDD Size Peak Number

of RN of BDD Nodes Time of R of BDD Nodes Time

McsLock (N = number of processes):

5 924 19,165 2.4s 958 19,176 0s
10 2,012 384,449 1:30m 2,057 384,796 53s
15 3,082 1,797,874 39:08m 3,147 1,797,711 15:17m
20 4,173 5,142,717 6:23h 4,346 5,142,890 1:50h

Parallel Sorting (N = number of parallel processors):

5 962 37,699 3s 2,021 26,106 3s
7 1,614 144,111 52s 3,643 90,249 30s

10 2,881 673,727 21m 6,911 371,529 7m
13 4,450 2,190,163 3:30h 11,129 1,099,196 54m

Table 11.1: Comparison one-by-one and aggregate verification method

output of the method for a version of the algorithm that fails to compare the last

two elements of the last processor if the number of processors is odd:

Initial states violating "AF sorted" for N=10:

- $ $ $ $ $ $ $ $ $

- - - $ $ $ $ $ $ $

- - - - - $ $ $ $ $

- - - - - - - $ $ $

- - - - - - - - - $

Here, ’$’ represents as before the local state of out-of-bounds processors. The values

carried by active processors have been abstracted away and replaced by ’-’ to more

conspicuously expose the delinquent systems: The number of ’-’ in a global state

(i.e. in one row) equals the state’s width and thus indicates the parameter size of

the system. In our case, these sizes are all odd (1, 3, 5, 7, 9), giving a potentially

substantial hint as to where the problem lies.

177

11.7 Conclusions and Bibliographic Notes

Chapter 11 of this dissertation shows how to collapse a range of instances derived

from an arbitrary parameterized system into a single aggregate, which is detailed

enough to be able to simulate each instance. Further, initial states of the original

systems can be converted appropriately to states of the aggregate, enabling us to

verify arbitrary CTL* properties for all instances up to some finite size in one fell

swoop. The large time savings obtained in this manner come at little or no additional

space cost; the difference is sometimes masked by the fluctuating performance of

BDD-based symbolic model checking procedures. As a special case, if the systems

are individually symmetric, then so is the aggregate system, which can thus be

symmetry-reduced. The aggregate method can be viewed as, instead of symmetry

reducing and verifying all systems individually and then combining the result (“does

any of them have an error?”), combining the systems first and then applying the

reduction and verification once.

We have presented experimental results using a BDD-based implementation

of the technique. We believe the method can likewise be used with SAT-based

symbolic verification such as Bounded Model Checking (see section 2.3.3, 41); crucial

is the ability to operate on sets of states in one step. We remark on the side that

despite the common “bounded”, the goals of BMC (investigating bounded time lines

over a fixed structure) and of the aggregate technique (investigating unbounded time

lines over a bounded family of structures) are quite different.

For the presentation of this work, we have made the simplifying assumption

that the number of local states, l, is independent of the number of processes, n.

This need not be the case. For example, say a particular application requires the

processes to form a priority queue, which can be realized by having each process

keep a pointer to its successor in the queue. This pointer is part of the local state

of the process, such that l roughly equals n. We then need log n bits to store a

178

local state of a process belonging to Mn. To apply the aggregate method, we use

the same technique locally that we used at the system level: we grant every process

logN bits to store its local state, which makes this number independent of n.

Treatment of global variables. Global variables are used for communication

and synchronization among processes, and they may appear in atomic propositions

of CTL* formulas. Their presence is mostly orthogonal to the present technique. To

form the aggregate system M , we distinguish two types of global variables. Those

with range independent of the system size n (such as a Boolean semaphore) are

introduced into M with the same range. ID-sensitive global variables, i.e. those

ranging over process indices and thus with range [1..n] in Mn, are assigned a

range of [1..N] in the aggregate structure, equal to their range in structure MN .

An example is the variable tok in figure 2.3 earlier. Regarding the definition of

proper, a variable like tok must be restricted to [1..n] in a proper state of width n,

despite the variable’s range [1..N] in the aggregate. The completion operator leaves

the values of all global variables unchanged.

The results of this chapter of the dissertation were first published in [ETW06]

and compare with related work as follows. If applicable, successful approaches to

parameterized model checking (PMC) (see e.g. [Lub84, GS92, AJ99, APR+01]) have

the clear advantage that they show correctness for all sizes. The bounded and

unbounded formulations of PMC synergize when unbounded techniques reduce the

correctness for infinitely many instances to correctness up to some finite cutoff. This

cutoff depends on the communication complexity of the parameterized system and

is not guaranteed to be small [EK00, BHV03, CMP04]. The aggregate method can

therefore be used as a follow-up to cutoff-based approaches, picking up the task of

verifying the remaining finite-size family.

The disadvantage of unbounded methods is that, targeting a generally unde-

179

cidable problem, a fully automated solution that works for any input system does

not exist. Many authors forfeit completeness by imposing restrictions on the input

syntax in order to allow an algorithmic solution. In an early work, E. Clarke, O.

Grumberg and M. Browne assume the absence of global variables [CGB86], which

could be used to distinguish the number of components. The McsLock example

discussed above contains such a global counter variable. Counters may also occur

in dynamic systems that monitor the number of active components, for instance

for performance reasons. Interestingly, consider a dynamic system with an energy-

saving mode of operation, which is assumed when the active process count falls

below some threshold. If this mode has a bug, the system may be correct for a large

number of processes, but not for a small one. E. Clarke, O. Grumberg and M. C.

Browne say the following about uniform and nonuniform verification:

It is easy to contrive an example in which some pathological behavior only

occurs when, say, 100 processes are connected together. . . . Nevertheless,

one has the feeling that in many cases this kind of intuitive reasoning2

does lead to correct results. The question . . . is whether it is possible to

provide a solid theoretical basis that will prevent fallacious conclusions

in arguments of this type. [CGB86]

However, ensuring that a particular description language permits uniform verifi-

cation leads to restrictions in which many systems or properties are inexpressible.

