
Available online at www.sciencedirect.com

ScienceDirect

Mathematics and Computers in Simulation 166 (2019) 451–460
www.elsevier.com/locate/matcom

Original articles

Identifying volatile numeric expressions in numeric computing
applications✩

Mahsa Bayatia, Miriam Leesera,∗, Yijia Gub, Thomas Wahlb

a Department of ECE, Northeastern University, Boston, MA, United States
b Khoury College, Northeastern University, Boston, MA, United States

Received 24 January 2018; received in revised form 14 June 2019; accepted 28 June 2019
Available online 15 July 2019

Abstract

The results of numerical computations with floating point numbers depend on the execution platform, which we define as
the hardware and the tools (compilers, etc.) supporting that hardware. One reason for the dependence is that compilers have
significant freedom in deciding how to evaluate a floating point expression, as such evaluation is not standardized (not even
in standards such as IEEE-754). Another reason is that hardware may or may not provide specialized instructions like Fused
Multiply Add (FMA), and if it does, the compiler can take advantage of FMA functionality in different ways.

We call an expression volatile if, for some input, its value differs across platform parameters. Differences can become par-
ticularly large across heterogeneous parallel architectures. This undermines the software portability promised by programming
standards such as OpenCL and significantly impacts reproducibility of results in general.

In this paper, we present a technique that predicts bounds on the output of a program containing volatile expressions when
executed on different platforms. Using randomly selected inputs, we compare the bounds to results from running the code
across a variety of platforms including CPUs and GPUs. Our results show that the theoretical bounds are relatively tight
(within an order of magnitude) and can help users pinpoint where results should be stabilized, for instance by restricting
expression reordering.
c⃝ 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.

Keywords: Floating point; Heterogeneous computing; Reproducibility; Numerical expressions; OpenCL

1. Introduction

Programming language standardization efforts are often at odds with the goal of permitting efficient language
implementations on different computing platforms. Depending on the programming paradigm, a suitable compro-
mise must be found. For floating-point arithmetic, a widely used such compromise is the IEEE 754 floating-point
standard. Despite compliance with this standard, the same program run on the same inputs on different platforms
can easily produce different results. (We define platform as the combination of hardware architecture and the

✩ This work has been partially supported by the US National Science Foundation through Awards CCF-1218075 and CCF-1718235.
∗ Corresponding author.

E-mail addresses: mbayati@coe.neu.edu (M. Bayati), mel@coe.neu.edu (M. Leeser), guyijia@ccs.neu.edu (Y. Gu),
t.wahl@northeastern.edu (T. Wahl).

https://doi.org/10.1016/j.matcom.2019.06.016
0378-4754/ c⃝ 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

http://www.elsevier.com/locate/matcom
https://doi.org/10.1016/j.matcom.2019.06.016
http://www.elsevier.com/locate/matcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2019.06.016&domain=pdf
mailto:mbayati@coe.neu.edu
mailto:mel@coe.neu.edu
mailto:guyijia@ccs.neu.edu
mailto:t.wahl@northeastern.edu
https://doi.org/10.1016/j.matcom.2019.06.016

452 M. Bayati, M. Leeser, Y. Gu et al. / Mathematics and Computers in Simulation 166 (2019) 451–460

compiler that targets it.) Compiler writers have several degrees of freedom when generating code to run on different
hardware, including: (i) the compiler may reorder expressions, which affects the values of results because floating
point operations are not associative and (ii) a (sub-)expression of the form a ∗ b + c can be translated into a
single fused-multiply add (FMA) instruction, where the intermediate rounding after the multiplication is avoided.
An architecture may support FMA; even if it does, the compiler has freedom regarding which parts of an expression
it applies FMA to, and in what order (e.g., in expressions like a ∗ b + c ∗ d). These compiler freedoms can lead to
volatile expressions across different platforms and such volatility is frequently observed.

Despite this known issue with programs that make use of floating point computations, there are very few tools
to help a user of such programs predict the level of volatility and take measures where such volatility is an issue.
In this paper we provide a technique that identifies volatile expressions and provides bounds for the values that
expressions will exhibit across target platforms. The method is dynamic, i.e. it is based on program execution and
relies on concrete inputs provided. We apply it to several applications from the Scalable Heterogeneous Computing
(SHOC) Benchmark Suite [10].

