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Abstract—Automated reasoning tools often provide little or no
support to reason accurately and efficiently about floating-point
arithmetic. As a consequence, software verification systems that
use these tools are unable to reason reliably about programs
containing floating-point calculations or may give unsound re-
sults. These deficiencies are in stark contrast to the increasing
awareness that the improper use of floating-point arithmetic in
programs can lead to unintuitive and harmful defects in software.
To promote coordinated efforts towards building efficient and
accurate floating-point reasoning engines, this paper presents a
formalization of the IEEE-754 standard for floating-point arith-
metic as a theory in many-sorted first-order logic. Benefits include
a standardized syntax and unambiguous semantics, allowing tool
interoperability and sharing of benchmarks, and providing a
basis for automated, formal analysis of programs that process
floating-point data.

I. INTRODUCTION

Real values can be represented in a computer in many

ways, with various level of precision: as fixed-point numbers,

binary or decimal floating-point numbers, rationals, arbitrary

precision reals, etc. Due to the wide availability of high-

performance hardware and support in most programming

languages, binary floating-point has become the dominant

representation system. This creates a significant challenge for

program analysis tools: accurate reasoning about the behavior

of (numerical) programs is only possible with bit-accurate

reasoning about floating-point arithmetic. Many automated

verification tools, such as software model checkers, rely on

solvers for Satisfiability Modulo Theories (SMT) [4] as their

reasoning engines. These solvers use specialized, built-in

methods to check the satisfiability of formulas in background
theories of interest, such as for instance the theories of integer

numbers, arrays, bit vectors and so on. Reasoning about

floating-point numbers accurately in SMT then requires the

identification of a suitable theory of floating-point arithmetic.

In the past, designing a formal theory of floating-point

arithmetic would have been prohibitively complex, as differ-

ent manufacturers used different floating-point formats which

varied from the others in significant, structural aspects. The

introduction, in 1985, and subsequent near universal adoption

of the IEEE-754 standard has considerably improved the
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situation. However, the standard is unsatisfactory as a formal

theory definition for a number of reasons: it is written in

natural language; it covers various aspects that are not relevant

to developing a theory of floating-point; it is lengthy (the

2008 revision has 70 pages) and, most critically for automated

reasoning purposes, it does not describe a logical signature and

interpretations.

This paper presents the syntax and semantics of a logical

theory that formalizes floating-point arithmetic based on the

IEEE-754 standard, with the goal of facilitating the construc-

tion of automated and precise reasoning tools for it. The mod-

els of our theory correspond exactly to conforming implemen-

tations of IEEE-754. While rather general, our formalization

was developed with inputs from the SMT community to be

a reference theory for SMT solver implementors and users,

and was recently incorporated in the SMT-LIB standard [5], a

widely used input/output language for SMT solvers.

This paper makes two specific contributions:

1) Presents mathematical structures intended to formally

model binary floating-point arithmetic. [Section V]

2) Provides a signature for a theory of floating-point arith-

metic and an interpretation of its operators in terms of

the mathematical structures defined earlier. [Section VI]

II. FLOATING-POINT ARITHMETIC

Floating-point refers to a way of encoding subsets of the

rational numbers using bit vectors of fixed width. A floating

point number consists of three such bit vectors: one for the

fractional part of the number, called the significand, one for

the exponent of an integer power by which the fractional part

is multiplied, and a single bit for the sign. For example:

7.28125 = 7 + 28125 · 10−5 = (22 + 21 + 20) + (2−2 + 2−5)
= 111.010012 = 1.11010012 · 22

can be represented as a binary floating point number with a

sign bit of 0, an exponent of 2 and a significand of 1101001:

the leading 1 before the binary point is omitted (for so-called

normal numbers) and hence known as the hidden bit.
Arithmetic on floating point numbers is defined as per-

forming the operation as if the numbers were reals, followed

by rounding the result to the nearest value representable as

a floating point number; “nearest” is defined by a set of
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rules called a rounding mode. Many floating-point systems

implemented in computer processors have included special

values such as infinities and not-a-number (NaN). When an

underflow, overflow or other exceptional condition occurs,

these special values can be returned instead of triggering an

interrupt. This can simplify the control circuitry and results

in faster computation but at the cost of making the floating-

point number system more complex. IEEE-754 standardizes,

in different floating-point formats, the sizes of the bit vectors

used for number presentation, as well as the various rounding

modes, and the meaning and use of special values.

III. FORMALIZATION IN AUTOMATED REASONING

In general, to automate reasoning in a domain D of interest

using a formal logic one has to restrict the set of possible

interpretations assigned to the function and predicate symbols

used to build formulas representing statements over D. There

are normally two approaches to achieve this, one axiomatic
and one algebraic.