Specifically, the property logic used in [CGB86] bans the next-time operator X and

arbitrarily nested ∃ and ∀ quantifiers over process indices, which again—like global

variables—can be used to count and thus to “cheat”. This makes some natural prop-

erties cumbersome to express, such as deadlock reachability [EK02] or even mutual

exclusion [CGB86]. In contrast, the method of this chapter—being less ambitious—

requires no restrictions on the input syntax, and is valid for full CTL* (and even
2i.e. inferring correctness for all from correctness for some—T.W.

180

the µ-calculus).

Other approaches sacrifice full automation. In [CG87], the notion of a clo-

sure process is introduced, whose definition depends on the parameterized system at

hand to a degree that seems to undermine mechanization. In [KM89], the authors

present a fairly broad induction method to reduce a family of systems to a single sys-

tem, using an invariant process, which enforces a partial order among the processes.

Finding such an invariant requires help from the designer and can be nontrivial. An

advantage of the induction method is that—like the aggregate method, but unlike

most other parameterized verification techniques— it can detect cases in which a

property is violated for some all instances. The Mur ϕ tool supports replicated com-

ponents for fully symmetric systems [ID99]. The tool automatically checks whether

the given program allows generalizing the verification result to larger systems. The

designer, however, is still left with checking the authenticity of returned error traces.

Since the aggregate method is exact, there is no need to solicit human interaction

for path-lifting, or other forms of manual assistance.

Some works on parameterized verification make use of the apparent symme-

try in systems defined using a single process template. In [EN96] and [EK00], full

symmetry of the Kripke structure is exploited by appealing to state symmetry [ES96]

of the property. In contrast, we show how to take advantage of internal symmetry

of the property and the Kripke structure through a quotient construction.

181

Part IV

Conclusions

182

Chapter 12

Summary of Results

Systems of many concurrent components naively engender intractably

large state spaces. They can nevertheless be successfully subject to ex-

haustive formal verification, provided the components can be classified

into a few types.

Most phenotypical of state explosion is that a system of many concurrent

components induces a straightforward Kripke model that is orders of magnitude

larger than the number of components. This remains true even if there exist only a

few component types, of which all components are instances. In this case the compo-

nents of the same type may be identical or very similar. It is then often possible to

collapse system states that are identical up to exchanged rôles of components of the

same type. This dissertation has contributed reduction and verification techniques

for systems of a large number of replicated components:

1. We have demonstrated effective and efficient fundamental solutions for ex-

ploiting replication. We were able to not just improve on prior approaches,

but in fact render reduction based on replication practicable.

(a) We delivered the message that compact data structures, such as symbolic

183

notations for Kripke models, are not automatically inflexible and useful

only for special purposes. They may support fewer efficient operations

than explicit, uncompressed data structures. But for many basic prob-

lems in computer science, there are many solutions, and some of them

may be designed in a way that makes them compatible with rigid for-

malisms such as binary decision diagrams. We note, however, that the

solution in chapter 5 required rather low-level manipulations, namely at

the BDD graph level. The point of that approach is that the symme-

try condition cannot be expressed efficiently at the logical level (orbit

problem, section 4.3.3).

(b) We showed an instance of the widely accepted observation that judi-

ciously integrating verification techniques can produce results that are

much stronger than the techniques can individually. Counter abstrac-

tion, a generally elegant and powerful method, is useful for systems where

component behavior is distilled into a sequence of local state changes.

Although it is in principle possible to convert component behavior given

in a high-level program into this form, the conversion itself creates a

blowup that can render the subsequent reduction meaningless. We dem-

onstrated how static analysis techniques can provide the glue needed

between the two behavior representations. As a significant side effect,

the program notation resulting from counter abstraction is amenable to

processing with symbolic data structures.

2. We extended the aforementioned fundamental techniques to more practical

and general scenarios than the mathematical definition of symmetry is imme-

diately able to address. Unfortunately, we had to deal with a discontinuity

here: small deviations from the strict preconditions of the previous techniques

cannot be healed by equally small and quick fixes. Instead, the extensions

184

require some work, not only for the algorithm designer, but also for the model

checker that implements the extended algorithms. Arguably, deviating arbi-

trarily far from the preconditions eventually requires fixes so costly that one

can do better without any attempt to exploit regularity of structure.

(a) We introduced a flexible adaptive scheme to exploiting partial symmetry

in a system of replicated components some of whose transitions may be

restricted by few asymmetric guards. We demonstrated that although the

algorithms in chapter 10 are not efficient in every case, they do not have

to be. Instead, they should focus on the important frequent cases and

may even perform poorly on the others as long as there is a mechanism

that can warn the user in those cases.

(b) We extended our algorithms to flexible environments where designs are

parameterized by the number of components, which increases reusability.

Naturally, this also increases the complexity of the problem, rendering

it, in full generality, undecidable. Two classical approaches to dealing

with undecidable or high-complexity problems are: (i) to solicit human

assistance, which makes it possible to exploit particulars of the system

at hand, and (ii) to consider a decidable version of the original problem.

The second approach is an instance of the paradigm, “if you cannot solve

the problem, change it.” In this dissertation we presented a technique

that can also be viewed as an instance of this paradigm. We made the

problem decidable by restricting the number of components to some finite

range. At first this idea seems little exciting, since the problem turns now

from an undecidable one into one that is trivially solvable by brute force,

by divorcing the family of systems into their individual members. The

contribution of chapter 11 is that we can do better than brute force. The

method of combining the finite family into a single model is attractive

185

since it leverages the power of symbolic data structures: the size of a

combined representation can be much smaller than the sum of the sizes

of the individual representations. In fact, it can be as small as the size of

the single largest one of the objects. In this asymptotic case, the smaller

systems are taken care of for free.

All results of this dissertation can be summarized and unified as follows.

Systems with replicated components tend to engender large state spaces, which is

especially striking since they have a small high-level description. On the other hand,

models of such systems often have a very regular—symmetric—structure, which can

be exploited to reduce the effort of exhaustive verification. This reduction, however,

comes at a cost: we may have to build an abstract system first, or we may have to

modify the model checking algorithm to incorporate the reduction steps on-the-fly.

