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Abstract Craig interpolation has become a versatile tool in formal verification, used
for instance to generate program assertions that serve as candidates for loop invari-
ants. In this paper, we consider Craig interpolation for quantifier-free Presburger
arithmetic (QFPA). Until recently, quantifier elimination was the only available in-
terpolation method for this theory, which is, however, known to be potentially costly
and inflexible. We introduce an interpolation approach based on a sequent calculus
for QFPA that determines interpolants by annotating the steps of an unsatisfiability
proof with partial interpolants. We prove our calculus to be sound and complete. We
have extended the PriNCESs theorem prover to generate interpolating proofs, and
applied it to a large number of publicly available Presburger arithmetic benchmarks.
The results document the robustness and efficiency of our interpolation procedure.
Finally, we compare the procedure against alternative interpolation methods, both
for QFPA and linear rational arithmetic.
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1 Introduction

Craig interpolation, a technique known to logicians since the 1950s [6], has recently
emerged in formal verification as a practical approximation method. Its applications
range from accelerating convergence of fixpoint calculations for finite-state or
infinite-state systems, to generating assertions at intermediate program points that
serve as candidates for loop invariants and thus assist the safety analysis of programs.
Given two formulae A and C such that A implies C, written A = C, an interpolant
is a formula [ such that A = I, I = C, and all of I’s symbolic constants occur in
both A and C. Interpolants exist for any two first-order formulae A and C such that
A= C.

In program verification, we typically consider the special case C = =B of the
above formulation, so that the validity of A = C is tantamount to the unsatisfiability
of A A B. This latter formula is used to encode the reachability of an error condition
along a length-bounded path of the program; its unsatisfiability thus proves the
program correct along paths up to that length. In order to support expressive
programming languages, much effort has been invested in algorithms that compute
interpolants for various theories. As a result, efficient interpolation methods are
known for propositional logic, linear arithmetic over the reals with uninterpreted
functions [1, 15, 21], datastructures like arrays and sets [12], and fragments of
integer arithmetic such as difference-bound logic and logics with linear equalities and
constant-divisibility predicates. For these fragments, an interpolant can be derived in
time polynomial in the size of the input formulae.

Given these encouraging results and the significance of integer arithmetic in
software analysis, there have been several attempts recently to interpolate the full
range of quantifier-free linear integer arithmetic, also known as Presburger arithmetic
and denoted QFPA in this paper. This theory has been used, for example, to model
the behavior of infinite-state programs and of hardware designs. While interpolation
for QFPA can in principle be achieved by quantifying out variables local to one of the
input formulae, followed by quantifier elimination, this method suffers from various
serious practical impediments, including the high complexity of the elimination
procedure (see Section 3 for a detailed illustration). An incomplete interpolation
procedure based on linear programming techniques was introduced in [14]. The
first complete proof-based interpolation procedure for QFPA was introduced in our
IJCAR 2010 paper [3], which we extend in the present article by a refined discussion,
and by a significantly expanded experimental analysis.

The interpolation method in this article extracts interpolants directly from an
unsatisfiability proof for A A B, as suggested e.g. in [1, 10, 14, 15]. We first present
a sound and complete proof system for QFPA based on a sequent calculus. We
then augment the proof rules with labeled formulae and partial interpolants—proof
annotations that, at the root of a closed proof, reduce to interpolants. In practice, the
resulting interpolating proof system can be used to extend an existing unsatisfiability
proof to one that interpolates. It can also serve as a replacement of the non-
interpolating proof system, allowing the calculation of an interpolant on the fly.
We prove our interpolating calculus to be sound and complete for QFPA. Our
completeness result states that, for any valid implication, there exists a proof of its
validity in our calculus, and the proof can be annotated with partial interpolants
satisfying the proof rules. This theorem can be generalized to a result stating the
existence of interpolant chains for conjunctions with arbitrarily many conjuncts.
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In the case of QFPA, the primary difficulty when extracting interpolants from
a proof is the treatment of mixed cuts: applications of a cut rule (such as Gomory
cuts [22] or the Omega rule [17]) to inequalities that have been derived as linear com-
binations of inequalities from both A and B. Our work extends earlier interpolation
procedures for linear arithmetic, in particular [14, 15], by defining an interpolating
cut rule called STRENGTHEN that can handle even mixed cuts. The rule subsumes a
variety of cut rules for integer linear programming, including the above-mentioned
Gomory cuts and the Omega rule, so that interpolants can be extracted from proofs
using either of those rules by reduction to STRENGTHEN.

To implement our interpolation method, we have extended the PrRINCEsS theorem
prover [20] to generate proofs, using the proof rules presented in this paper.
We have applied the interpolating prover to a large number of publicly available
linear integer arithmetic benchmarks, taken from the QF-LIA category of the SMT
library. We compare the efficiency of the prover to alternative QFPA interpolation
procedures, including those based on quantifier elimination (QE) and on linear
programming [13]. We also compare the prover with CSIsar [1], a constraint-
based [21] interpolation procedure for linear rational arithmetic: since interpolation
methods for rational arithmetic have been known and developed for several years,
it is interesting to measure the overhead imposed by integer reasoning on problems
that can also be interpolated using rational methods. Our results demonstrate the
strengths of our interpolation approach in terms of both time and interpolant size.

2 Preliminaries

Presburger Arithmetic We assume familiarity with classical first-order logic (see,
e.g., [8]). Let x range over an infinite set X of variables, ¢ over an infinite set C of
constant symbols, and « over the integers Z. The syntax of Presburger arithmetic is
defined by the following grammar:

pu=t=0|1<0|al|t|prd|dVe|—d|Vre|Ire
to= a|c|x|at+---+at

The symbol ¢ denotes terms of linear arithmetic. To enforce canonicity, we assume
that terms are implicitly simplified to 0 or to the form «;#; + - - - 4+ a,t,, in Which
0¢{ay,...,ay},and 1, ..., t, are pairwise distinct variables, constants, or 1. Further,
we only allow 0 as the right-hand side of equalities and inequalities.