In the axiomatic approach, typical of interactive theorem

proving tools, one first constructs a formula ψ that axiomatizes
D, i.e., formally describes (some of) the properties of the

chosen function and predicate symbols. Then, to check that

a particular formula φ is valid in D one asks the prover,

in essence, to check the logical validity of the implication

ψ ⇒ φ. Previous formalizations of floating-point (see Section

VII) have followed this approach. Since the axiomatization

ψ is part of the input, no specific support for the domain D
on the prover’s side is needed. Formalizations of this kind are

flexible and easily extensible, however, the axioms ψ tend to be

voluminous and intricate, which can limit the performance of

many automated techniques. Another limitation is that certain

domains cannot be captured accurately by a relatively small,

or even finite, axiomatization in the prover’s logic. In that

case, different, approximate axiomatizations may have to be

considered and compared with respect the trade-offs they offer.

In the algebraic approach, typical of SMT solvers, a domain

D is formalized instead by a set of algebraic structures

(i.e., models in the chosen logic) that interpret the various

functions and predicate symbols. The formalization is used

as a specification for the prover, and the knowledge of what

the symbols mean is pre-built into the prover. An advantage

of this is that fast, domain specific procedures can be used to

reason about D. Moreover, in addition to checking for validity

in D, such procedure are usually also able to generate counter-

examples for invalid formulas. Since these formalizations

are used as specifications, the key issues are whether they

can be implemented easily and efficiently and how well the

interpretations they describe capture relevant properties of the

domain.

We present a formalization of floating-point arithmetic in

the algebraic style, intended as a specification for SMT solvers,

and make the case that this accurately captures the seman-

tics of the IEEE-754 standard. We concentrate on arithmetic

aspects, abstracting away more operational ones, such as

exception handling. Also, we only consider the case of binary

TABLE I
FORMALIZATION OF NaN’S BEHAVIOR, WITH u ∈ S∗

u+NaN = NaN + u = NaN −NaN = NaN
u ·NaN = NaN · u = NaN NaN−1 = NaN

NaN � u ⇔ u = NaN u � NaN ⇔ u = NaN

(as opposed to decimal) floating-point arithmetic, as it is more

widely used in practice.

IV. FORMAL FOUNDATIONS

IEEE-754 gives an informal definition of the semantics of

floating-point operations:

Each of the computational operations that return a numeric
result specified by this standard shall be performed as if it
first produced an intermediate result correct to infinite pre-
cision and with unbounded range, and then rounded that
intermediate result, if necessary, to fit in the destination’s
format.

To formalize this it is helpful to define an extension of the real

numbers so that we can treat floating-point values as if they

had “infinite precision and unbounded range,” and to define a

notion of rounding. Note that the extended reals are used here

simply to aid the formal definition of floating-point operations.

They are not the domain of interpretation of floating-point

numbers. For that we will define a family of algebras over bit

vector triples.

A. Extended Reals

We extend the set R of real numbers with three new

elements: +∞, −∞ and NaN, which represent respectively

positive and negative infinity and a special not a number value

used to obtain an arithmetically closed system. For each set

S ⊆ R we can define the following sets:

S† = S ∪ {+∞,−∞} S∗ = S† ∪ {NaN}

When S is the base of an ordered additive or multiplicative

monoid or group, we extend R’s binary operations + and ·,
unary operations − and ( )

−1
and order relation ≤. Table I

gives axioms defining these operations when one argument is

NaN. Table III gives axioms defining these operations when

one argument is +∞ or −∞, as well as the axiom for the

inverse of zero.

Note that (R∗,�) is a partial order since NaN is comparable

only with itself. In contrast (R†,�) is a total order. The ex-

tended reals operate as three largely algebraically independent

subsets: {NaN}, {+∞,−∞} and R. If a sub-expression of an

expression e evaluates to NaN, then the whole e evaluates to

NaN — the set is closed under the basic operations. Infinities

generate infinities or NaN, although the reciprocal operator

maps an infinity back to a real value. Reals are of course

closed under all operations except reciprocal of zero. For

convenience, we will also use the usual additional symbols in

Table II, which are definable in terms of the basic operations.
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TABLE II
DEFINED SYMBOLS, WITH x, y ∈ S∗

x � y := y � x
x− y := x+ (−y) x < y := (x � y) ∧ ¬(x = y)
x/y := x · y−1 x > y := (x � y) ∧ ¬(x = y)

TABLE III
FORMALIZATION OF ±∞’S AND INVERSE OF ZERO’S BEHAVIOR, w ∈ S†

+∞ � w ⇔ w = +∞ w � −∞ ⇔ w = −∞
w � +∞ −(+∞) = −∞ +∞−1 = 0
−∞ � w −(−∞) = +∞ −∞−1 = 0

w + (+∞) = (+∞) + w =

{
NaN if w = −∞
+∞ if w �= −∞

w + (−∞) = (−∞) + w =

{
NaN if w = +∞
−∞ if w �= −∞

w ·+∞ = +∞ · w =

⎧⎪⎨
⎪⎩
+∞ if 0 < w

−∞ if w < 0

NaN if w = 0

w · −∞ = −∞ · w =

⎧⎪⎨
⎪⎩
−∞ if 0 < w

+∞ if w < 0

NaN if w = 0

0−1 = +∞

B. Rounding

The second concept needed to formalize the IEEE-754

definition of operations is that of rounding; a map that will

take the intermediate result in R
∗ back into the set of floating-

point numbers. We define it as a function that selects between

the two adjoints of the corresponding map into R
∗.