In addition to the theoretical approach, we experiment with the same inputs on different hardware platforms. Our
results show that the technique consistently produces fairly tight bounds, and that actual results across platforms fall
within these bounds. This technique provides useful input to the user of these programs regarding the magnitude
of the differences that can be expected, and allows the user to judiciously apply techniques to the portions of the
code where such volatility should be limited. This will allow users to improve the reproducibility of their floating
point code while minimizing the impact on code performance.

2. Methodology

2.1. Fundamental concepts

Numerical results are affected by the availability of FMA and by decisions the compiler makes about expression
evaluation. We refer to the combination of hardware and compiler evaluation decisions as an expression evaluation
model, denoted M . Throughout this paper we use + , ∗ for real addition and multiplication, and ⊕, ⊗ for floating
point addition and multiplication. Thus, the fused multiply–add operation is defined as fma(a, b, c) = (a ∗ b) ⊕ c :
an operation with only one rounding step, in the final addition. For a given input, we say that the result of a
numerical program is reproducible if we can get bitwise identical results under different evaluation models. For
programs computing floating point values, full reproducibility cannot be obtained in general. The largest difference
characterizes the extent to which the program is affected by different evaluation models.

Definition 1. Let r (I, M) be the result computed in variable r for program input I under evaluation model M .
The volatility of r for input I is

V(r, I) = max
M

r (I, M) − min
M

r (I, M) . (1)

The interval [minM r (I, M), maxM r (I, M)], called (lower and upper) volatile bounds of r for input I , contains
the results under all possible evaluation models. When V(r, I) equals 0, the value of r is fully reproducible (platform
independent).

Interesting expressions for us are those whose values, for some input, depend on the evaluation model:

Definition 2. Expression Ψ is volatile if there exists I s.t. V(Ψ , I) > 0.

We consider evaluation models related to the non-associativity of � and �, and the use or non-use of FMA.
This set of evaluation models affects the computation of polynomial floating point expressions. Syntactically, a
polynomial volatile expression is an unparenthesized expression of the form:

Ψ :: x11 � x12 . . . � x1n � . . . � xm1 � xm2 . . . � xmn (2)

That is, subexpressions of Ψ are sums of products of floating point variables; each product is called a monomial.
This form includes many common expressions, such as chains of additions or multiplications, and dot products.

M. Bayati, M. Leeser, Y. Gu et al. / Mathematics and Computers in Simulation 166 (2019) 451–460 453

Fig. 1. Concrete semantics (left) and abstract interval semantics (right). The set of possible values under volatility is shown to the left of
each statement.

2.2. Background: Numerical abstract interpretation

For a given input I , the execution of numerical program P under evaluation model M can be described by a
computational process shown below:

v1 := e1(I, M);
...

v j := e j (U j , M);
...

r := er (Ur , M);

(3)

where I and r are the input and output of P , respectively; v j is an intermediate variable; e j is some floating point
expression (in this paper we consider polynomial expressions (2), divisions �, or square root sqrt); and U j is the
argument vector of e j (each element of U j is an input variable, a constant, or an intermediate variable).

A naive way to compute the volatile bounds of r , i.e. the value of the interval [minM r (I, M), maxM r (I, M)], is
to calculate the values of r for each of the finitely many different evaluation models. This is, of course, infeasible
or very inefficient at best, due to the large number of possible evaluation models. Instead, our technique is based
on abstract interpretation [9] over the interval domain [15], which we review here briefly.

The set of possible values of program variables under all evaluation models is known as the concrete semantics
of numerical program P from Eq. (3) and shown in the left part of Fig. 1. Here, each v j i represents the value of v j

under evaluation model Mi ; each e j represents the concrete semantics of the j th program statement, also referred
to as the concrete transfer function of P , in abstract interpretation terminology.