This paper is concerned with interpolation for quantifier-free arithmetic and
therefore permits quantifiers only in restricted forms: (i) universal (resp., existen-
tial) quantifiers under an even (resp., odd) number of negations. Such quantifiers
effectively limit the theory to the existential fragment of Presburger arithmetic and
can thus be eliminated by Skolemization; and (ii) implicitly to express divisibility by
integer constants, namely in the form of the stride constraint « | t, which is equivalent
to Is. as — t = 0. We permit such expressions to enable quantifier-free interpolants
for formulae such as y —2x=0Ay —2z — 1 =0, with interpolant 2 | y. QFPA
denotes the logic generated by the above grammar, restricted to the aforementioned
quantification rules.
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*
L,1<0 -
o, <0,z4+1<0 F
o, 2 <0, -b4+2<0,3b—22+1<0 +
o, =22<0,-204+22x-1<0,3b—2x+1<0
o, 22 <0,-2b+22-1<0,c-3b—-1=0,c—2z<0 +
a—2x=0,-a<0,26—a<0,-2b+a—-1<0,¢c—3b—-1=0,c—a<0 F
a—2r=0AN—-a<0A20—a<0AN-2b+a—-1<0Ac—3b—1=0Ac—a<0 F

CLOSE-LEFT’

siMp’

FM-ELIM’

FM-ELIM’

sivp’ T

RED’

RED'T
i

AND-LEFT’

Fig.1 Unsatisfiability proof for the examples of Section 3

We use the abbreviations true and false for the equalities 0 =0 and 1 =0, and
¢ — v as abbreviation for —¢ Vv ¥. Simultaneous substitution of terms 7y, ..., t, for
variables xi, ..., x, in ¢ is denoted by [x,/11, ..., x,/t,]¢; we assume that variable
capture is avoided by renaming bound variables as necessary. As a short-hand
notation, we sometimes quantify over constants (as in Vc.¢) and assume that the
constants are implicitly replaced by fresh variables. The semantics of Presburger
arithmetic is defined over the universe 7Z of integers in the standard way [8].

Gentzen-Style Sequent Calculi If T, A are finite sets of formulae without free
variables, then I' + A is a sequent. The sequent is valid if the formula AT — \/ A
is valid. A calculus rule is a binary relation between a finite set of sequents called the
premises, and a sequent called the conclusion. A sequent calculus rule is sound if, for
all instances

A - T'yFE A,
= A

whose premises I'y = Ay, ..., T, = A, are valid, the conclusion I' + A is valid,
too. Proofs are trees growing upwards, in which each node is labeled with a sequent,
and each non-leaf node is related to the node(s) directly above it through an instance
of a calculus rule. A proof is closed if it is finite and all leaves are justified by an
instance of a rule without premises. The interpolating sequent calculus presented in
this paper extends the ground fragment of the sound and complete sequent calculus
for QFPA in [20]. As an example, Fig. 2 shows most of the rules used in the proof in
Fig. 1 (the proof is discussed below in Section 3).

3 A Motivating Example

Consider the following program with variables ranging over unbounded integers:

if (a == 2*xX && a >= 0) {
b=a/2; c¢c=3%xb + 1;
assert (c > a);
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An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 345

We would like to verify the assertion in the program. To this end, the program is
translated into the QFPA formula below. Note thatb = a / 2 is converted into a
conjunction of two inequalities, and that the assertion is negated:

a—2x=0A—-a<0A2b —a<O0A-2b4+a—-1<0Ac—=3b—-1=0Ac—a=<0 (1)

The unsatisfiability of (1) implies that no run of the program violates the assertion.
Figure 1 shows a refutation of (1) in the Gentzen-style sequent calculus used in this
paper (the right-hand side A happens to be empty in all sequents, which is not true
in general). We add the prime symbol ’ to the rule names to distinguish them from
the interpolating rules introduced later. The proof starts with the conjunction (1) in
the bottom sequent of the tree. Repeatedly applying the rule AND-LEFT' (denoted
AND-LEFT'") splits the conjunction into a list of arithmetic literals. The equality a —
2x =0 is used to reduce the inequalities —a <0, —2b +a—1<0,and c—a <0
by means of substitution (rule ReD’). Similarly, ¢ —3b — 1 =0 is used to reduce
¢ —2x < 0. The inequalities —2x < 0 and —2b + 2x — 1 < O are simplified (rule siMp’)
by eliminating the coefficient 2; in the latter inequality, this requires rounding.
Unsatisfiability of the remaining inequalities follows from two applications of the
Fourier-Motzkin rule FM-ELIM’, and the proof can be closed. A selection of the rules
applied in Fig. 1 are shown in Fig. 2.

Interpolants for unsatisfiable formulae like (1) can reveal additional information
about the program being investigated, for instance intermediate assertions. Suppose
we want to compute an invariant for the program point immediately afterb = a /
2. Let A denote the part of formula (1) encoding the program up to this point; B the
rest. We can obtain an interpolant for the unsatisfiable formula A A B by quantifying
out the A-local variables, i.e., variable x, from A:

Ix. (a—2x=0A—-a<0A2b —a<O0A-2b+a—-1<0),

which simplifies via quantifier elimination (QE) to —a < 0 A 2b — a = 0. Existen-
tially quantifying out the local variables from A (or, universally, the local variables
from B) always returns the strongest (respectively, weakest) interpolant for an
unsatisfiable formula. These “extremal” interpolants may be very large, however.
Suppose we modify the conditional in the program by adding further conjuncts that
are unnecessary for the safety of the program:

n
if (a == 2%X && a >= 0 && a >= nxy - > && a <= nxy) {  (2)
Loy = A , 'k ¢,4,A ,
T ong F A ANDLEFT T F oV A ORRIGHT
_— CLOSE-LEFT’ _— CLOSE-RIGHT’
I, false - A~ i I + true, A o
It=0+F ¢ls+a-t,A , Is<0,t<0,as+Bt<0F A )
ED L-ELIM
It=0+F ¢[s,A " [s<0,t<0F A FM-ELIM

Fig. 2 Some rules of the (non-interpolating) calculus for QFPA from [20]
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where n € Z is a parameter such that 2 | n. The strongest (quantifier-free) inter-
polant, denoted I}, grows linearly in n and thus exponentially in the program size:

I"= —a<O0A2b —aiO/\<n|a\/n @+ 1)V---vn] (a—i—g)) .
A weaker but much more succinct interpolant is the inequality —3b +a < 0. We
demonstrate in this paper that proof-based interpolation provides a way of obtaining
such succinct interpolants. Proofs can compactly encode the unsatisfiability of a
formula and abstract away irrelevant facts, enabling the extraction of succinct inter-
polants. This is of particular importance for program verification, where interpolants
carrying unnecessary details can delay or prevent the discovery of inductive invari-
ants (e.g., [16]). We therefore propose to /ift proofs of unsatisfiability to interpolating
proofs. This way, we avoid many disadvantages of QE-based interpolation, namely
(i) its high complexity, (ii) its inflexibility in always returning a strongest or weakest
interpolant, and (iii) the need to restart from scratch in order to consider a new
partitioning of the unsatisfiable formula into A and B (in contrast, a proof-based
method can extract many interpolants from a single proof).

4 An Interpolating Sequent Calculus for QFPA

In order to extract interpolants from proofs of unsatisfiable conjunctions A A B,
we introduce interpolating sequents as an extension of the Gentzen-style sequents
defined in Section 2. Formulae in interpolating sequents are labeled either with
the letter L to indicate that they are derived purely from A, the letter R for
formulae derived purely from B, or with partial interpolants (PlIs) that record the
A-contribution to a formula obtained jointly from A and B. Similarly as in [8], the
labels L/R will be used to handle analytic rules that operate only on subformulae of
the input formulae, while rewriting rules for arithmetic may mix parts of A and B
and therefore require partial interpolants (as in [15]).