More generally, let (X,�) be a partially ordered set that

consists of one or more disjoint lattices, and let v : X → R
∗ be

an order-embedding function from X into the extended reals

such that {+∞,−∞,NaN} ⊂ v(X). Then, the upper adjoint
and lower adjoint of v are respectively the unique functions

v : R∗ → X and v : R∗ → X such that for all r ∈ R
∗.

• r � v(v(r)) and v(r) � x for all x ∈ X with r � v(x);
• v(v(r)) � r and x � v(r) for all x ∈ X with v(x) � r.

The function v maps an element r to the smallest element of

X that projects above r (rounding up) while v maps r to the

largest element of X that projects below r (rounding down).

Let B = {�,⊥} be the Booleans, with � being the true value.

We define a family of (higher-order) rounding functions:

round : RM× B× R
∗ → (X → R

∗)→ (R∗ → X)

parametrized by the partially ordered set X , which provides a

systematic way of selecting between rounding up and rounding

down. Given a map v : X → R
∗, the rounding function returns

one of v’s two adjoints, based on three previous inputs. The

first is the rounding mode, chosen from the set:

RM = {rne, rna, rtp, rtn, rtz}
which represents the five rounding modes defined by IEEE-

754, namely, round to nearest with ties picking even value

(rne), round to nearest with ties away from zero (rna), round

TABLE IV
DEFINITION OF round

round(rne, s, r)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v r �= 0, ¬lhX(r, v), ¬tbX(r, v)

v r �= 0, tbX(r, v), evX(v(r))

v r �= 0, tbX(r, v), evX(v(r))

v r �= 0, lhX(r, v)

rsz(s)(v) r = 0

v r = NaN

round(rna, s, r)(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v r > 0, ¬lhX(r, v)

v r > 0, lhX(r, v)

rsz(s)(v) r = 0

v r < 0, ¬lhX(r, v), ¬tbX(r, v)

v r < 0, lhX(r, v) ∨ tbX(r, v)

v r = NaN

round(rtp, s, r)(v) =

{
rsz(s)(v) r = 0

v otherwise

round(rtn, s, r)(v) =

{
rsz(s)(v) r = 0

v otherwise

round(rtz, s, r)(v) =

⎧⎪⎨
⎪⎩
v r > 0

rsz(s)(v) r = 0

v otherwise
where

rsz(	)(v) = v rsz(⊥)(v) = v

towards +∞ (rtp), round towards −∞ (rtn), and round

towards zero (rtz). The second input of round is a Boolean

value determining the sign of zero when X contains signed

zeros (which is the case when X is a set of floating-point

numbers). The third input is the value to be rounded, needed

because the rounding direction may depend on it (for example,

when rounding to the nearest element of X).

The function round is defined in Table IV. The definition

relies on three auxiliary predicates lhX , tbX and evX whose

own definition depend on the particular domain X . These

express: when the value is in the lower half of the interval be-

tween two representations in X (i.e. closer to v(r) than v(r));
the tie-break condition when it is equal distance from both;

and whether a representation is even. For illustration purposes,

we provide a definition of those predicates in Table V for when

X = Z, the set of integers with the usual ordering. A definition

of those predicates for sets of floating-point numbers is given

later, after we formalize such sets.

The fairly elaborate definition of round is motivated by

our goal to provide an accurate model of rounding as defined

in IEEE-754. In particular, there is no mathematical reason

for not using exclusively v or v in it. However, doing so

would fail to reflect some properties of IEEE-754 floating-

point numbers, for example “the sign of a sum [...] differs from

at most one of the addends’ signs” [1]. For brevity, we will

write rnd(v,m, s, r) for the application round(m, s, r)(v)(r)
which returns the value of X that the real number r is rounded

to by using v.

V. MODELS OF FLOATING-POINT ARITHMETIC

In this section we specify a set of (many-sorted) structures

in the sense of model theory. These are the intended models of
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TABLE V
AUXILIARY PREDICATES FOR ROUND IN THE CASE X = Z

∗

lhZ∗ (r, v) := r − v(v(r)) < v(v(r))− r
tbZ∗ (r, v) := r − v(v(r)) = v(v(r))− r
evZ∗ (x) := ∃z ∈ Z � x = 2 ∗ z

a logical theory of floating-point numbers that reflects IEEE-

754. In the next section we will specify a signature for such a

theory and show how each sort, function and predicate symbol

in the signature is interpreted over this set of structures.