Instead of working with such potentially large sets for each j , we define the interval abstract semantics as
intervals [↓ v j , ↑ v j] as shown in the right part of Fig. 1. Here, ↓ v j and ↑ v j refer to the minimum and maximum
values of v j ; the intervals thus satisfy, for each j , the invariant,

{v j1, . . . , v jm} ⊆ [↓ v j , ↑ v j] . (4)

The interval is hence a sound (i.e., over-)approximation of {v j1, . . . , v jm}.
Function ẽ j in Fig. 1, known as the abstract transfer function, implements the abstract semantics of the program

statement, i.e. the effect of applying program statements to intervals, rather than concrete values. Functions ẽ j must
be designed such that invariant (4) is maintained. Specifically, the following relationship holds between concrete
and abstract transfer functions:

Theorem 3. Given a floating-point expression e(I) over an input vector I := (v1, . . . , vn), let I = [↓ v1, ↑ vn] ×

· · · × [↓ vn, ↑ vn], and let [↓ v, ↑ v] be the abstract output interval, i.e. the result of applying ẽ to I. Then:

[min
I∈I

min
M

e(I, M), max
I∈I

max
M

e(I, M)] ⊆ [↓ v, ↑ v] .

In the next section, we show how to design abstract transfer functions ẽ for polynomial volatile expressions that
satisfy this requirement. Note that transfer functions for non-volatile expressions do not need to take volatility into
account and can thus be derived from standard interval abstraction for floating point arithmetic [15].

454 M. Bayati, M. Leeser, Y. Gu et al. / Mathematics and Computers in Simulation 166 (2019) 451–460

2.3. Abstract transfer functions for volatility

Given abstract input I, our technique to approximating the lower volatile bound for an expression Ψ , as in
(2), consists of two steps (the upper bound is calculated similarly). First Algorithm 2.1 transforms each monomial
xi1 � xi2 . . . � xin into two-constant form c⊣

i � c⊢

i . The form returned consists of an upper and a lower term, which
when multiplied produce an answer within the range of values of the solution. The reason for choosing this form
is that it allows us to consider alternative ways of applying FMA between adjacent monomials.

Algorithm 2.1: Find the two-constant form of monomial m
Input: m := v1 � . . . � vn , where vi can be a constant or a variable

1 ↓ m = +∞;
2 for (c1, . . . , cn) ∈ {↓ v1, ↑ v1} × . . . × {↓ vn, ↑ vn} do
3 (t⊣, t⊢) = getMinmul(c1, . . . , cn);
4 if ↓ m > t⊣

∗ t⊢ then
5 ↓ m = t⊣

∗ t⊢;
6 c⊣

= t⊣ ;
7 c⊢

= t⊢ ;
8 end
9 end

10 return (c⊣, c⊢);

Function getMinmul in Algorithm 2.1 calculates a pair of floating point numbers whose product is the minimum
value of the monomial. The function is defined as

getMinmul(c1, . . . , cn) = (A[1, L[1, n]], A[L[1, n] + 1, n])

where A[i, i] = ci , A[i, j] = A[i, L[i, j]] � A[L[i, j] + 1, j] for i < j , and

L[i, j] =

⎧⎨⎩
argmin
k : i≤k< j

| A[i, k] ∗ A[k + 1, j] | if sign(m) = +

argmax
k : i≤k< j

| A[i, k] ∗ A[k + 1, j] | if sign(m) = − .

Function sign(m) returns the sign of the multiplication result of the monomial. Note that we use real multiplication
in the definition of L[i, j] instead of � as in the definition for A[i, j]: the multiplication in FMA is conceptually
done in real arithmetic.

A separate pair of floating point numbers whose product is the maximum value of the monomial is computed
using a similar algorithm, replacing getMinmul with an analogous function getMaxmul . After obtaining the two-
constant form, the polynomial expression has the shape of a standard dot product: c⊣

1 � c⊢

1 � . . . � c⊣
n �

c⊢
n .