These costs have long been considered too high, especially with the compact data

structures needed to represent the large systems we deal with today. As a result,

the use of symmetry was discouraged in connection with such data representations.

This dissertation has presented re-encouraging results that, so it is hoped, help

symmetry get back to where it belongs: into the center of attention of the verification

community.

186

Chapter 13

Open Problems and Further

Research

In this chapter we discuss unsolved problems that are strongly related to the topics

presented so far and could make the solutions more complete. We end by sketching

a few endeavors that go beyond this dissertation, but are still part of the grand goal

of exploiting replication.

13.1 Open Problems

We have seen, especially in the experimental chapter 9, that dynamic symmetry re-

duction and counter abstraction are roughly complementary: “specific” approaches,

i.e. those that store a system state by listing the local states of all components, can

be expected to perform poorly whenever there are a large number of components

over a small local state space. This is, in contrast, the ideal scenario for “generic”

approaches such as counter abstraction. The rule of thumb “n � l vs. l � n” is a

good asymptotic measure to predict the performance of the respective techniques,

but insufficient in practice since it hides the impact of constant factors. It would

187

likely be beneficial to have a mechanism that, given a fully symmetric problem,

decides statically (and quickly) which of the two approaches can be expected to

perform better. Such a mechanism can be used in a tool such as DySyRe to free

the user from the unpleasant choice of a particular reduction strategy.1

Adaptive symmetry reduction (chapter 10) was presented here as maintaining

the set of reachable states. We also remarked that simple next-time properties are

not preserved, roughly speaking since the subsumption reduction crudely introduces

shortcuts into the reachability graph. The temporal operator “X” is a quantitative

one: it specifies what is true after one step. The others are more qualitative in

nature, both the temporal ones such as F and G, and the branching ones, A and E.

What logic exactly is preserved by subsumption is yet open; we suspect it to be more

than reachability. Settling this question is also a matter of changing the algorithm:

in its current form, algorithm 8 does not label states with properties found to be true,

as an explicit-state CTL model checker would have to. Further, how to implement

this algorithm symbolically, using BDDs or SAT, is not immediate since some of

the operations used by it may not be efficient with those formalisms. As done with

dynamic symmetry reduction, we have to find ways to circumvent such operations

or perhaps implement them at a lower level than the logical one, say by BDD graph

manipulations.

13.2 Further Research

This dissertation does not deal with interesting individual liveness properties. We

have seen the liveness property AF sorted in chapter 11, which states that an array

of numbers is eventually sorted, independent of the nondeterministic choices an
1The Mur ϕ model checker also offers several reduction strategies (roughly: unique and multiple

representatives) and requires the user to make a choice at the command line.

188

implementation may make. The property sorted is formulated over the whole array

of numbers, not over an individual number (which in this example takes the rôle of

a component). We have also seen the fully symmetric liveness property AG(∃iTi ⇒

AF∃jCj). It is also global, since it does not specify progress of an individual process,

but only of some process, provided some process (same or not) is trying. Individual

progress of any process is written in the form AG ∀i : (Ti ⇒ AFCi). There are two

problems with this formula. The first is that it is not symmetric (see section 4.2).

This problem can be fixed as follows:

1. equivalently rewrite the formula as ∀i : AG(Ti ⇒ AFCi);

2. use symmetry to prove that (1.) holds exactly if AG(T1 ⇒ AFC1) (i.e. (1.)

instantiated with i = 1);

3. use Sym[2..n] as symmetry group to verify AG(T1 ⇒ AFC1).

That is, process 1 is no longer considered part of the replication: its variables are

treated as global. This slightly diminishes the reduction effect, but turns the formula

in (1.) into a symmetric one. The second problem, however, is that the formula

in (2.) is false under an asynchronous execution model with a nondeterministic

scheduler: given a state satisfying T1, it is possible to never consider process 1 in

the future. This is unrealistic since most schedulers have some fairness conditions

built in to them, which prevent such futures.

The temporal logic representations of fairness conditions like ∀i : GF execi,

stating that process i should be infinitely often executed, are themselves asymmetric.

Intuitively, the ∀ quantifier cannot be pushed directly in front of the execi, since this

changes the formula. Thus, fairness cannot be dealt with by making the fairness

condition part of the formula—this would destroy symmetry. The only way out is

to change the verification algorithm and make it select only fair paths. The work

by A. Emerson and P. Sistla presents a solution using automata that crawl over an

189

annotated quotient structure and keep track of which process makes a step (this

information is normally deliberately blurred in quotient structures) [ES97].

Generally, the combination of symmetry and fairness has not yet been ex-

plored to a satisfactory degree. Intuitively, symmetry attempts to anonymize com-

ponents, while fairness requires us to be particular about them, in order to determine

which of them fires how often.

Hardware verification brings with it very specific opportunities and demands

that differ too much from the ones assumed in this dissertation for it to be immedi-

ately useful in this field. We discuss such opportunities and demands.

Replication exists in many hardware designs, since the number of basic build-

ing blocks is limited. For the replication to induce symmetry, the building blocks

must be placed in a way that makes them indistinguishable. Fortunately, even this

is often the case. For example, memory arrays are huge arrangements of memory

cells, a relatively simple circuitry representing an addressable location in memory.

The surrounding circuit allows the cells to be read and written to, activated and de-

activated all in the same way, providing a genuinely and fully symmetric system (see

the work by M. Pandey [Pan97]). Nevertheless, we have not found the techniques

contributed by this dissertation to be very helpful, for two reasons:

proving symmetry: This cannot be reduced to a simple syntactic check, as it

is the case, for example, with protocol modeling languages such as Mur ϕ.

The reason is that hardware descriptions usually have a hierarchical form,

rather than one where the symmetry is already factored out for us. For exam-

ple, a 16-bit memory cell, able to hold 65536 different values, is not described

as a flat arrangement of 16 cells. Instead, it is composed of two eight-bit

cells, each of which is again composed of two four-bit cells, etc. This notation

helps keep the description succinct. Flattening the hierarchy makes the sym-

190

metry explicit, but causes an intermediate blowup. A possible solution is to

work closely with the hardware description language and extract the symmetry

from it.