A. Universe

The universe of each of our models consists of multiple sets:

one for the rounding modes and one for each of the different

floating-point precisions. Floating-point numbers other than

NaN are triples of bit vectors modelling the three components

(sign, exponent and significand) of the representations in

IEEE-754. We identify bit vectors of length ν > 0 with

elements of the function space BVν = Nν → {0, 1} where

Nν = {0, . . . , ν − 1}. We write 1ν for the unique function in

Nν → {1} and 0ν for the unique function in Nν → {0}, which

represent respectively the bit vector of length ν containing all

ones and that containing all zeros. Let ubν : BVν → N and

sbν : BVν → Z denote the usual unsigned and 2’s complement

encodings of bit vectors into integers. Let Bμ,ν denote the set

BV1 × BVμ × BVν−1. For all integers ε, σ > 1, we define

the set of floating-point numbers with ε exponent bits and σ
significand bits1 as the set Fε,σ = Fε,σ ∪ {NaN} where

Fε,σ = FZε,σ ∪ FSε,σ ∪ FNε,σ ∪ FIε,σ

FZε,σ = {(s, e,m) ∈ Bε,σ | e = 0ε, m = 0σ−1}
FSε,σ = {(s, e,m) ∈ Bε,σ | e = 0ε, m �= 0σ−1}
FNε,σ = {(s, e,m) ∈ Bε,σ | e �= 1ε, e �= 0ε}
FIε,σ = {(s, e,m) ∈ Bε,σ | e = 1ε, m = 0σ−1}

The last four sets above correspond respectively to the bit

vector triples used to represent zeros, subnormal numbers,

normal numbers and infinities in IEEE-754, with the three

components storing respectively sign, exponent and significand

of the floating-point number.2 We will write informally −0 and

+0 to refer to the two elements of FZε,σ .

We fix a total order � over Fε,σ such that (s1, e1,m1) �
(s2, e2,m2) if one of the following holds:
• s1 = 1, s2 = 0
• s1 = 0, s2 = 0, ubε(e1) < ubε(e2)
• s1 = 0, s2 = 0, ubε(e1) = ubε(e2), ubσ(m1) � ubσ(m2)
• s1 = 1, s2 = 1, ubε(e2) < ubε(e1)
• s1 = 1, s2 = 1, ubε(e1) = ubε(e2), ubσ(m2) � ubσ(m1)

We extend � to a partial order on Fε,σ by NaN � NaN.

As discussed in Section IV, we define operations over Fε,σ

analogously to those defined over R
∗ by mapping floating-

point values to extended reals, performing the corresponding

1Allowing arbitrary values for ε and σ is strictly a generalization of IEEE-
754, which only defines a handful of precisions. However, doing so supports
a wider range of applications with little additional notation and effort.

2The significand component has length σ−1 because the hidden bit, which
is 1 for normal numbers, is not explicitly represented.

TABLE VI
AUXILIARY PREDICATES FOR ROUND IN THE CASE X = Fε,σ

evFε,σ (f) := f = (s, e,m) ∈ Fε,σ ∧ evZ∗ (ubσ−1(m))

lhFε,σ (r, v) := σ′ = σ + 1 ∧ v(v(r)) = vε,σ′ (vε,σ′ (r))

tbFε,σ (r, v) := σ′ = σ + 1 ∧ v(v(r)) < vε,σ′ (vε,σ′ (r)) =

vε,σ′ (vε,σ′ (r)) < vε,σ′ (v(r))

extended reals operation and then rounding the result back to

a floating-point value. To formalize this we define a function

vε,σ : Fε,σ → R
∗ which maps each floating-point number to

the extended real it represents. Let bias(ε) = 2ε−1 − 1.

vε,σ(f) = vε,σ((s, e,m)) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 f ∈ FZε,σ

(−1)ub1(s) · 21−bias(ε) · (0 + ubσ−1(m)

2σ−1 ) f ∈ FSε,σ

(−1)ub1(s) · 2ubε(e)−bias(ε) · (1 + ubσ−1(m)

2σ−1 ) f ∈ FNε,σ

(−1)ub1(s) · (+∞) f ∈ FIε,σ

vε,σ(NaN) = NaN

For brevity we will write just v in place of vε,σ when the

values ε and σ are clear from context or not important. One

can show that v is injective over Fε,σ \FZε,σ and monotonic.

Thanks to the latter we have that both v and v are well defined3

and so the function round can be used to map back from

R
∗ to Fε,σ . The auxiliary predicates used in the definition of

rounding in the case of X = Fε,σ are defined in Table VI.

Both lhFε,σ and tbFε,σ use a set of floating-point numbers

with one extra significand bit. This is equivalent to the guard
bit used in hardware implementations, giving a point mid-way

between v and v. The predicate tbFε,σ
captures the property

of r being equidistant from v(r) and v(r), which means that

any further significand bits would be 0. This is equivalent to

the sticky bit used in hardware being equal to 0.

B. Relations

Having defined a universe for the models, we next define

various relations which will be used as the interpretation of

predicates in the theory of floating-point. Every relation is

parameterized by a floating-point domain, so each definition

here actually describes a whole family of relations.

1) Unary Relations: We consider the following unary rela-

tions (subsets) for classifying floating-point numbers as well

as determining their sign, if applicable.4

isNegε,σ = {f ∈ Fε,σ | f = (1, e,m)}
isPosε,σ = {f ∈ Fε,σ | f = (0, e,m)}

2) Binary Relations: We define a number of binary rela-

tions for comparing floating-point numbers. These are different

from the equality and ordering relations on Fε,σ (i.e., = and

�) and those on R
∗ (i.e., = and �). Despite their names,

they are not actually equality or ordering relations as they do

3These are surjections for all points except FZε,σ which has the curious
property that −0 = v(0) � v(0) = +0.