More formally, if ¢ is a formula and ¢, t4 are terms, all without free variables,
then ¢ and |¢ |z are L/R-labeled formulae and ¢t =0[t* = 0], =0[t* #0],and ¢ <
0[t4 < 0] are formulae labeled with the partial interpolants 4 = 0, t4 # 0, and t4 <
0, respectively. We formally define interpolating sequents as follows:

Definition 1 If I', A are finite sets of labeled formulae, and / is an unlabeled formula
without free variables, then ' - A » [ is an interpolating sequent if

(i) T only contains formulae |¢|., |¢|g,t =0 [t* =0],ort < 0[t* < 0], and
(ii) A only contains formulae |¢ |, |¢] g, t = 0[t? = 0], ort = 0[t* # 0].

Note that formulae in interpolating sequents may not contain free variables.

The semantics of interpolating sequents is defined with the help of projections
I =det {@ | @) € TYand I'g =qef {@ | L@ g € T'} that extract the L/R-parts of a set
I" of labeled formulae.
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Definition 2 An interpolating sequentI' = A » [ is valid if

(i) thesequentI'y + I, Ay isvalid,
(i) thesequentT'g, I + Agis valid, and
(iii) the constants in / occur in both 'y U Ay and T'g U Ag.

Note that formulae annotated with PIs are irrelevant for deciding whether an
interpolating sequent is valid; this only depends on L/R-formulae. The semantics
of PIs is made precise in Section 5; intuitively, a labeled formula ¢ [¢“] in an
interpolation problem A A B expresses the implications A = ¢4 and B A ¢* = ¢.
This implies that ¢ is in fact an interpolant of the conjunction A A B if ¢ is
unsatisfiable.

As special cases, |A]r + |C]Jr » I reduces to I being an interpolant of the
implication A = C, while | A, | Bl|g = » I captures the concept of interpolants /
for conjunctions A A B common in formal verification.

Example We illustrate the concept of interpolating sequents with the proof in Fig. 3,
which is the interpolating version of the proof in Fig. 1 and will serve as a running
example in the whole section. For sake of brevity, we omit the subproofs .4 and B.
Due to the soundness of the applied calculus (stated in Section 5), the root sequent
of the proof is valid, which implies that I, = (—3b + a < 0) is an interpolant for the
unsatisfiable conjunction (1). Note that I, is the inequality discussed in Section 3 as
a succinct interpolant and intermediate program assertion.

In the remainder of Section 4, we explain the rules of our interpolating calculus
given in Figs. 4, 5. As usual in sequent calculi, the rules are applied in the upward
direction, starting from asequentI" = A » ? with unknown interpolant that is to be
proven (the proof root), and applying rules to successively decompose and simplify
the sequent until a closure rule becomes applicable. The unknown interpolants of
sequents have to be left open while building a proof and can only be filled in once all
proof branches are closed.

*
..,2<0[-6b+2a<0] - » I
. _20<0[-20<0],22+2<0[-6b+2a+22<0] F » I
A B ...,-2b+4+22<0[-2b+22—-1<0],3b—22+1<0[a—22<0] - »I
2 +2c-1<0[-26+26-1<0],3b—20+1<0[a—22<0] - » I

CLOSE-INEQ

FM-ELIM

FM-ELIM

STRENGTHEN

RED-LEFT
20 <0[20 <0, 26422 —1<0[-2+22-1<0],
c—3—1=0[0=0],c—22<0[a—2x<0] 2
- - RED-LEFT
..,a—2x=0[a—22=0],-2b+a—-1<0[-2b+a—1<0], e
—a<0[-a<0],c—3b—1=0[0=0],c—a<0[0< 0] 2
. 1t
le =2z =0]r,|-a<0]z,...,[-2b+a—-1<L0], el
lce—=3b—1=0|g,|lc—a<0|r 2
AND-LEFT

le =22 =0AN—-a<0A20—a<0A—-2b+a—-1<0]g, Eoel
lc—3b—1=0Ac—a<0|g 2

Fig. 3 The interpolating version of Fig. 1. The initial interpolant generated by CLOSE-INEQ is /] =

(—=6b + 2a < 0) = (—3b + a < 0), which is by STRENGTHEN combined with the interpolants false and
¢ trom the subproofs A and B to form the final interpolant I, = (I} Vv (false A ¢)) = I;
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F,I_¢JL|—A>I F,\_(bJR)—API
I |¢y|r B Aw»J Iyl B A»J
OR-LEFT-L OR-LEFT-R
Iovylp B Aw IV I|oVyYlr H AwIAT
It |¢lL,AwI It |¢|r, A I
'+ ¥, A »J '+ |Y|r, A »J
AND-RIGHT-L AND-RIGHT-R
'+ oAV, A »IVJ It [oAY|R, A IANT
I ¢lp, [¢¥lp = A w1 I' = |¢]p, [¥]p, A » 1
AND-LEFT OR-RIGHT
IioAyYlp B AwI I+ [¢Vylp, AT
F)—l_(ﬁJD,A » / F,I_(ﬁJDFAPI
NOT-LEFT NOT-RIGHT
I'|-¢|lp - AwI 't |=¢|p,Aw»I
I |[z/d¢lp F A wI I' v |[z/cd¢|p, A » I
EX-LEFT ALL-RIGHT
I'|3z.¢lp B AwI I' - |Vz.¢|p,A » 1

IitoO[toQ], [to0]r H A w1 5 I'Et=0[t=0L[t=0],A»I |5
I |toO]p - A » T LEFT-L 'k [t=0],,A »1 RIGHT-L

It00[000],[to0lg F AT .  I'F t=00#0,[t=0g,A»I

I'[toOlgp = A w1 LEFT-R I'b [t=0]p,A w1 RIGHT-R
x CLOSE-EQ-LEFT
Lt=0[" =0 - Aw»3ath=0 (t = 0 unsat.)
*
CLOSE-INEQ
Na<OotA <0 F Aw»t?r<0 (> 0)

*

D' O0=0[t*=0,A »t2#0

CLOSE-EQ-RIGHT

*
I'FO0=0[t"#0],A »t* =0

CLOSE-NEQ-RIGHT

Fig. 4 Propositional, Skolemization, initialization, and closure rules. In the propositional rules,
D € {L, R}. In the rules IPI-LEFT-L/R, o € {=, <} denotes a relation symbol. In the rule CLOSE-EQ-LEFT,

314 denotes existential quantification 3cy, ..., ¢,., over constants ¢; that occur in I'7, Ay, but not in
I'r, Ag. An equality t4 = 0 is unsatisfiable if and only if it is of the form aydy + - - - + apdy + 9 =0
and ged(ay, ..., ay) 1 ap (With the convention ged() = 0)