In the second step we obtain the lower volatility bound ↓Ψ of the dot product expression Ψ = v11 � v21 �
. . . � v1n � v2n (this form is guaranteed by step 1), under evaluation models that support FMA, as follows. We
need to consider not only different ways of applying FMA, but at the same time different ways of parenthesizing
the expression. For example, for n = 3 the above expression can be evaluated in many different ways, including

v11 � v21 � (v12 � v22 � v13 � v23)
fma(v11, v21, v12 � v22 � v13 � v23)

fma(v11, v21, fma(v13, v23, v12 � v22))
fma(v13, v23, fma(v12, v22, v11 � v21))

Our method for computing ↓Ψ is to determine the value B[1, n], for the array B defined as

B[i, j] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v1i � v2i if i = j
min {fma(v1i , v2i , B[i + 1, j]),

min
i<k< j−1

{B[i, k] � B[k + 1, j]},

fma(v1 j , v2 j , B[i, j − 1])
}

if i < j

M. Bayati, M. Leeser, Y. Gu et al. / Mathematics and Computers in Simulation 166 (2019) 451–460 455

In a similar way, we obtain the maximum value, ↑Ψ . We summarize the guarantee of the volatile bounds as
follows:

Theorem 4. Given interval input I, let [↓Ψ (I), ↑Ψ (I)] be the interval resulting from our analysis. Then:

[min
I∈I

min
M

Ψ (I, M), max
I∈I

max
M

Ψ (I, M)] ⊆ [↓Ψ (I), ↑Ψ (I)]

Applying Theorem 4 inductively across all steps of the program that lead to the final result r , we obtain, for any
input I :

[min
M

r (I, M), max
M

r (I, M)] ⊆ [↓ r (I), ↑ r (I)] .

2.4. Implementation

We have implemented the above techniques in a runtime library, the core of which is a customized datatype
ifloat, that performs floating point operations abstractly. That is, it takes floating point intervals as input (where
concrete values are taken as singleton intervals) and produces floating point interval outputs by implementing the
above abstract transfer functions ẽ. For each program variable, ifloat thus tracks its volatile bounds. The abstract
program execution is slower than the concrete (single-value) execution (see Section 4). To apply our analysis to a
given program, the user needs to make the following two changes to the program: they need to replace all native
float types with ifloat, and they need to assign parenthesized parts of polynomial expressions (which prevent
compilers from reordering) to a temporary variable to force this evaluation order. The automation of these steps
is left for future work. In our experiments we use single-precision float as the numeric data type and, as in most
programs, round-to-nearest-ties-to even as the rounding mode.

3. Experiments and results

3.1. Experimental setup

In our experiments we investigate the volatile bounds for a number of application programs. We show results for
Ray Tracing, Stencil Computations (SC) and Molecular Dynamics (MD). Ray tracing was chosen as a small example
that illustrates the issues we are addressing. Stencil and MD are taken from the SHOC Benchmark Suite [10].
Molecular Dynamics is used for applications such as drug discovery where users are concerned about getting
consistent results. Stencil Computations are the basis of many large applications, so here, too, consistent results
are important. For SC and MD, we choose inputs at random, but keep these inputs constant across all experiments.
We run the volatility analysis on these inputs and then run experiments across a number of platforms to illustrate
the volatility and to show that the theoretical analysis does indeed produce tight bounds. We also analyze how
differences grow with the input sizes and the number of iterations. Input data sets and instructions for running
the code are available at our project website [3] as well as supplementary material for this paper. This provides
sufficient information for the interested reader to reproduce our results. In the future we will consider allowing
the user of our tool to suggest inputs or intervals to ensure meaningful values are covered, or to steer the analysis
towards inputs that are known to give rise to large volatility.

Platforms. For our experiments we target a range of different computer hardware (all compliant with IEEE 754–
2008). We run our experiments on both CPUs and GPUs, from the major manufacturers (AMD, Intel, and NVIDIA)
representing a range of technology families and complexity (see Table 1). Applications are implemented in OpenCL
and each targeted hardware platform has an OpenCL compiler provided by its manufacturer. We use OpenCL as it
allows us to run the same code on different hardware. Our techniques are generally applicable to other languages,
especially those based on C.

3.2. Ray tracing

As a small example we use Raytracing code taken from http://www.cc.gatech.edu/∼phlosoft/photon/. The relevant
snippet of this code is shown in Fig. 2. For these experiments we choose inputs that trigger a control flow instability;

http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/
http://www.cc.gatech.edu/~phlosoft/photon/

456 M. Bayati, M. Leeser, Y. Gu et al. / Mathematics and Computers in Simulation 166 (2019) 451–460

Table 1
Target computer hardware.