4These definitions imply f = NaN⇔ ¬(isNegε,σ(f) ∨ isPosε,σ(f)).
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not contain (NaN,NaN) and eq, leq and geq contain both

(+0,−0) and (−0,+0).

eqε,σ = {(f, g) ∈ Fε,σ × Fε,σ | v(f) = v(g)}
leqε,σ = {(f, g) ∈ Fε,σ × Fε,σ | v(f) � v(g)}
ltε,σ = {(f, g) ∈ Fε,σ × Fε,σ | v(f) < v(g)}

geqε,σ = {(f, g) ∈ Fε,σ × Fε,σ | v(f) � v(g)}
gtε,σ = {(f, g) ∈ Fε,σ × Fε,σ | v(f) > v(g)}

C. Operations

Similarly to relations, we define families (parameterized by

domains) of functions which will serve as the interpretation

of various operations in the theory of floating-point.
a) Sign Operations: Two operations, negation and ab-

solute value, manipulate the sign of the number. Since the

domains of floating-point numbers are symmetric around 0,

there is no need for rounding and the operations can be defined

directly on the floating-point bit vectors without using R
∗.

negε,σ : Fε,σ → Fε,σ

negε,σ(f) =

{
(¬s, e,m) f = (s, e,m) ∈ Fε,σ

NaN f = NaN

absε,σ : Fε,σ → Fε,σ

absε,σ(f) =

{
(0, e,m) f = (s, e,m) ∈ Fε,σ

NaN f = NaN

b) Arithmetic Operations: The main operations on

floating-point numbers are those that correspond to the op-

erations on an ordered field. They are defined by mapping

arguments to R
∗ with v, performing the corresponding oper-

ation in R
∗, and finally mapping the result back with round.

addε,σ : RM× Fε,σ × Fε,σ → Fε,σ

addε,σ(rm, f, g) = rnd(v, rm, addSign(rm, f, g), v(f) + v(g))

subε,σ : RM× Fε,σ × Fε,σ → Fε,σ

subε,σ(rm, f, g) = rnd(v, rm, subSign(rm, f, g), v(f)− v(g))

mulε,σ : RM× Fε,σ × Fε,σ → Fε,σ

mulε,σ(rm, f, g) = rnd(v, rm, xorSign(f, g), v(f) ∗ v(g))
divε,σ : RM× Fε,σ × Fε,σ → Fε,σ

divε,σ(rm, f, g) ={
negε,σ(rnd(v, rm,�,−(v(f)/v(g)))) xorSign(f, g)

rnd(v, rm,⊥, v(f)/v(g)) ¬xorSign(f, g)

fmaε,σ : RM× Fε,σ × Fε,σ × Fε,σ → Fε,σ

fmaε,σ(rm, f, g, h) =

rnd(v, rm, fmaSign(rm, f, g, h), (v(f) ∗ v(g)) + v(h))

The addSign, subSign, xorSign and fmaSign predicates

above are defined as follows (⊕ denotes exclusive or):

addSign(rm, f, g) :=

{
isNeg(f) ∧ isNeg(g) rm �= rtn

isNeg(f) ∨ isNeg(g) rm = rtn

xorSign(f, g) := isNeg(f)⊕ isNeg(g)

fmaSign(rm, f, g, h) := addSign(rm,mulε,σ(rm, f, g), h)

Note that since fmaε,σ only calls round once, it is not

the same as addε,σ(rm,mulε,σ(rm, a, b), c). Also, divε,σ is

equal to rnd(v, rm, xorSign(f, g), v(f)/v(g)) at all points

except positive numbers divided by −0, where the “obvious”

definition gives positive infinity while the definition given

above gives the correct result of minus infinity.

c) Additional operations: Let wε,σ be the restriction of

vε,σ to FIε,σ ∪ {NaN} ∪ {f ∈ Fε,σ | vε,σ(f) ∈ Z}. The

following operation rounds back to a subset of Fε,σ , effectively

mapping the value to the nearest whole number representable

in the given floating-point format:

rtiε,σ : RM× Fε,σ → Fε,σ

rtiε,σ(rm, f) = rnd(wε,σ, rm, isNeg(f), v(r))

Let in : Z∗ → R
∗ with in(z) = z.5 Similarly to rtiε,σ , the

remainder operation requires rounding an intermediate value

to an integer:

remε,σ : RM× Fε,σ × Fε,σ → Fε,σ

remε,σ(rm, f, g) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f g ∈ FIε,σ
NaN f ∈ FIε,σ ∪ {NaN}
NaN g ∈ FZε,σ ∪ {NaN}
rnd(v, rm, isNeg(f), x) x = v(f)− (v(g) ∗ y),

y = rnd(in, rm, 0, v(f)/v(g))

remrneε,σ : Fε,σ × Fε,σ → Fε,σ

remrneε,σ(f, g) = remε,σ(rne, f, g)