4.1 Propositional, Initialization, and Closure Rules

To construct a proof for an interpolation problem A A B, we start with a se-
quent A, |B]Jg + » ?that only contains L/R-labeled formulae and then apply
propositional rules and Skolemization rules to decompose A and B (the applications
of rule AND-LEFT in Fig. 3). Propositional rules are shown in the topmost part of Fig. 4.
Splitting over L-disjunctions in the antecedent (OR-LEFT-L) requires forming the
disjunction of the interpolants derived in the subproofs. Analogously, R-disjunctions
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It=0[t*=0,s+a-to0[s? +a-t*00 F A »1

RED-LEFT
It=0[t*=0],5s00[s*00] F A » 1
Nt=0[t" =0l F s+a-t=0[s"+a-t400,A » T
RED-RIGHT
Dt=0[t"=0] - s=0[s400,,A » I
Ilu—c=0]p F A»I Ia-toOfa-tA00) - A » 1
- - MUL-LEFT
I'F Awl COLRED-L [to0[tho0) - A w1
Ilu—c=0lg - A»I 'k a-t=0[a-t400],A » I
COL-RED-R MUL-RIGHT
- Aw»l ' t=0[t"00],A » 1

I'|3z.ox+t=0]p F A »I
I'la|tlp F A»I

DIV-LEFT

I3z (1-2<0Az—a+1<0A(a|t+a))|p - Aw»I
r'r la|tlp,A» I

DIV-RIGHT

Is<0[sA<0,t <0t <0),as+ Bt <O0fas? +6tA <0 - A » T
Ns<0[sA<0,t<0[tA* <0+ Aw»I

FM-ELIM

rt=0t*=0] - A » E
Nt+1<0pA <0l - A w10
Dt+1<0tA4+1<0] - A » It

Nt<ot* <0+ A wI'V(EAIO)

STRENGTHEN

Nt4+1<0tA+1<0/ - A » T I—t+1<0[-tA+1<0 + A »J
I t=0t*=0,A»IVJ

SPLIT-EQ

Nt+1<0pA <0+ AT I—t+1<0[-t* <0 F A »J
I'E t=0[t"#0,A »IAJ

SPLIT-NEQ

Fig. 5 Rules for equality/divisibility and inequality constraints. In RED-LEFT and MUL-LEFT,
o € {=, <}, while in RED-RIGHT and MUL-RIGHT, o € {=, #}. In COL-RED-L and COL-RED-R, ¢ is a constant
not occurring in the conclusion nor in «. The term « in coL-RED-L must only contain constants from
'y U AL, while # in cOL-RED-R must only contain constants from I'g U Ag. In MUL-LEFT and MUL-
RIGHT, « > 0 is a positive literal. In piv-LEFT and DIv-RIGHT, D € {L, R}, x is a fresh variable, and
a > 0. In FM-ELIM, o > 0 and B > 0 are positive integers

yield conjunctive interpolants. All propositional rules propagate the L/R-label of
formulae to their subformulae, unchanged. For brevity, we have omitted rules to
move inequalities from the succedent to the antecedent.

Once the decomposition of formulae results in arithmetic literals, the initialization
rules in the middle part of Fig. 4 are used to turn L/R-formulae into formulae with
PIs, to prepare them for later rewriting (the applications 1p1 in Fig. 3). Generally, PIs
for L-literals are chosen to be the literals themselves, while empty PIs are introduced
for R-literals: the intuition is that L-formulae are fully contributed by A, while R-
formulae do not contain any A-contribution at all.

We observe that the 1p1 rules do not remove the L/R-formula to which they are
applied (the formula occurs both in the conclusion and in the premise). The reason is
that L/R-formulae in sequents, besides their logical meaning, track the vocabulary of
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symbols occurring in the input formulae A, B;the vocabulary is used in condition (iii)
of the definition of valid interpolating sequents, but also in the closure rules discussed
next. To achieve completeness, it is never necessary to apply 1p1 rules twice on a proof
branch to the same L/R-formula.

Finally, once rewriting (discussed in Section 4.2) has produced an unsatisfiable
literal in an antecedent (or a valid literal in a succedent), a closure rule can be used
to close the proof branch and to derive an interpolant from the PI of the unsatisfiable
literal (the application cLose-INEQ in Fig. 3). Closure rules are given in the lower
part of Fig. 4. Because PIs can still contain local symbols that occur only in 'y, U A,
(and are not allowed in interpolants), it may be necessary to introduce existential
quantifiers at this point. We note, however, that quantifiers in quantified literals
can be eliminated in polynomial time; e.g., 3¢y, ..., cp. 00jc; + -+ +apcy +t =0 is
equivalent to the divisibility judgment ged(ay, ..., a,) | t.

4.2 Rewriting Rules for Equality, Inequality and Divisibility

Our arithmetic rewriting rules, shown in Fig. 5, form a calculus to solve systems
of equalities by means of Gaussian elimination and Euclid’s algorithm (the upper
part of Fig. 5), as well as a calculus for systems of inequalities that enables us
to introduce linear combinations of inequalities, and to strengthen inequalities by
means of cuts (the lower part of Fig. 5). Decision procedures for QFPA in terms
of the corresponding non-interpolating rules have been introduced in [18,20] and
directly carry over to the interpolating case. In particular, the rules can be used to
simulate various procedures for linear integer arithmetic, e.g.:

—  The Omega Test [17], which is a quantifier elimination procedure for Presburger
arithmetic that combines the Fourier-Motzkin method with a splitting rule
(the Omega rule) to achieve completeness over the integers. In the quantifier-
free case (corresponding to the existential fragment of PA), our calculus can
implement the Fourier-Motzkin method through the rule Fm-ELiM, and can
simulate the Omega rule straightforwardly with the help of the rule STRENGTHEN
(see [19] for a discussion).

—  Linear Programming (LP) with Gomory cuts: given a set of (in)equalities
that is unsatisfiable over rational numbers, LP methods are able to provide
a witness in terms of a (non-negative) linear combination of the inequalities
that certifies unsatisfiability (the existence of such witnesses is guaranteed by
Farkas’ lemma [22]). Once such a witness has been derived, the rule FM-ELIM
of our calculus can be used to derive a contradictory inequality, so that LP
methods can guide our calculus. The simulation of rules specific to integer linear
programming, including Gomory cuts, is discussed in Section 6.2.

The rules RED-LEFT/RIGHT rewrite (in)equalities with equalities in the antecedent;
in both cases, PIs are simply propagated along with the literals (RED-LEFT is applied
repeatedly in Fig. 3). The rRED rules alone are not sufficient for transforming a system
of integer equations into a solved form; they are therefore complemented with
COL-RED-L/R to introduce fresh constants defined in terms of existing constants (the
rules resemble column reductions when encoding systems of equalities as matrices).
In combination, RED and COL-RED are able to simulate the equality elimination
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procedure in [17], as well as standard procedures to transform sets of equalities
(or matrices) to Hermite and Smith normalform [10, 11]. Because coL-RED-L/R only
introduce local L/R-constants, it is guaranteed that the new constants do not occur
in interpolants.