CTL vs. STE: Dynamic symmetry reduction does not abstract a structure up

front, but instead performs an on-demand reduction after every image compu-

tation. This is useful for deep explorations of the state space, with respect to

some initial state. In hardware verification, on the other hand, we often care

about the relationship between the current state and the state of the circuit

after one clock cycle. For example, to verify that a memory array architecture

works correctly, we want to know whether after one step the output bits con-

tain the data of the cell that is being read, similarly for the write operation.

Such properties have the CTL form AX p, similar to the next-time expression in

Symbolic Trajectory Evaluation (STE) [Pan97]. Since only a single transition

is considered, a dynamic technique that reduces on the fly is not effective.

Another, in principle more promising, way is to use counter abstraction and

indeed build a quotient structure. Since the symmetry is full, and we don’t

have to deal with intricate phenomena that appear in protocols, such as ID-

sensitive global variables, this approach seems ideal. However, the main prac-

tical shortcoming of counter abstraction does apply: its sensitivity to the local

state space size. Concretely, for memory cells, the number of local states is

given by 2b, where b is the (common) number of bits in each cell. If each cell is

to contain just a two-byte integer, we are looking at about 65,000 local states.

Note that the remedies to local state explosion we presented in chapter 7

are unlikely to succeed. The “program” in which the hardware is described

provides few control flow mechanisms that restrict the reachability of local

states (section 7.2) or the “liveness” of the bits (section 7.3). Every local

state, i.e. every cell contents, is naturally reachable, and the bits are always

191

live since the next operation may be a read.

Symmetry is a concept that is exploited, or at least acknowledged, through-

out the arts and sciences. Close to home, SAT checkers, constraint-satisfaction

solvers and similar tools exploit symmetry by symmetry breaking (see for exam-

ple [DLSM04]). That is, during the search for a satisfying solution, the formula is

repeatedly changed by adding blocking clauses that prevent the exploration in sub-

formulas that are symmetric to ones already seen. In contrast, model checkers use

symmetry reduction: the Kripke structure is never changed; instead, encountered

states are reduced to representatives of their equivalent classes. The exact relation-

ship between (a) the notions of symmetry of a propositional formula and of a Kripke

structure (see [Rin03]), and (b) symmetry breaking and symmetry reduction is an

interesting topic to investigate. In recent years, formal verification has profited im-

mensely from the progress made in building efficient SAT solvers. It is conceivable

that we could, again, benefit if the relationship between symmetry reduction and

symmetry breaking is tight.

192

Appendix A

Select Proofs

This chapter contains long and technical proofs that would disrupt the flow of the

dissertation too much if included in the main text.

A.1 Proof of Lemma 18

Lemma 18 Algorithm 3 computes α satisfying equation (5.1).

Proof : We show termination and partial correctness.

Termination: The argument is essentially the same as for standard Bubble

Sort. Every call to swap(p, p + 1,Zbad) brings the local state of at least one of the

components p and p + 1 closer to its correct position. After at most n2 swaps,

there is no pair (p, p + 1) left that violates p ≤z p + 1. Thus, Zbad as computed in

line 2 (algorithm 3 (τ(Z))) is empty in every iteration of the for loop, Z remains

unchanged, and the condition Z = Z ′ in line 5 (α(Z)) is true.

Partial correctness: We use two observations.

(i) When the algorithm terminates, we know that for all values of p, Zbad as

computed in line 2 (τ(Z)) is empty. Hence, Z ⊆
⋂
p<n{z : p ≤z p + 1} = S

(equation (5.3)), so α(T) ⊆ S (α(T) is the final value of Z).

193

(ii) Predicate transformer τ manipulates the set Z by applying transpositions

(swap) to states in Z. Hence, as an invariant, Z and Z ′ in algorithm 3 contain

the same states up to permutations, and thus so do T and α(T) at the end.1

These observations allow us to prove α(T) = {t ∈ S : ∃t : t ∈ T : t ≡ t} as two

inclusions:

⊆: Consider t ∈ α(T). From (i) we know t ∈ S. From (ii) we conclude that

there exists t in T with t ≡ t.

⊃: Consider t ∈ S, t ∈ T such that t ≡ t. From (ii) we conclude that there

exists π such that π(t) ∈ α(T). From (i) we conclude π(t) ∈ S. Since there is

exactly one representative of t in S, we derive π(t) = t, so t ∈ α(T). �

A.2 Proof of Theorem 28

Theorem 28 Relation ≈ is an equivalence relation on S. Moreover, the quotient

structure M of M with respect to ≈ is bisimilar to M with the canonical bisimulation

relation B := {(s, [s]) : s ∈ S} relating a state to its equivalence class under ≈.

Proof : We start by showing that ∼ is an equivalence relation on the local state

space. Reflexivity and symmetry of∼ follow immediately from properties of equality.

For transitivity, (PC x, x
1, . . . , xm) ∼ (PC y, y

1, . . . , ym) and (PC y, y
1, . . . , ym) ∼

(PC z, z
1, . . . , zm) implies PC x = PC z. Assume an i such that variable vi is live

at PC x. From the equivalence of the first two states, we conclude xi = yi, and from

the last two, we conclude yi = zi, thus xi = zi. Regarding ≈, since both “agreement

on all global variables” and ∼ are equivalence relations, so is ≈.

For the second part, the quotient M = (S,R) is defined as S = {[s] : s ∈ S}

(set of equivalence classes of ≈), and R = {(s, t) ∈ S×S : ∃s ∈ s, t ∈ t : (s, t) ∈ R}.

Given s ∈ S and s = [s], we have to show two things:
1In general, however, α cannot be expressed as a single permutation.

194

1. Assume t such that (s, t) ∈ R. Then let t = [t]. t and t are related under B.

By definition of R, it follows that (s, t) ∈ R.