Note that the remainder computed as above is always exact

when rne is used. This remainder function is the one used

by the C standard library but is not necessarily the same

as the intuitive idea of remainder which can be computed

via: fmaε,σ(rm, negε,σ(divε,σ(rm, f, g)), g, f). The next two

operations, the maximum and minimum of two floating-point

numbers, are specified only partially: when the two arguments

have the same value in R
∗, either one of the arguments can

be returned.

maxε,σ : Fε,σ × Fε,σ → Fε,σ

maxε,σ(f, g) =

⎧⎪⎨
⎪⎩
f gtε,σ(f, g) or g = NaN

g gtε,σ(g, f) or f = NaN

h h ∈ {f, g}, eqε,σ(f, g)
minε,σ : Fε,σ × Fε,σ → Fε,σ

minε,σ(f, g) =

⎧⎪⎨
⎪⎩
f ltε,σ(f, g) or g = NaN

g ltε,σ(g, f) or f = NaN

h h ∈ {f, g}, eqε,σ(f, g)

Note that the underspecification is an issue only when one

of the inputs to maxε,σ or minε,σ is −0 and the other is +0.

5We consider Z a subset of R and hence Z
∗ a subset of R∗.
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However, it means that we consider as acceptable models any

structures with function families maxε,σ and minε,σ that sat-

isfy the specifications above, regardless of whether they return

−0 or +0 for (−0,+0), and for (+0,−0). This is necessary

because IEEE-754 itself allows either value to be returned,

and compliant implementations do vary. For example, on some

Intel processors the result returned by the x87 and SSE units

is different.

All the preceding operations have floating-point input and

outputs in the same set, Fε,σ . To convert between different

floating-point domains the following map is needed:

castε,σ,ε′,σ′ : RM× Fε′,σ′ → Fε,σ

castε′,σ′,ε,σ(rm, f) = rnd(vε,σ, rm, isNeg(f), vε′,σ′(f))

If ε � ε′ and σ � σ′, the rounding mode argument is

irrelevant since then all values of Fε′,σ′ are representable

exactly in Fε,σ . However, this cannot be regarded as syntactic

sugar because whether a value is a normal or a subnormal

number does change depending on the floating-point domain.

D. Combinations with Other Theories

For many applications, the theory of floating-point is not

sufficient to reason about the full problem; other theories such

as integers, bit vectors, or reals are needed as well. This section

describes the extensions to the intended models required to

account for these additional domains, and possible mappings

between them. IEEE-754 includes a number of functions to

convert to “integer formats.” We define here such conversions

as well as extensions to IEEE-754 covering conversion to

real and from real and bit vectors. Many of the additional

operations are underspecified in that out of bounds and other

error conditions do not have prescribed return values.

1) Real Numbers: For a model of the theory of floating-

point to also be a model of the theory of reals, its universe

has to be extended to a disjoint union with R. Using the

connections between Fε,σ and R
∗, we add the following two

conversion operations:

realToFPε,σ : RM× R→ Fε,σ

realToFPε,σ(rm, r) = rnd(v, rm, 0, r)

FPToRealε,σ : Fε,σ → R

FPToRealε,σ(f) =

{
v(f) v(f) ∈ R

x x ∈ R, otherwise

We do not specify what the value of FPToRealε,σ(f) is

when f does not correspond to a real number. This means

again that we accept as a model any structure with a function

family FPToRealε,σ that satisfies the specification above.

2) Fixed-size Bit Vectors: Similarly to the previous case,

to form a joint model of the theories of floating-point and

fixed-width bit vectors, the domain must be extended to a

disjoint union with BVν for every ν > 0. Let • : BVμ ×
BVν → BVμ+ν be the bit vector concatenation function for

each μ, ν > 0. The following function converts a bit vector of

length ε+σ, with ε, σ > 1, to a floating-point number in Fε,σ

by slicing the bit vector in three:

bitpatternToFPε,σ : BVε+σ → Fε,σ

bitpatternToFPε,σ(b) =

⎧⎪⎨
⎪⎩
(s, e,m) b = s • e •m,

(s, e,m) ∈ Fε,σ

NaN otherwise

The function bitpatternToFP is not injective as there are

multiple bit-patterns which represent NaN. This implies that

it is not possible to give a reverse map without fixing the

encoding of NaN to a particular value.

The next two functions first convert the bit vector to the

integer value it denotes in binary, in 2’s complement and

unsigned format respectively, and then round that value to the

corresponding floating-point. The last two functions do the

inverse conversion.

sIntToFPν,ε,σ : RM× BVν → Fε,σ

sIntToFPν,ε,σ(rm, b) = rnd(v, rm, 0, sbν(b))

uIntToFPν,ε,σ : RM× BVν → Fε,σ

uIntToFPν,ε,σ(rm, b) = rnd(v, rm, 0, ubν(b))

FPToSIntν,ε,σ : RM× Fε,σ → BVν

FPToSIntν,ε,σ(rm, f) =

{
b sbν(b) = rnd(in, rm, 0, v(f))

NaN otherwise

FPToUIntν,ε,σ : RM× Fε,σ → BVν

FPToUIntν,ε,σ(rm, f)

{
b ubν(b) = rnd(in, rm, 0, v(f))

NaN otherwise

VI. FROM MODELS TO THEORY

We now formalize a logical theory of floating-point numbers

based on the structures defined in the previous section. We

use the version of many-sorted logic adopted by the SMT-LIB

2 standard [5].