Type Manuf. Description Year FMA

1 CPU Intel E5−2650 2016 Y
2 CPU AMD A10−6700 2013 N
3 GPU NVIDIA Tesla K20 2012 Y
4 GPU NVIDIA Tesla K40 2013 Y
5 GPU NVIDIA Tesla K80 2014 Y
6 GPU AMD Radeon HD 7660G 2013 N

Table 2
Raytracing: different D values obtained experimentally; analytic volatility bounds.

AMD CPU AMD GPU Intel NVIDIA Analytic D bounds

set1 +1.441E−1 +1.250E−1 +1.441E−1 −1.058E−1 [−2.528E−1, 1.567E−1]
set2 +1.086E−2 +0.000E+0 +1.086E−2 −3.426E−2 [−6.888E−2, 6.389E−2]
set3 −4.545E+0 −8.000E+0 −4.545E+0 +6.126E+0 [−1.600E+1, 9.205E+0]
set4 +3.874E+0 +0.000E+0 +3.874E+0 −4.715E+0 [−8.000E+0, 1.685E+1]
set5 +4.802E+0 +0.000E+0 +4.802E+0 −9.0989E+0 [−1.6023E+1, 5.021E+1]
set6 +9.767E−2 +0.000E+0 +9.767E−2 −3.902E+0 [−4.852E+0, 2.305E+0]
set7 +1.953E−1 +2.500E−1 +1.953E−1 −3.041E−3 [−5.031E−1, 3.736E−1]

Fig. 2. Code for ray tracing.

in this code this occurs for if (D > 0). The results can cause the code after this branch to be executed or not
depending on platform, thus exhibiting a control flow instability [13]. We are interested in the value of D, given
inputs s, r , and radiusSq. Table 2 shows the value of D computed for seven input sets. In all cases, the observed
results lie within the computed volatility bounds. In all input sets 1 through 7, a control flow instability is observed.

3.3. 2DStencil

2DStencil is implemented as part of SHOC [10]. We use a 9-point stencil pattern. We generate the input matrix
data randomly and run the algorithm on different platforms using the same data. The output is a matrix with the same
size as the input matrix. We report the element which exhibits the maximum absolute volatility in our results. We
compare the observed differences to those found using the technique described in Section 2.1. These were applied
to two input sets of size 128 × 128 with 50 iterations and one input set of size 512 × 512 with 10 iterations.
Our results show that the analysis does indeed provide accurate bounds which are approximately ten times larger
than the largest observed difference. Fairly tight bounds help users identify where the differences arise in floating
point computations. We also observe that NVIDIA GPUs and Intel CPU produce no difference in results, and AMD
GPUs and AMD CPUs also show no difference. The largest difference for Stencil2D on all platforms is between
an NVIDIA GPU and an AMD GPU. These differences are shown in Table 3.

We also study how the differences scale in multiple dimensions, including size of the input data and number of
iterations. Tables 4 and 5 show these differences across the NVIDIA and AMD GPU platforms. It can be concluded

M. Bayati, M. Leeser, Y. Gu et al. / Mathematics and Computers in Simulation 166 (2019) 451–460 457

Table 3
Stencil: Largest absolute difference and volatility bounds.

Input size — # of iterations Max. Abs. differences observed Analytic diff.

set1: 128 × 128 — 100 7.50E−1 1.087E+1
set2: 128 × 128 — 50 2.38E−6 2.336E−5
set3: 512 × 512 — 10 9.37E−2 3.437E−1

Table 4
Stencil2D results: Differences AMDGPU/NVIDIA for 128 × 128 matrix.

128 × 128 10 iter 100 iter 250 iter 500 iter 750 iter 1000 iter

Max Abs. Diff 3.9E−3 7.50E−1 1.92E+3 5.368E+8 1.363E+14 3.17E+19

Relative Diff 2.7E−7 4.97E−7 1.01E−6 1.656E−6 2.440E−6 3.308E−6

Table 5
Stencil2D results: Differences AMDGPU/NVIDIA for 1024 × 1024 matrix.

1024 × 1024 10 iter 100 iter 250 iter 500 iter 750 iter 1000 iter

Max Abs. Diff 3.75E−1 8.000E+1 1.802E+5 6.87E+10 1.857E+16 4.722E+21

Relative Diff 3.30E−7 6.089E−7 1.005E−6 1.85E−6 2.64E−6 3.339E−6

Table 6
MD: Largest absolute difference and analytic volatility for 12 288 atoms.