2. Assume t such that (s, t) ∈ R. Then, by definition of R, there exist s′ ∈ s,

t′ ∈ t such that (s′, t′) ∈ R. By the semantics of asynchronous execution, this

means that s′, t′ agree on the local states of all processes except one, say p,

which possibly changes its local state from lp(s′) to lp(t′). Since s, s′ ∈ s, they

have the same PC value, they agree on all global variables, and further on

all local variables of process p (in fact, of all processes) except possibly some

dead variables, whose values, by definition, are not used at the current PC . It

follows that executing P from local state s gives the same result t′ as executing

P from s′, hence (s, t′) ∈ R. We can therefore choose t := t′ and have t ∈ t

and (s, t) ∈ R. �

A.3 Proof of Theorem 32

Theorem 32 State ŝ = (s,P) subsumes state t̂ = (t,Q) exactly if

1. i ≡Q j ⇒ (i ≡P j ∨ ti = tj) is a tautology, and

2. t ∈ Orbit(ŝ), i.e. there exists σ ∈ 〈P〉 such that σ(s) = t.

Proof :

⇒: 2. follows from t ∈ Orbit(t̂) ⊆ Orbit(ŝ). Regarding 1., consider i, j with

i ≡Q j. If ti = tj , property 1. is proved. Assume now ti 6= tj , and let π = (i j), the

transposition of i and j. This permutation is generated by Q, thus π(t) ∈ Orbit(t̂) ⊆

Orbit(ŝ). Therefore, there exists a permutation β ∈ 〈P〉 that satisfies β(s) = π(t).

Combining this with σ(s) = t (from 2.), we get β(σ−(t)) = β(s) = π(t). Thus,

we have found a permutation α := β ◦ σ− that satisfies α(t) = π(t) and α ∈ 〈P〉

since β, σ ∈ 〈P〉. (However, we are not done with the proof since α(i) may still be

different from j, so we can not yet conclude i and j are P-equivalent.)

195

Now consider the sequence i, α(i), α2(i), Since α ∈ 〈P〉, all these

elements belong to the same cell within P. The goal is now to show that j is part

of this sequence, which shows that i ≡P j and thus completes the proof.

Due to the finite domain, the sequence contains a repetition, and due to α’s

bijectivity, there is in fact an index x > 0 such that i = αx(i). Now consider the

local state sequence

ti , tα(i) = tπ(i) = tj , tα2(i) , . . . , tαx(i) = ti .

This sequence begins and ends with the same local state ti. It also contains an

element—tj— that differs from ti. Thus, there is an index k such that tαk(i) 6= ti,

and tαk+1(i) = ti. tαk(i) is the αk(i)’th element of t, and tαk+1(i) is the αk(i)’th

element of α(t). Recalling that t and α(t) are identical except for positions i and j,

and observing that αk(i) 6= i since t differs at positions i and αk(i), it follows that

αk(i) = j. Hence, j is P-equivalent to i.

⇐: Given are σ (from 2.) and u ∈ Orbit(t̂), i.e. there exists π ∈ 〈Q〉 that

satisfies π(t) = u. We have to find a permutation α ∈ 〈P〉 that satisfies α(s) = u.

A first choice is α := π ◦ σ, since then α(s) = π(σ(s)) = π(t) = u. However, P may

not generate π and thus may not generate α. We construct a permutation π′ with

the following requirements:

(i) π′(t) = π(t), and

(ii) π′ ∈ 〈P〉.

Once we have that, we choose α := π′ ◦ σ. Since P generates both π′ and σ, it is

α ∈ 〈P〉, and α(s) = π′(σ(s)) = π′(t) = π(t) = u.

We construct π′ incrementally for each cell Q ∈ Q. We show that for all

elements from Q, the required properties are satisfied. Doing this for all Q ∈ Q

yields the desired permutation on [1..n]. We distinguish two cases:

196

(a) Q is fully contained in some P ∈ P. In this case, choose π′(i) = π(i) for all

i ∈ Q. Then, on Q, π′ is a permutation and satisfies requirements (i) (tπ′(i) = tπ(i))

and (ii) (since Q ⊆ P).

(b) Q is not fully contained in any P ∈ P. Then there are two elements

i, j ∈ Q such that i 6≡P j. By property 1 in the theorem, we conclude that ti = tj .

Now let k be any element of Q. If k ≡P i, then k 6≡P j, thus tk = tj = ti. If k 6≡P i,

then also tk = ti. In other words, tk has the same value for any k ∈ Q. We choose

π′ to be the identity on Q, which fulfills requirements (i) and (ii). �

197

Appendix B

The Readers-Writers Protocol

in DySyRe

To demonstrate the way programs are written in DySyRe, we give the full DySyRe

description of a deliberately simple example, an instance of the Readers-Writers

problem, in figure B.1. The readers’ indices are [0..(r−1)], those of the writers are

Ti CiNi

i < r ∧ ∀j ≥ r : sj 6= C

i ≥ r ∧ ∀j : sj 6= C

Figure B.1: Synchronization skeleton for a version of the Readers-Writers problem

[r..(n−1)]. There are three local states: N , T , and C. Transitions from N to T and

from C to N are unrestricted. A reader (i < r) may transit from T to C if no writer

currently resides in C (∀j ≥ r : sj 6= C). A writer (i ≥ r) may transit from T to

C if no process currently resides in C (∀j : sj 6= C). Intuitively, since readers only

read, they may enter their critical section at the same time, as long as the writer is

outside its own. (This instance resembles the one derived from the synchronization

198

skeleton in figure 10.1 on 141.)

The DySyRe description to realize the Kripke structure derived from this

skeleton as a BDD is shown on the next pages; text of the form // ... is a com-

ment. To make it more legible, the description is split across different figures. The

declaration section of the file is shown in figure B.2. Figure B.3 shows code for

auxiliary predicates used in defining the transition relation. The next two figures,

B.4 and B.5, show the code that implements the transition relation. Finally, fig-

ure B.6 presents the code for the atomic propositions that the user has declared in

the beginning of the file and that are thus visible at the property prompt. These

are the propositions for the initial states init and for the undesirable states bad,

violating mutual exclusion.