A (logical) signature is consists of a set of sort symbols (of

arity ≥ 0) and a set of function symbols f with an associated

rank, a tuple (S1, . . . , Sn, S) of sort terms specifying the sort

of f ’s arguments, namely, S1, . . . , Sn, and result, S. Constants

are represented by nullary function symbols; predicate sym-

bols by function symbols whose return sort is a distinguished

sort Bool. Every signature Σ is assumed to contain Bool

and constants true and false of that sort, as well as an

overloaded symbol = of rank (S, S, Bool) for each sort S,

for the identity relation over S. Given a set of sorted variables

for each of the sorts in Σ, well-sorted terms and well-sorted

formulas of signature Σ are defined as usual.

For every signature Σ, a Σ-interpretation I interprets each

sort S in Σ as a non-empty set �S�I , each variable x of sort

S as an element �x�I of �S�I , and each function symbol f of

rank (S1, . . . , Sn, S) as an element �f�I of the (total) function

space �S1�I ×· · ·× �Sn�I → �S�I . Additionally, I interprets

Bool as B = {�,⊥} and each = of rank (S, S, Bool) as

the function that maps (x, y) ∈ S × S to � iff x is y. For

165



TABLE VII
SORTS AND THEIR INTERPRETATION REQUIREMENTS

�RoundingMode�I = RM �FloatingPointε,σ�I = Fε,σ

�Real�I = R �BitVecν�I = BVν

TABLE VIII
CONSTRUCTOR SYMBOLS AND THEIR INTERPRETATION

Symbols of rank RM:

�rne�I = rne �rna�I = rna �rtp�I = rtp

�rtn�I = rtn �rtz�I = rtz

Symbols of rank FPε,σ :

�+ooε,σ�I = (0,1ε,0σ−1) �+zeroε,σ�I = (0,0ε,0σ−1)

�-ooε,σ�I = (1,1ε,0σ−1) �-zeroε,σ�I = (1,0ε,0σ−1)

�NaNε,σ�I = NaN

Symbols of rank (BV1, BVε, BVσ , FPε,σ):

�fp�I = λ(b1, bε, bσ−1).bitpatternToFPε,σ(b1 • bε • bσ−1)

each sort S, I induces a mapping � �I from terms of sort

S to �S�I as expected. A satisfaction relation |= between Σ-

interpretations and Σ-formulas is also defined as expected. A

theory of signature Σ as a pair T = (Σ, I) where I is a set of

Σ-interpretations, the models of T , that is closed under variable

reassignment. We say that a Σ-formula ϕ is satisfiable (resp.,

unsatisfiable) in T if I |= ϕ for some (resp., no) I ∈ I.

A. A Theory of Floating-Point Numbers

In the following we define a theory TFP of floating-point

numbers in the sense above by specifying a signature ΣFP

and a set of IFP of ΣFP-interpretations.

The sorts of ΣFP consist, besides Bool, of two in-

dividual sorts: RoundingMode and Real; and two sort

families: BitVecν , indexed by an integer ν > 0, and

FloatingPointε,σ , indexed by two integers ε, σ > 1. The

set of function symbols of ΣFP, and their ranks, is given

in Table VIII through X. In those tables, we abbreviate

RoundingMode, FloatingPoint, and BitVec respectively as

RM, FP, and BV.

We define the set IFP as the set of all possible ΣFP-

interpretations I that interpret sort and function symbol as

specified in Table VII through X in terms of the sets and

functions introduced in Section V. Many of the function

symbols are overloaded for having different ranks; so we

specify their interpretation separately for each rank.

As shown in Table VIII, the theory has a family of symbols

denoting the floating-point infinities, zeros, and NaN for each

pair of exponent and significand length. It also has a ternary

function symbol fp that constructs a floating point number

from a triple of bit vectors respectively storing the sign,

exponent and significant. This allows us to represent all non-

NaN values with bit-level precision.

Table IX lists function symbols for the various arithmetic

operations over floating-point numbers, and provides their se-

TABLE IX
MAIN SYMBOLS AND THEIR INTERPRETATION

Symbols of rank (FPε,σ , FPε,σ):

�fp.abs�I = absε,σ �fp.neg�I = negε,σ

Symbols of rank (FPε,σ , FPε,σ , FPε,σ):

�fp.max�I = maxε,σ �fp.min�I = minε,σ

�fp.rem�I = remrneε,σ

Symbols of rank (RM, FPε,σ , FPε,σ):

�fp.roundToIntegral�I = rtiε,σ

Symbols of rank (RM, FPε,σ , FPε,σ , FPε,σ):