Platforms Max. Abs. differences observed Analytic volatility

NVIDIA vs. AMDGPU 4.503E16
NVIDIA vs. AMDCPU 3.298E12
NVIDIA vs. Intel 3.298E12 3.6705E17
Intel vs. AMDGPU 4.503E16
Intel vs. AMDCPU 1.099E12
AMDGPU vs. AMDCPU 4.503E16

Table 7
Scaling of MD results differences AMDGPU vs. NVIDIA.

No. of atoms 24 576 36 864 73 728

Max Abs. Diff 4.503E+16 1.441E+17 1.441E+17
Relative Diff 3.892E−07 7.790E−07 7.790E−07

that the absolute differences grow as the number of iterations and the input size grow, but the relative error remains
at 10−7.

3.4. Molecular dynamics

Molecular Dynamics (MD) [10] is the computation of the Lennard-Jones potential. The program input is the
Cartesian position (x, y, z) of a number of atoms and the forces are calculated in each direction (x, y, z) for each
atom based on accumulation of the forces from neighboring atoms within a specific cut-off distance. The output is
the force applied to each atom, in (x, y, z) coordinates. In our experiments, we run the MD application for a specific
number of atoms with their positions randomly generated, use 128 neighboring atoms and a cut-off distance of 16.0.
Table 6 shows volatility bounds based on dynamic analysis and the differences observed between different runs for
12288 atoms. Table 7 shows that the maximum absolute difference increases as the number of atoms increases,
however the relative difference remains constant. Each platform generates results which differ from all others, but
the largest differences are observed between the AMD and NVIDIA GPUs, so these are the ones we report.

458 M. Bayati, M. Leeser, Y. Gu et al. / Mathematics and Computers in Simulation 166 (2019) 451–460

4. Discussion

As our experimental results demonstrate, platform dependence of numeric computations is a bigger problem
for some applications than for others. Where does one draw the line — what constitutes an acceptable platform
dependence? This is a non-trivial research problem by itself; the answer depends on the way the numeric results
are used.

A software pattern that is generally cause for concern in the context of reproducibility is control flow that depends
on numeric results. If there are inputs for which the control flow decision is close to the decision boundary, then
the flow of control may depend on the computational platform — for identical inputs, the program may execute
different segments of code on different machines. Such changes in the behavior of programs across platforms are
usually a serious indicator. They have ramifications for the more general class of decision-making programs, such as
image classifiers, which are beyond the scope of this paper. We have demonstrated, using the ray tracing example,
that this is a realistic possibility: in this program the volatility in variable D makes execution of the conditional
code platform-dependent.

Such uncertainties clearly must be addressed. In separate work, we have proposed ways to reduce platform
uncertainty [12]. A naive way to achieve this is to use compiler flags that enforce strict (deterministic) evaluation,
such as /fp:strict for Visual Studio C++. This unfortunately inhibits optimizations that compilers can apply to
harmless (stable) fragments of the code [8]. In [12] we present a more fine-grained approach that, given some target
expression E , aims to stabilize only some evaluation aspects of some preceding statements, namely of those that
contribute most to the uncertainty in E . Our technique returns information on what these statements are, and what
kinds of uncertainties in their evaluation (ordering, FMA, etc.) are to blame for E’s non-reproducibility. This allows
the user to apply fine-grained, local code stabilization, with minimal impact on program performance.

4.1. Related work

Much prior work in analyzing numerical programs focuses on rounding errors. Interval analysis [15] calculates
an interval for each variable during execution that guarantees to contain the rounding error bound of the variable.
Although we do not target rounding errors in this paper, we use interval analysis as well to soundly approximate the
volatile bounds of each variable. In general, a drawback of interval analysis is that the resulting intervals are often
rather pessimistic (large), owing to the fact that the analysis ignores relations among variables in the expressions.
This issue can be addressed in two ways: either by interval splitting, so that the initial intervals are very small,
thereby reducing the abstract arithmetic error to propagation error, or by using more precise relational domains,
such as the octagon domain. In our work, however, we have found in the experiments that the coarseness of interval
approximation is not a bottleneck. The reason is that we only run the analysis on single inputs (so the abstract inputs
are singleton intervals, rather than true input ranges), which we can think of as maximally split intervals.