199

// Readers-Writers protocol

Parameter
r ("number of readers"); // text in parentheses is optional
w ("number of writers"); // ditto

Const
READERS = 0; // process group 0 represents the readers
WRITERS = 1; // process group 1 represents the writers

Order
concat; // concatenated variable order

Clique[r] // r readers (parameter)
rstate: enum { N, T, C }; // rstate = local state of reader

Clique[w] // w writers (parameter)
wstate: enum { N, T, C }; // wstate = local state of writer

Proposition
Init; // propositions are only declared here
Bad; // and defined in the Code region below

Figure B.2: DySyRe code for Readers-Writers: declarations

200

Code

// An auxiliary predicate: some reader is in local state C.
// Computed as a disjunction over all readers
UBDD exists_reader_C(const StateSpace& S) {
UBDD result = UBDD::Zero();
for (ushort p = 0; p < S.r; p++)
result |= UBDD::equal(S.rstate(p), StateSpace::rstate::C);

return result; }

// An auxiliary predicate: some writer is in local state C
// Computed as a disjunction over all writers
UBDD exists_writer_C(const StateSpace& S) {
UBDD result = UBDD::Zero();
for (ushort p = 0; p < S.w; p++)
result |= UBDD::equal(S.wstate(p), StateSpace::wstate::C);

return result; }

// An auxiliary predicate: some process is in local state C
inline UBDD exists_C(const StateSpace& S) {
return exists_reader_C(S) | exists_writer_C(S); }

Figure B.3: DySyRe code for Readers-Writers: auxiliary predicates

201

// Transition relation: disjunction over all transitions
UBDD R(const StateSpace& S) {

UBDD R = UBDD::Zero();
UBDD for_p;

// Readers
for (ushort p = 0; p < S.r; p++) {
for_p = UBDD::Zero();

// N --> T
for_p |= UBDD::equal(S. rstate(p), StateSpace::rstate::N) &

UBDD::equal(S._rstate(p), StateSpace::rstate::T);

// T --> C
for_p |= UBDD::equal(S. rstate(p), StateSpace::rstate::T) &

UBDD::equal(S._rstate(p), StateSpace::rstate::C) &
(! exists_writer_C(S)); // no writer in C

// C --> N
for_p |= UBDD::equal(S. rstate(p), StateSpace::rstate::C) &

UBDD::equal(S._rstate(p), StateSpace::rstate::N);

// all readers but p and all writers invariant
for_p &= S.invariant_but(p, S.READERS) &

S.invariant_sbn(S.WRITERS);

R |= for_p; }

// (continued on next page)

Figure B.4: DySyRe code for Readers-Writers: Readers’ transitions

202

// Writers
for (ushort p = 0; p < S.w; p++) {
for_p = UBDD::Zero();

// N --> T
for_p |= UBDD::equal(S. wstate(p), StateSpace::wstate::N) &

UBDD::equal(S._wstate(p), StateSpace::wstate::T);

// T --> C
for_p |= UBDD::equal(S. wstate(p), StateSpace::wstate::T) &

UBDD::equal(S._wstate(p), StateSpace::wstate::C) &
(! exists_C(S)); // no process in C

// C --> N
for_p |= UBDD::equal(S. wstate(p), StateSpace::wstate::C) &

UBDD::equal(S._wstate(p), StateSpace::wstate::N);

// all writers but p and all readers invariant
for_p &= S.invariant_but(p, S.WRITERS) &

S.invariant_sbn(S.READERS);

R |= for_p; }

return R; }

Figure B.5: DySyRe code for Readers-Writers: Writers’ transitions

203

// Set of initial states: all processes in N
UBDD Init(const StateSpace& S) {
UBDD Init = UBDD::One();
for (ushort p = 0; p < S.r; p++)
Init &= UBDD::equal(S.rstate(p), StateSpace::rstate::N);

for (ushort p = 0; p < S.w; p++)
Init &= UBDD::equal(S.wstate(p), StateSpace::wstate::N);

return Init; }

// Set of bad states: a writer and some other process in C
UBDD Bad(const StateSpace& S) {
UBDD Bad = UBDD::Zero();

// (a) two writers in C:
for (ushort p = 0; p < S.w; p++)
for (ushort q = 0; q < S.w; q++)

if (p != q)
Bad |= UBDD::equal(S.wstate(p), StateSpace::rstate::C) &

UBDD::equal(S.wstate(q), StateSpace::rstate::C);

// (b) a writer and a reader in C:
for (ushort p = 0; p < S.r; p++)
for (ushort q = 0; q < S.w; q++)

Bad |= UBDD::equal(S.rstate(p), StateSpace::rstate::C) &
UBDD::equal(S.wstate(q), StateSpace::rstate::C);

return Bad; }

// end of Code region and end of DySyRe input file

Figure B.6: DySyRe code for Readers-Writers: atomic propositions

204

Appendix C

The MCS Queuing Lock

Algorithm

In this appendix we list the original code for the list-based queuing lock algorithm

from [MS91]. The algorithm achieves mutually exclusive access to a resource using

a shared lock, yet the spin instructions that cause a process to wait for access to

the resource involve only process-local variables. See [MS91] for a motivation of this

feature.

A process is of type qnode and has a local variable locked and a pointer next

to the successor in the queue; see figure C.1. The protocol consists of procedures

to acquire and release a lock; processes are supposed to call these procedures in

alternation (which is not enforced by the protocol). The processes execute based on

an asynchronous model of concurrency. Each line in the procedures is considered

an atomic transaction.

205

type qnode = record
next: ^qnode
locked: bool

type lock = ^qnode

procedure acquire_lock(L: ^lock, I: ^qnode)
I->next = nil
predecessor: ^qnode = fetch_and_store(L,I)
if predecessor != nil // queue was nonempty
I->locked := true
predecessor->next := I
repeat while I->locked // spin

procedure release_lock(L: ^lock, I: ^qnode)
if I->next = nil // no known successor
if compare_and_swap(L, I, nil) // returns true iff it swapped

return
repeat while I->next = nil // spin

I->next->locked := false

Figure C.1: MCS list-based queuing lock [MS91, figure 5]

206

Bibliography

[AJ99] Parosh Aziz Abdulla and Bengt Jonsson. On the existence of network

invariants for verifying parameterized systems. In Correct System Design

(CSD), 1999.