The calculi in [18, 20] include a rule siMpP’ that is responsible for rounding
inequalities af + 8 < 0 to at + oz{g} <0, as well as for eliminating common factors
from coefficients of non-constant terms, simplifying equalities «f =0 to t =0 or
inequalities oz < 0 to t < 0 (provided « > 0). The rule simP’ corresponds to a variety
of more elementary rules in our interpolating calculus. Rounding of inequalities
is handled by the STRENGTHEN rule discussed below and in Section 6. In contrast,
elimination of common factors in coefficients is not always possible in the presence
of PIs: for instance, unlike in [18, 20], the equality 2x = 0 [a = 0] cannot be simplified
to the form x = 0 [t = 0], because the factor 2 does not occur in the PI. This means
that terms ax cannot be rewritten to 0 with the help of 2x = 0 if « is odd. Following
the principle of pseudo-division, we therefore introduce the rules MUL-LEFT/RIGHT to
multiply terms with positive integers prior to rewriting.

Similar to rewriting with equalities, inequalities can be added up with the help of
the rule FM-ELIM. The STRENGTHEN rule is introduced to achieve completeness over
the integers and splits inequalities # < 0 into the cases t =0 and r+ 1 <0 (Fig. 3
shows applications of FM-ELIM and STRENGTHEN). Compared to the calculi in [18, 20],
the use of STRENGTHEN in our interpolating calculus is threefold: (i) STRENGTHEN
can simulate rules such as oMEGA-ELIM [20] or Gomory cuts, (ii) as shown in Fig. 3,
repeated application of STRENGTHEN can be used to round inequalities «z + 8 < 0 to
at+a (gl < 0 (which is done by siMP’ in [18, 20]), and (iii) STRENGTHEN can simulate
the law of anti-symmetry that is implemented by the rule aNTI-sYMM’ in [18, 20]. As
STRENGTHEN is the most central rule in our calculus, we provide a detailed discussion
in Section 6.

Finally, when reasoning about formulae that contain both equalities and inequali-
ties, it can be necessary to split equalities t = 0 into two inequalities r < 0 and —t < 0;
this is done by the rules SPLIT-EQ and SPLIT-NEQ.

5 Properties of the Calculus

In this section we discuss properties of our calculus that are essential for turning
it from a mere set of proof rules into a practical interpolation algorithm. We
establish that repartitioning the set of input formulae into new L and R parts is
largely orthogonal to the interpolating proof. That is, given an interpolating proof
for a particular partitioning, an interpolant for a new partitioning can be obtained
by suitably adjusting the occurrence of labels across the proof. This property of
the calculus has two important consequences. First, our calculus has the chain
interpolation property, which is essential in model checking based on lazy abstraction
with interpolants [16] (Section 5.2). Second, the relative insensitivity of the proof
procedure to repartitioning can be used to show the completeness of the interpolating
calculus. Together with the soundness result that we present below, our calculus
is therefore suitable to be implemented in an interpolating decision procedure for
quantifier-free Presburger arithmetic.

@ Springer



352 A. Brillout et al.

5.1 Soundness of the Calculus

The most important property of any calculus is soundness: the existence of a proof
for a formula or sequent should imply that the formula is indeed valid. Since
the correctness of interpolants is built into our definition of valid (interpolating)
sequents, soundness also means that a calculus only generates valid interpolants:
whenever a sequent |[A]; F [C]g » [ is derived, the implications A = [ and
I = C are valid, and all constants in / occur in both A and C. More generally:

Theorem 1 (Soundness) If an interpolating sequent I' = A » I without any Pls
is provable in the calculus, then it is valid. This implies, in particular, that the
sequent T, Tr = Ap, Agisvalid.

To prove this theorem, we first need to define the semantics of PIs, since—
although the sequentI" = A » [ in the theorem does not contain any PIs—they are
normally introduced in the course of a proof. We say that a PI (as in Definition 1)
occurring in a sequent is correct if the sequents (i) and (ii) given in Fig. 6 are valid,

A only contains constants that occurin 'y U Ay, and t — 4 only contains constants
that occurin I'g U Ag.

Theorem 1 is then proven in two steps:

1. In Section 5.1.1, we show that all PIs in a closed proof are correct by induction
on the distance of a sequent from the root of the proof: assuming that all PIs in
the conclusion of a rule application are correct, we prove that the PIs in the rule
premises are correct.

2. In Section 5.1.2, we show the validity of all sequents in a closed proof by
induction on the size of sub-proofs: assuming that all premises of a rule are valid,
we prove that the conclusion is valid, too.

In order to show the two properties, we annotate some of the rules by introducing
further auxiliary formulae in the premises (Fig. 7). The calculus can also be proven
sound directly with the original rules, which requires, however, more intricate
inductive properties. Auxiliary formulae are not needed for completeness (it is never
necessary to apply any rules to the formulae), and are therefore not used in an
implementation. Similarly, soundness of the rules with auxiliary formulae directly
implies the soundness of the rules without auxiliary formulae, because removing
formulae from the premises could only make fewer sequents provable.

Partial interpolant annotation ‘ Sequent (i) ‘ Sequent (ii)

It=0[t* =0+ I'n FtA=0,A; | IR F t—t4=0,Ap

It <ot <o]F I'y FtA<0,AL | TR F t—t2<0,Ap
r H—OtA—o]A I'p,tA=0F Ap | I'p F t—t4=0,Ag
r Ft=0[tA #0],A I'y FtA=0,Ap | I'g,t—t*=0F Ap

Fig. 6 Sequents with partial interpolants and correctness conditions (i) and (ii)
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Lt=0[A=0][t* =05, [t—t4 =0/, - A»E

Dt+1<0A <0, |t —t4+1<0]5 F A0
Nt+1<0ftA+1<0],[t"+1<0]; - A »T!

oy}

STRENGTHEN*
Lt<otA <0l F A w1tV (EATY
Dt+1<0pA+1<0),[t4 <0/ - A
I—t+1<0[-tA+1<0],[—t4 <05 - AwJ
SPLIT-EQ™*
F'Ft=0[tA=0,A»IVJ
Nt+1<0pA <o), [t—t4 <0]5 F A
I—t+1<0[-tA<0),|-t+t4<0/5, F Aw»J
SPLIT-NEQ*

I'F t=0[t" #0,A »IAJ

Fig. 7 Rules modified for proving soundness (Theorem 1) by adding auxiliary formulae. Auxiliary

formulae are written in the form ¢} and [¢]7

5.1.1 Correctness of Partial Interpolants in a Proof

We claim that each rule of the calculus preserves the correctness of PIs. We only

show two examples here:

RED-LEFT, for o being <: suppose all partial interpolants of the conclusion
are valid. This means that I';, - t4 =0, A, and ', + s4 <0, A, are valid,
from which we can conclude that also I'; + s4 +« -4 <0, Ay is valid. Fur-
thermore, ' F t—t4 =0,Agr and 'z F+ s —s? <0, Ag are valid, which im-
plies that Tgx + s —s4 4+ a-(t—1t1) <0, Ag and therefore also the sequent
g F s+a-t— (4 +a-t1) <0, Agare valid. Finally, all constants of the term
s4 + « - t4 also occur in s4 or t4, and all constants of s + o« - £ — (s4 + & - t4) also
ins — s4 or t — t4, so that also the vocabulary conditions are satisfied.
STRENGTHEN™*: by assumption, the annotations of the conclusion are correct,
which implies that the sequents I';, F A <0,ApandTg F t—1t* <0, Ag are
valid. The correctness of the new partial interpolants is then directly guaranteed
by the starred formulae in the premises.

5.1.2 Correctness of Sequents in a Proof

We only show one example, the rule STRENGTHEN*. Suppose each of the premises of
the rule is a valid interpolating sequent, which by definition means that the following

(ordinary) sequents are valid:

I, t"=0+ E A (3) T t—t"4+1<0,1°+ Ag  (6)
Tr.t—t"=0,E - Ag (4 F.t"+1<0+ 1AL (7)
r; - I°A; 5) 'z, I' - AR (8)
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Note that the arithmetic atoms in the sequents (like 4 = 0 in (3)) stem from the
L*/R*-formulae in the premises. Furthermore, because t4 <0 is a correct partial
interpolant, we know that the following sequents are valid:

I, Ft'<0,A; 9) Mg Ht—t"<0,Ar (10

The validity of (3)—(10) implies that also the sequents I'; - I' v (E A I%), Ay and
g, I' v (EAI% + Ay are valid. For instance, the former sequent can be deduced
using a normal Gentzen-style calculus (as introduced in Section 2):

3) (7 *)
rp.tt<o0t=0+ I'""E AL, Tptt<or-t=01"EA, |
CUT
A
A )
T, tA<0+ I'E AL rp - tA<0,1' E AL ) )
CUT

ry - Il,E,AL | N Il,IO,AL

] o AND-RIGHT
' = I')EALIY, AL

'L - I'"V(EAI), A

OR-RIGHT

In (x), we make use of the fact that (14 <0 A 14 #£0) = t* + 1 < 0 over integers.

For the vocabulary condition, note that a constant is an L/R-symbol of the
conclusion iff it is an L/R-symbol of each of the premises. This is because t < 0 [t4 <
0] is annotated with a correct partial interpolant, which implies that all constants in
t are L-constants, and all constants in ¢ — ¢ are R-constants. Therefore, the L*/R*
formulae introduced in the premises do not change vocabularies. Because each of
the formulae E, I°, I' only contains common L/R-constants, so does I' v (E A I9).

Concluding, this means that the sequent ' = A » I' v (E A I°) is valid, and
therefore also I, t <0[tA <0l - A » I' vV (E A ).

5.2 Chain Interpolation and Completeness

In software model checking, it is common to use a slightly generalized version of the
interpolation theorem, guaranteeing not only the existence of single interpolants, but
of entire interpolant chains (see, e.g., [16]). Given an unsatisfiable conjunction 77 A
-+ A T, (say corresponding to an infeasible path in a program), an interpolant chain
is a sequence Iy, Iy, ..., I, of formulae such that

(i) 1o = true, I, = false,
(i) foralli € {1,...,n}, theimplication /;_; A T; = I; holds, and
(iii) for alli € {0, ..., n}, the non-logical symbols (constants, predicates, etc.) in I;
occurinboth Ty A --- A T;and Tipg A -+ A Ty,

Interpolant chains Iy, I, ..., I, can be derived by n — 1 applications of the
standard interpolation theorem. Since this would entail the construction of n — 1
proofs and would thus represent a significant overhead, however, a more attractive
and more common approach is to extract multiple interpolants from a single unsat-
isfiability proof for T A --- A T}, by considering different partitions of the conjuncts,
i.e., different ways to label the formulae in the proof.
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In the context of our interpolating calculus for QFPA, we introduce chain inter-
polation in a constructive manner using a function S that transforms an interpolating
proof of a sequent |Ty]r,..., [Tl [ Tk+1lRrs [ Ths2lRs s L Tnlr = @ » I into
a proof of the sequent 7]z, ..., | Txlr, | Tks1lr, [ Ths2lrs---s [ Tulg = @ » I
This requires recursively changing the labels of formulae in the proof. As an
inductive property of the relabeling function S, we then show that the implica-
tion I A Ty = I’ holds. Chains of interpolants can be extracted from a proof by
n applications of §. Since S has complexity polynomial in the size of the processed
proof (updating labels does not change the topology of a proof), this yields a practical
method for generating interpolant chains.!

5.2.1 Definition of the Relabeling Function S

For sake of brevity, we give a formal definition of S only for the case of L/R-
relabeled formulae, primarily covering propositional and first-order rules. A com-
plete definition of relabeling, which also includes the treatment of arithmetic rules
and PIs, can be found in [2]. As a notational convention, given a set I" of L/R-labeled
and a set I'”* of unlabeled formulae, we will write I" ,/ """ for the unique set of labeled
formulae satisfying the following equations:

Ty T =T u@rnI™), Ty T™pg = Lr\ T

Intuitively, ,~ changes the label of the formulae I'"”* from R to L, for instance

{lole, WWirRb /W) = {lo)e. LY L)

Formally, the relabeling function S has three arguments:

— aninterpolating proof P in the calculus presented in this paper. As a convention,
we denote the rootof Pby I'" = A" » I';

— an ordinary sequent I = A" such that I'* € T, and A™ € A, specifying the
formulae in P to be relabeled; and

— apairI'® + A?of labeled formulae, specifying formulae to be recursively added
to all sequents of P.