Besides the above direct analysis of rounding errors of the program, research is also being conducted on detecting
deviations of numeric programs’ behaviors compared to idealistic exact-arithmetic programs, caused by rounding
errors. Existing works include detecting floating point exceptions [2], and instable control-flow paths [1,7].

The work most closely related to reproducibility analysis in this paper is research about IEEE compliance
problems [14] encountered in actual heterogeneous computing environments (CPU/GPU/FPGA). Boldo et al. [4]
present a formally verified C compiler that guarantees IEEE-compliant floating point machine code, which is
achieved by enforcing “a single way to compile”, akin to strict semantics. This ensures code stability, but does
not address the question of whether there is any significant instability in the program in the first place, or how
much instability is tolerable in the program. Other works [5,6,16] prove a maximum rounding error under platform
variations. The approach is deductive (proof-based) and not suitable for identifying inputs that cause platform
dependence. Our dynamic analysis technique is able to identify inputs (among the given test set) with critical
stability problems, and generally provides an upper bound on how poorly the program may behave, in terms of
reproducibility, when run on platforms other than the development machine.

4.2. Planned improvements

The code linked against our ifloat library (Section 2.4) is currently up to three orders of magnitude slower
than the original code with single precision. This is due to the extra information tracked by our library, and also

M. Bayati, M. Leeser, Y. Gu et al. / Mathematics and Computers in Simulation 166 (2019) 451–460 459

the extensive use of rational numbers in the process; the analysis itself is done in exact arithmetic, using the
GNU Multiple Precision arithmetic library (https://gmplib.org). For large numerical programs, the use of rational
arithmetic quickly becomes the performance bottleneck. Similar to the approach applied by Fluctuate [11], we plan
to offer the choice between an analysis performed in floating point or rational arithmetic.

The overapproximation necessary to compensate for the rounding error in the analysis itself (not in the program)
will affect the precision of the analysis. To alleviate this issue, we require that the precision used in the floating point
based analysis is higher than that of the analyzed code. If necessary, this can be achieved using variable-precision
floating point libraries such as GNU MPFR (http://www.mpfr.org).

5. Conclusions and future work

We presented a technique for identifying the bounds of floating point expressions due to differences that numeric
programs exhibit, for the same input, across computational platforms. These differences arise due to lax expression
evaluation rules in most programming languages (whether complying with the IEEE 754 floating point standard or
not), as well as differences in floating-point hardware. We also presented the results of experiments that show that
the volatile bounds produced are tight and that these differences occur not only for carefully selected critical inputs,
but also for randomly chosen ones. We show how these results scale with iterations and input sizes and provide
techniques for identifying when such differences may be considered critical by the user.

Volatility in programs arises not only as a result of platform changes, when programs are ported from one
architecture to another: the same phenomenon is responsible for making many floating-point compiler optimizations
unsound. Compilers frequently fold constants or reorder expressions, which often causes the program results to
change on some inputs. This phenomenon is known; programmers are warned by compilers (at least hidden
somewhere in the manual page) that fastmath optimizations do not guarantee input/output equivalent expressions.
Little is known about how to make optimizations value-stable, especially while preserving as much of the
optimization benefits as possible, such as improved code performance. Since the underlying root cause is the same
as in platform-dependent computations, namely non-invariance of floating-point expression values under reorderings
and other “apparently equivalent” code transformations, there is hope to assist compilers in optimizing programs
more predictably using some of the techniques reported on in this paper.

Acknowledgments

This material is based upon work supported by the US National Science Foundation. We would like to thank
the reviewers for helping to improve the paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.matcom.2019.06.
016.

References

[1] T. Bao, X. Zhang, On-the-fly detection of instability problems in floating-point program execution, in: ACM SIGPLAN International
Conference on OOPSLA 2013, Part of SPLASH 2013, Indianapolis, USA, 2013, pp. 817–832.