[AK86] Krzysztof Apt and Dexter Kozen. Limits for automatic verification of

finite-state concurrent systems. Information Processing Letters (IPL),

1986.

[APR+01] Tamarah Arons, Amir Pnueli, Sitvanit Ruah, Jiazhao Xu, and Lenore

Zuck. Parameterized verification with automatically computed inductive

assertions. In Computer-Aided Verification (CAV), 2001.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.

Symbolic model checking without BDDs. In Tools and Algorithms for

the Construction and Analysis of Systems (TACAS), 1999.

[BDH00] Dragan Bosnacki, Dennis Dams, and Leszek Holenderski. Symmetric

spin. In Model Checking of Software (SPIN), 2000.

[BG02] Sharon Barner and Orna Grumberg. Combining symmetry reduction

and under-approximation for symbolic model checking. In Computer-

Aided Verification (CAV), 2002.

207

[BHV03] Ahmed Bouajjani, Peter Habermehl, and Tomás Vojnar. Verification of

parametric concurrent systems with prioritized FIFO resource manage-

ment. In Concurrency Theory (CONCUR), 2003.

[BR00] Thomas Ball and Sriram Rajamani. Bebop: A symbolic model checker

for Boolean programs. In Model Checking of Software (SPIN), 2000.

[Bry86] Randy Bryant. Graph-based algorithms for Boolean function manipu-

lation. Transactions on Computers (TC), 1986.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified

lattice model for static analysis of programs by construction or approx-

imation of fixpoints. In Principles of Programming Languages (POPL),

1977.

[CCB+] Roberto Cavada, Alessandro Cimatti, Marco Benedetti, et al. NuSMV:

a New Symbolic Model Checker. ITC-IRST, Carnegie Mellon University,

University of Genova, University of Trento,

http://nusmv.irst.itc.it.

[CE81] Edmund Clarke and Allen Emerson. The design and synthesis of syn-

chronization skeletons using temporal logic. In Logic of Programs (LOP),

1981.

[CEFJ96] Edmund Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha.

Exploiting symmetry in temporal logic model checking. Formal Methods

in System Design (FMSD), 1996.

[CEJS98] Edmund Clarke, Allen Emerson, Somesh Jha, and Prasad Sistla. Sym-

metry reductions in model checking. In Computer-Aided Verification

(CAV), 1998.

208

[CES86] Edmund Clarke, Allen Emerson, and Prasad Sistla. Automatic ver-

ification of finite-state concurrent systems using temporal logic spec-

ifications. Transactions on Programming Languages and Systems

(TOPLAS), 1986.

[CG87] Edmund Clarke and Orna Grumberg. Avoiding the state explosion prob-

lem in temporal logic model checking. In Principles of Distributed Com-

puting (PODC), 1987.

[CGB86] Edmund Clarke, Orna Grumberg, and Michael Browne. Reasoning

about networks with many identical finite-state processes. In Princi-

ples of Distributed Computing (PODC), 1986.

[CMP04] Ching-Tsun Chou, Phanindra Mannava, and Seungjoon Park. A simple

method for parameterized verification of cache coherence protocols. In

Formal Methods in Computer-Aided Design (FMCAD), 2004.

[DDHY92] David Dill, Andreas Drexler, Alan Hu, and Han Yang. Protocol verifica-

tion as a hardware design aid. In International Conference on Computer

Design (ICCD), 1992.

[DLSM04] Paul Darga, Mark Liffiton, Karem Sakallah, and Igor Markov. Exploit-

ing structure in symmetry detection for CNF. In Design Automation

Conference (DAC), 2004.

[DM05] Alastair Donaldson and Alice Miller. Automatic symmetry detection for

model checking using computational group theory. In Formal Methods

(FM), 2005.

[DM06] Alastair Donaldson and Alice Miller. Symmetry reduction for prob-

abilistic model checking using generic representatives. In Automated

Technology for Verification and Analysis (ATVA), 2006.

209

[EHT00] Allen Emerson, John Havlicek, and Richard Trefler. Virtual symmetry

reduction. In Logic in Computer Science (LICS), 2000.

[EJP97] Allen Emerson, Somesh Jha, and Doron Peled. Combining partial order

and symmetry reductions. In Tools and Algorithms for the Construction

and Analysis of Systems (TACAS), 1997.

[EK00] Allen Emerson and Vineet Kahlon. Reducing model checking of the

many to the few. In Computer-Aided Design (CAD), 2000.

[EK02] Allen Emerson and Vineet Kahlon. Model checking large-scale and pa-

rameterized resource allocation systems. In Tools and Algorithms for

the Construction and Analysis of Systems (TACAS), 2002.

[Eme90] Allen Emerson. Temporal and modal logic. In Handbook of Theoreti-

cal Computer Science, Volume B: Formal Models and Semantics. MIT

Press, 1990.

[EN96] Allen Emerson and Kedar Namjoshi. Automatic verification of param-

eterized synchronous systems. In Computer-Aided Verification (CAV),

1996.

[ES90] Allen Emerson and Jai Srinivasan. A decidable temporal logic to reason

about many processes. In Principles of Distributed Computing (PODC),

1990.

[ES96] Allen Emerson and Prasad Sistla. Symmetry and model checking. For-

mal Methods in System Design (FMSD), 1996.

[ES97] Allen Emerson and Prasad Sistla. Utilizing symmetry when model-

checking under fairness assumptions: An automata-theoretic approach.

Transactions on Programming Languages and Systems (TOPLAS),

1997.

210

[ET99] Allen Emerson and Richard Trefler. From asymmetry to full symmetry:

New techniques for symmetry reduction in model checking. In Correct

Hardware Design and Verification Methods (CHARME), 1999.