�fp.add�I = addε,σ �fp.sub�I = subε,σ

�fp.mul�I = mulε,σ �fp.div�I = divε,σ

Symbols of rank (RM, FPε,σ , FPε,σ , FPε,σ , FPε,σ):

�fp.fma�I = fmaε,σ

Symbols of rank (FPε,σ , Bool):

�fp.isNormal�I = FNε,σ �fp.isNegative�I = isNegε,σ

�fp.isSubnormal�I = FSε,σ �fp.isPositive�I = isPosε,σ

�fp.isInfinite�I = FIε,σ �fp.isZero�I = FZε,σ

�fp.isNaN�I = {NaN}
Symbols of rank (FPε,σ , FPε,σ , Bool), where gtε,σ is the converse of ltε,σ :

�fp.lt�I = ltε,σ �fp.leq�I = leqε,σ

�fp.gt�I = gtε,σ �fp.geq�I = geqε,σ

�fp.eq�I = eqε,σ

TABLE X
CONVERSION SYMBOLS AND THEIR INTERPRETATION

Conversions to floating-point

�to fpε,σ : (RM, FPε′,σ′ , FPε,σ)�I = castε′,σ′,ε,σ

�to fpε,σ : (BVε+σ , FPε,σ)�I = bitpatternToFPε,σ

�to fpε,σ : (RM, Real, FPε,σ)�I = realToFPε,σ

�to fpε,σ : (RM, BVν , FPε,σ)�I = sIntToFPν,ε,σ

�to fp unsignedε,σ : (RM, BVν , FPε,σ)�I = uIntToFPν,ε,σ

Conversions from floating-point

�fp.to sbvν : (FPε,σ , BVν)�I = FPToSIntν,ε,σ

�fp.to ubvν : (FPε,σ , BVν)�I = FPToUIntν,ε,σ

�fp.to real : (FPε,σ , Real)�I = FPToRealν,ε,σ

mantics in terms of the operations defined in Subsection V-C.

The table lists predicate symbols corresponding to the relations

defined in Subsection V-B and to the various subsets of Fε,σ .

For simplicity and by a slight abuse of notation, we identify

functions h of type D1×· · ·×Dn → B with the n-ary relations

{(x1, . . . , xn) ∈ D1 × · · · ×Dn | h(x1, . . . , xn) = �}.
Finally, Table X lists function symbols corresponding to

the various conversion functions introduced in Subsection V-D

as well as the casting function between floating-point sets of

different precision.
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VII. RELATED WORK

The earliest formalizations of floating-point [10] were lim-

ited by the diversity of floating-point formats and systems they

had to cover. For example, the formalization needed to support

a range of bases, as 2, 16 and 10 were all in use. Overflow

and underflow were particularly problematic as, again, systems

in common usage took very different approaches to handling

them. The first formalization of IEEE-754 [6] is notable on

several grounds. It was the first to use a formal language (Z)

and to be used to verify algorithms for the basic operations.

The verification was manual, using Hoare logic, and the

algorithms in question were those implemented in the firmware

of the T800 Transputer. During the formalization, a few

issues in IEEE-754 were found and the verification uncovered

bugs that would have been difficult to find with testing [27].

Foreshadowing the issue in the Pentium 1, bugs were found in

the Transputer’s handling of floating-point, introduced by the

translation to machine code and manual “tidying up” [17],

suggesting a need to extend the proof chain to the whole

development process and a need for greater automation.

The FDIV bug in the Pentium 1 and the cost of the resultant

recall spurred the use of machine-checked formal proofs in

the design of floating-point hardware [20], [21]. To this end,

IEEE-754 was formalized in a variety of interactive theorem

provers, including Isabelle [28], HOL [11], HOL Light [19]

(used by Intel), ACL2 [25] (used by AMD and Centaur), PVS

[24] and Coq [14], [23], [7]. These and related approaches

[2] share a number of common characteristics due to the

provers they targeted. They are all instances of the axiomatic

approach described in Section III; generally reduce floating-

point numbers to integers and reals; are intended for use

in machine checked proofs; and are normally used to ver-

ify implementations of floating-point and specific algorithms

based on them. In contrast, this work (and its precursor [26])

follows the algebraic approach; builds on computationally

simple primitives; and is intended to be a formal reference

for automatic theorem provers providing built-in support for

reasoning about floating-point arithmetic.

A number of SMT solvers provide support for early versions

of our theory by encoding floating-point expressions as bit-

vector expressions based on the circuits used to implement

floating-point operations. To improve performance, they of-

ten rely on over and under approximation schemes. To our

knowledge, the earliest implementation of this approach was

given in the CBMC model checker [9]. The approach is now

used in Z3 [16], MathSAT [12], SONOLAR [22] and CVC4

[3], and improving it remains an active area of research [29].

An alternative approach is based on abstract interpretation. It

uses intervals or other abstract domains to over-approximate

possible models, and a system of branching and learning

similar to the SAT algorithm CDCL to narrow these to

particular concrete models [18], [8]. There has also been work

to integrate the automated prover Gappa [15] into SMT solvers

[13], although these solvers are not known to implement the

semantics presented in this paper.
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