The result of an application S(P, I = A™, T“ - A“) is a proof P’ with root
rryrmre = A"y A" A » I'. The function S is defined by a complete case
analysis over the rules that can be applied at the root of P. Due to space constraints,
we show this definition only for the OR-LEFT-R, the other rules are handled similarly.
For OR-LEFT-R, P has the shape:

9 )
LlgVylg F A »InJ

OR-LEFT-R

with I =T U{l¢ VV¥]r}, A=A, and I"=1AJ. The relabeled proof P’ =
S(P, T = A™ T A% is defined by case analysis; we only show the case
¢V el as¢ vy €I is handled similarly. The assumption ¢ v ¢ € I'" implies

'However, some of the optimizations discussed in Section 6 can have the side effect of increasing the
complexity of S to exponential.
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that the formula |¢ Vv ¥ | g of the root is relabeled to |¢ v ¥ | ;. Due to the equation
T U{le VYlrh)y/T" =@ ,/T"™) U{l¢V ¥]L}, the proof P’ has the shape

Q) Q)
T/T" T gVl - AS A A IV T

OR-LEFT-L

The direct sub-proofs 9, Q, of P’ are derived from Q;, Q, by recursive application
of S. Concentrating on Q; (the case Q, is similar), we choose

M= @"NTr)U{p}, Al'=A" T{=T"U({lgJr} N (T /T™). Af=A"

and thus obtain Q| = §(Q;,I'"" = AT, T'{ = A{). The root of Q| constructed like
this is (MU {l¢]r) /T, T = AL AT, Al » I'. By proving that this sequent
coincides with the left premise of OrR-LEFT-L in P’, we can then show that P’ is indeed
a well-formed proof.

5.2.2 The Chain Interpolation Theorem

It can be observed that the relabeling function § modifies the interpolants in a way
satisfying the chain interpolation property, as introduced in the beginning of Sec-
tion 5.2. To derive an interpolant chain /y, Iy, ..., I, for a conjunction 7y A - -+ A T,
we start by constructing an interpolating proof P, for the sequent

[TiIr: L T2)Rs -5 [ Tulr B 9 > Iy

This proof can then be transformed to a proof P, = S(P,{T 1} - @,0 + ©) to
obtain the next interpolant I; with Iy A T} = I, etc. The relationship between the
interpolants Iy, I, ..., I, is more generally stated in the following theorem:

Theorem 2 (Chain Interpolation) Suppose that proof P has rootT" = A" » I', and
proof S(P,T™ = A™ . T% b A% has root T" /T, T* = A" /A", A® » I'. Then
the (ordinary) sequent T, I" = I', A" is valid.

The theorem is proven by induction on the size of the proof P, following the
same case analysis as in the definition of S. Again, we show the rule OR-LEFT-R as
an example and concentrate on the case ¢ Vv ¢ € I'"". From the recursive application
of S we know that the sequents I'{*, I = I', A" and I'}',J + J', A} are valid,
where I'l" = (I NTg) U{¢p}and '}y = T NTr) U {y}. Duetog v € I', we can
conclude the validity of I, IAJ = I' v J', A™:

* *
T E I AT T J F T AL
T"NTR)U{g), I F I', A" T"NTR) UYL J F J, A"
¢, 1 - I, A" "y, J F J, A"

™, ovy, 1] - I, J, A"
r IJ = I, J, A"
I IANJ = I'VvJ], A"

A recent dissertation contains a detailed proof of the chain interpolation theorem [2].
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5.2.3 Completeness of the Calculus

As a corollary of chain interpolation, we can also conclude the completeness of our
calculus: whenever an implication A = C holds, our calculus is able to derive an
interpolant. We have to ban quantifiers that cannot be handled by Skolemization:

Theorem 3 (Completeness) Suppose I', A are sets of labeled formulae |¢] 1 and | ¢p] r
such that all occurrences of existential quantifiers in T'/A are under an even/odd
number of negations, and all occurrences of universal quantifiers in I'/A are under an
odd/even number of negations. If U, T'r & Ay, Agisvalid, then there is a formula [
such thatT = A » Iis provable.

To justify this theorem, we first observe that the validity of I';, ' F Ap, Ag
implies the existence of a proof Py in the (complete) non-interpolating calculus
from [20]. The non-interpolating proof can be lifted to a trivial interpolating proof P
of the sequent {[¢]r | ¢ € TLUTR} = {[#]r|¢ € AL UAR} » I' for some valid
formula I’ by simply labeling all formulae with R, uniformly replacing the rules
from [20] with the corresponding interpolating rules presented in this paper (during
this process, translating the siMp’ rule may require applications of MUL-LEFI/RIGHT).
Finally, P can be transformed to the final proof Q of the sequent I' -+ A » [ by
applying the relabeling function S.

6 Strengthening and Rounding of Inequalities

Reasoning in linear integer arithmetic generally requires some kind of cut rule to
deal with the phenomenon of formulae that are satisfiable over the rationals, but
unsatisfiable over integers. The non-interpolating calculus in [18] provides two rules
for this: the siMP’ rule to round inequalities af+ 8 <0 to at—i—afg} < 0 (which
resembles Gomory cuts [22]), and the general STRENGTHEN' rule:

re=0FA I'Nt+1<0H+ A
re<0kF A

STRENGTHEN'

Because STRENGTHEN' subsumes rounding via the rule siMp’, we can ignore the latter
rule for the time being and concentrate on STRENGTHEN'.

In order to lift STRENGTHEN' to the interpolating calculus, we first observe two
special cases that are easy to handle:

It=0[t=01F Aw» I It+1<0[t+1<01F AP»J
[t<0t<0l - AwIv]

STRENGTHEN-L

[Lt=0[0=0]+F Ap»I It+1<0[0<0]F A »J
t<0[0<0]l = Aw»InJ

STRENGTHEN-R

These cases are called pure cuts in [14], because the PIs tell that the inequality t < 0
has been derived only from L- or only from R-formulae, respectively. Strengthening
inequalities of this kind corresponds to splitting a disjunction labeled with L or R.
The general case is known as mixed cut [14] and encompasses an application
of STRENGTHEN to a formula ¢ < 0[t* < 0] with ¢4 ¢ {0, t}. The rule for this gen-
eral case is given in Fig. 5 and features three premises, rather than two as for
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the non-interpolating rule STRENGTHEN'. To understand the shape of STRENGTHEN,
note that we can represent t < 0 as the sum of t4 <0 and t —t* <0, the first of
which is derived from L-formulae, and the second from R-formulae. The effect of
STRENGTHEN can now be simulated by applying STRENGTHEN-L to t4 < 0[t4 < 0], and
then STRENGTHEN-R to f — t4 < 0[0 < 0]; the combined application of the two rules
explains the interpolant I' v (E A I°) resulting from STRENGTHEN.

Complexity Non-interpolating refutations of unsatisfiable conjunctions of literals
have exponential size in the worst case [22]. Similarly, it can be shown that any valid
sequent (without quantifiers or propositional connectives) has interpolants of worst-
case exponential size that can be derived using a proof of worst-case exponential size
(using the rules STRENGTHEN-L/R from above).

In general, however, lifting a non-interpolating to an interpolating proof can
increase the size of the proof exponentially, for two reasons: (i) STRENGTHEN in Fig. 5
has three premises, while the non-interpolating rule STRENGTHEN has only two, which
can make it necessary to repeatedly duplicate subproofs during lifting (this is partly
addressed in Section 6.1), and (ii) the rule siMp’ (which is simulated by STRENGTHEN
in the interpolating calculus) often allows very succinct proofs. As a result, there
are unsatisfiable conjunctions A A B with non-interpolating proofs of linear size,
although all interpolants have exponential size.