[ETW06] Allen Emerson, Richard Trefler, and Thomas Wahl. Reducing model

checking of the few to the one. In International Conference on Formal

Engineering Methods (ICFEM), 2006.

[EW03] Allen Emerson and Thomas Wahl. On combining symmetry reduction

and symbolic representation for efficient model checking. In Correct

Hardware Design and Verification Methods (CHARME), 2003.

[EW04] Allen Emerson and Thomas Wahl. Efficient reduction techniques for

systems with many components. In Brazilian Symposium on Formal

Methods (SBMF), 2004.

[EW05] Allen Emerson and Thomas Wahl. Dynamic symmetry reduction. In

Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), 2005.

[FBG03] Jean-Claude Fernandez, Marius Bozga, and Lucian Ghirvu. State space

reduction based on live variables analysis. Science of Computer Pro-

gramming (SOCP), 2003.

[GS92] Steven German and Prasad Sistla. Reasoning about systems with many

processes. Journal of the ACM (JACM), 1992.

[HBL+03] Martijn Hendriks, Gerd Behrmann, Kim Guldstrand Larsen, Peter

Niebert, and Frits Vaandrager. Adding symmetry reduction to Uppaal.

In Formal Modelling and Analysis of Timed Systems (FORMATS), 2003.

[Hol97] Gerard Holzmann. The model checker spin. Transactions of Software

Engineering (TOSE), 1997.

211

[HP94] Gerard Holzmann and Doron Peled. An improvement in formal ver-

ification. In Formal Methods for Networked and Distributed Systems

(FORTE), 1994.

[ID96] Norris Ip and David Dill. Better verification through symmetry. Formal

Methods in System Design (FMSD), 1996.

[ID99] Norris Ip and David Dill. Verifying systems with replicated components

in Murφ. Formal Methods in System Design (FMSD), 1999.

[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis.

Introduction to Parallel Computing. Benjamin/Cummings Publishing,

1994.

[KM89] Robert Kurshan and Kenneth McMillan. A structural induction theorem

for processes. In Principles of Distributed Computing (PODC), 1989.

[LS] Shuvendu Lahiri and Sanjit Seshia. UCLID: A Verification Tool for Infi-

nite-State Systems. http://www-2.cs.cmu.edu/~uclid/.

[Lub84] Boris Lubachevsky. An approach to automating the verification of com-

pact parallel coordination programs. Acta Informatica, 1984.

[McM93] Kenneth McMillan. Symbolic Model Checking: An Approach to the State

Explosion Problem. Kluwer Academic, 1993.

[McM02] Kenneth McMillan. Applying SAT methods in unbounded symbolic

model checking. In Computer-Aided Verification (CAV), 2002.

[MD] Ralph Melton and David Dill. Murφ Annotated Reference Manual, rel.

3.1. http://verify.stanford.edu/dill/murphi.html.

[Min01] Shin-ichi Minato. Zero-suppressed BDDs and their applications. Soft-

ware Tools for Technology Transfer (STTT), 2001.

212

[MS91] John Mellor-Crummey and Michael Scott. Algorithms for scalable syn-

chronization on shared-memory multiprocessors. Transactions on Com-

puter Systems (TOCS), 1991.

[Muc97] Steven Muchnick. Advanced Compiler Design & Implementation. Mor-

gan Kaufmann Publishers, 1997.

[Pan97] Manish Pandey. Formal Verification of Memory Arrays. PhD thesis,

Carnegie Mellon University, ISBN 0-591-64726-5, 1997.

[PD95] Fong Pong and Michel Dubois. A new approach for the verification

of cache coherence protocols. Transactions on Parallel and Distributed

Systems (TOPDS), 1995.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Foundations of Com-

puter Science (FOCS), 1977.

[PXZ02] Amir Pnueli, Jessie Xu, and Leonore Zuck. Liveness with (0, 1,∞)-

counter abstraction. In Computer-Aided Verification (CAV), 2002.

[QS82] Jean-Pierre Quielle and Joseph Sifakis. Specification and verification

of concurrent systems in CESAR. In International Symposium on Pro-

gramming (ISOP), 1982.

[Rin03] Jussi Rintanen. Symmetry reduction for SAT representations of transi-

tion systems. In International Conference on Automated Planning and

Scheduling (ICAPS), 2003.

[Ros75] Joseph Rosen. Symmetry Discovered. Cambridge University Press, 1975.

[Ros95] Joseph Rosen. Symmetry in Science. Springer-Verlag, 1995.

213

[SG04] Prasad Sistla and Patrice Godefroid. Symmetry and reduced symme-

try in model checking. Transactions on Programming Languages and

Systems (TOPLAS), 2004.

[SGE00] Prasad Sistla, Viktor Gyuris, and Allen Emerson. SMC: a symmetry-

based model checker for verification of safety and liveness proper-

ties. Transactions on Software Engineering and Methodology (TOSEM),

2000.

[Som] Fabio Somenzi. The CU Decision Diagram Package, release 2.3.1. Uni-

versity of Colorado at Boulder,

http://vlsi.colorado.edu/~fabio/CUDD/.

[TMGI05] Daijue Tang, Sharad Malik, Aarti Gupta, and Norris Ip. Symmetry

reduction in SAT-based model checking. In Computer-Aided Verification

(CAV), 2005.

[Wah07] Thomas Wahl. Adaptive symmetry reduction. In Computer-Aided Ver-

ification (CAV), 2007.

[WS02] Farn Wang and Karsten Schmidt. Symmetric symbolic safety-analysis

of concurrent software with pointer data structures. In Formal Methods

for Networked and Distributed Systems (FORTE), 2002.

[Yor00] Karen Yorav. Exploiting Syntactic Structure for Automatic Verification.

PhD thesis, Technion Israel, 2000,

http://www.cs.technion.ac.il/users/orna/KarenThesis.ps.gz.

214

Vita

(to be added)

Permanent Address: (to be added)

This dissertation was typeset with LATEX 2ε1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

215