[2] E.T. Barr, T. Vo, V. Le, Z. Su, Automatic detection of floating-point exceptions, in: 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Rome, Italy, 2013, pp. 549–560.

[3] M. Bayati, M. Leeser, Y. Gu, T. Wahl, Identifying volatile numeric expressions in OpenCL applications, http://www.coe.neu.edu/Rese
arch/rcl/projects/FPReproducibility/matcom.html, 2018.

[4] S. Boldo, J. Jourdan, X. Leroy, G. Melquiond, A formally-verified C compiler supporting floating-point arithmetic, in: ARITH 2013,
Austin,TX, USA, 2013, pp. 107–115.

[5] S. Boldo, T.M.T. Nguyen, Hardware-independent proofs of numerical programs, in: Second NASA Formal Methods Symposium (NFM)
2010, Washington D.C., USA, 2010, pp. 14–23.

[6] S. Boldo, T.M.T. Nguyen, Proofs of numerical programs when the compiler optimizes, ISSE 7 (2) (2011) 151–160.
[7] W. Chiang, G. Gopalakrishnan, Z. Rakamaric, Practical floating-point divergence detection, in: Languages and Compilers for Parallel

Computing, 2015, pp. 271–286.
[8] M.J. Corden, D. Kreitzer, 2010. Consistency of Floating-Point Results using the Intel® Compiler or Why doesn’t my application always

give the same answer?, http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf, last accessed March 2019.

https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
http://www.mpfr.org
https://doi.org/10.1016/j.matcom.2019.06.016
https://doi.org/10.1016/j.matcom.2019.06.016
https://doi.org/10.1016/j.matcom.2019.06.016
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb1
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb1
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb1
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb2
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb2
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb2
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://www.coe.neu.edu/Research/rcl/projects/FPReproducibility/matcom.html
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb4
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb4
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb4
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb5
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb5
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb5
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb6
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb7
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb7
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb7
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf
http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf

460 M. Bayati, M. Leeser, Y. Gu et al. / Mathematics and Computers in Simulation 166 (2019) 451–460

[9] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation
of fixpoints, in: ACM Symposium on Principles of Programming Languages, California, USA, 1977, pp. 238–252.

[10] A. Danalis, G. Marin, C. McCurdy, J. Meredith, P. Roth, K. Spafford, V. Tipparaju, J. Vetter, The scalable heterogeneous computing
(SHOC) benchmark suite. https://github.com/vetter/shoc/wiki, last accessed March 2019.

[11] E. Goubault, Static analyses of the precision of floating-point operations, in: Static Analysis, 8th International Symposium, SAS 2001,
Paris, France, 2001, pp. 234–259.

[12] Y. Gu, T. Wahl, Stabilizing floating-point programs using provenance analysis, in: VMCAI, 2017, pp. 228–245.
[13] Y. Gu, T. Wahl, M. Bayati, M. Leeser, Behavioral non-portability in scientific numeric computing, in: EURO-PAR, 2015, pp. 558–569.
[14] D. Monniaux, The pitfalls of verifying floating-point computations, ACM Trans. Program. Lang. Syst. 30 (3) (2008) 12:1–12:41.
[15] R.E. Moore, R.B. Kearfott, M.J. Cloud, Introduction to Interval Analysis, SIAM, 2009.
[16] T.M.T. Nguyen, C. Marché, Hardware-dependent proofs of numerical programs, in: Certified Programs and Proofs - First International

Conference, CPP 2011, Kenting, Taiwan, 2011, pp. 314–329.

http://refhub.elsevier.com/S0378-4754(19)30214-9/sb9
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb9
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb9
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
https://github.com/vetter/shoc/wiki
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb11
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb11
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb11
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb12
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb13
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb14
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb15
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb16
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb16
http://refhub.elsevier.com/S0378-4754(19)30214-9/sb16

	Identifying volatile numeric expressions in numeric computing applications
	Introduction
	Methodology
	Fundamental concepts
	Background: Numerical abstract interpretation
	Abstract transfer functions for volatility
	Implementation

	Experiments and results
	Experimental setup
	Ray tracing
	2DStencil
	Molecular dynamics

	Discussion
	Related work
	Planned improvements

	Conclusions and future work
	Acknowledgments
	Appendix A. Supplementary data
	References