6.1 Successive Strengthening

It is quite common that STRENGTHEN is applied repeatedly to a sequence ¢ <0,
t+1<0,t+2<0,... of inequalities, for instance to simulate rounding of an in-
equality, or the Omega rule [17]. Because each application of STRENGTHEN generates
two new inequalities, 2¥ — 1 applications are necessary in order to strengthen an
inequality t <0 to t+ k <0, and the resulting interpolant will be of exponential
size as well. To curb this explosion, we present an optimized rule that captures k-
fold strengthening and requires only a quadratic number of premises. The optimized
rule k-STRENGTHEN exploits the fact that many of the goals created by repeated
application of STRENGTHEN are redundant:

[Ce4+i=0[ta+j=0] F A » E/}
[T.t+k=<0[ta+j<0] - A » I}
Ft<0[ta<0lF AP»K

0<j<i<k

0<j<k

k-STRENGTHEN

where the resulting interpolant K is defined by:

kK= \/ U~ N\ E (11)

0<j<k J<i<k

The size of K grows quadratically, rather than exponentially, in k. Thus, whenever
the STRENGTHEN rule is to be applied k times in succession, it is possible and more
efficient to use the k-STRENGTHEN rule instead.

The number of premises of k-STRENGTHEN (but not the size of the resulting inter-
polant) can be reduced further to a linear number: any two premises generating E!
and Ef differ only in the partial interpolant of r+i < 0. We can exploit this by
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treating the family (E)o<; as a single premise, parameterized in the free variable j.
This way, a single subproof can generate a parameterized interpolant E;(j). Parame-
ter jcan be instantiated to the values 0 < j <i when constructing K. Parametrized
interpolants /() are derived similarly.

Interpolation of Rounding Operations An additional optimization is possible when
the rule k-STRENGTHEN is used to round an inequality ot + 8 < 0 to at + af§1 <0.
Rounding corresponds to k-STRENGTHEN with k = « fé} — B

[Coat+B+i=0[ta+j=0] - A » E/}
[Tiat+al21<0[ta+j<0l - A » I}
Tat+B <0[is <0l - A » K

0<j<i<k

0<j<k

k-STRENGTHEN

We can observe that at+ g+ i = 0 is unsatisfiable for 0 <i < afé} — B, so that
the equality-premises can be closed immediately via CLOSE-EQ-LEFT. Consequently,
the interpolants E! = E/ = (3,4 t* + j=0) do not depend on i, and the overall
interpolant can be simplified to K = I* v \/(_;_, (I' A EJ).

If (bounded) quantifiers in interpolants are acceptable, the last formula K can also
be encoded compactly without any duplication of sub-formulae:

K = 3x.(—x<0Ax—k=<0AIx)A(Ex)Vx—k=0)

A similar observation was made in [9], where it was shown that interpolants can be
extracted from cutting-planes proofs in polynomial time if the interpolant language
is augmented by an operation for scaling with rational coefficients and the ceiling
function [-].

Example We use k-STRENGTHEN to compute an interpolant for the formula A A B
withA=—y+5x—1<0Ay—-5x<0and B=5z—y+1<0A-5z4+y—-2<0.
Note that A A B is satisfiable over rationals, but unsatisfiable over the integers. An
interpolating proof of unsatisfiability is as follows:

* * CLOSE-INEQ
. L 1Z0[j=1<0] - »j—1<0

FM-ELIM
e =524 5x <0[—y+5x—14j<0]
52—-5x+1<0[y—5x<0]

L 524+ 5x—3<0[-y+5x—1<0],5z-5x+1<0[y—-5x<0] - » K

(> El) Fopj-1<0

3-STRENGTHEN

FM-ELIM
o y=SX=0[y=5r<0],52—y+1<0[0=0], o
—5z4+5x—-3<0[-y+5x—1<0]
FM-ELIM
“yHSX=1=0[-y+5¢=1=0Ly—5x=0[y—5x=0l, _ o
5:—y+1<0[0<0],=5z2+y—=2=<0[0=<0]
+
IPI

|-y +5x—1=<0],ly—5x<0]p, 52— y+1=<0Jg,|-52+y—-2<0]g - » K
[=y+5x—1<0Ay—-5x<0]7.[52—y+1<0A-5z4+y—-2<0Jgp - » K

AND-LEFT T

Most importantly, the rule 3-STRENGTHEN is used to round —5z+5x —3 <0 to
—5z 4+ 5x < 0, from which a contradiction can be derived via FM-ELIM. The inequality
interpolants I/ = (j — 1 < 0), as well as the equality interpolants E/ = (Ax. — y +
Sx—14+j=0= (5| (y+1—)) in the premises of 3-STRENGTHEN are derived as
discussed above. The overall interpolant is:

K= 3-1=0v \/ (-120AS5[(y+1-))
N e’ 05]4<3‘,_z N——
I I Ej

50+ v5ly
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6.2 A Comparison with Branch-and-Bound and Gomory Cuts

In order to illustrate the generality of our calculus, we discuss how it can be used to
naturally simulate two of the most common cut/splitting rules used in SMT solvers:
the branch-and-bound rule and Gomory cuts. Both rules follow the concept of
rational relaxation: in order to solve an integer linear program, it is checked whether
the program is satisfiable over rational numbers. If this check derives a rational
solution B : C — Q that is not integral, nothing can directly be concluded about
the program; however, the solution 8 can be used to refine the integer program by
generating additional constraints that exclude g.

6.2.1 Branch-and-Bound

Branch-and-bound generates new constraints by selecting an arbitrary constantc € C
such that 8(c) ¢ Z, considering the two cases ¢ < [S(c)] and ¢ > [B(c)]. Because a
single constant c is necessarily a pure term (which does not mix local symbols from L-
and R-formulae), it is easy to interpolate the case analysis introduced by branch-and-
bound; in fact, this does not even require the STRENGTHEN rule. For instance, if c is a
constant occurring in L-formulae, branch-and-bound corresponds to an application
of the rule OR-LEFT-L:

F,c—[ﬂ(c)J'go FEA»I F,(ﬂ(c)}—c.go EA»J
r=Aw»IvJ

R-constants can be handled in a similar manner.

6.2.2 Gomory Cuts

It is well-known that the application of the branch-and-bound rule does not neces-
sarily terminate for unsatisfiable integer programs [22], and does not give rise to
a decision procedure for QFPA. In solvers, branch-and-bound is therefore often
combined with Gomory cuts, which derive additional constraints from non-integral
solutions in a more sophisticated manner and indeed achieve completeness. We
follow the version of Gomory cuts introduced in [7, Section 4.2.1], which has become
the standard solution used in SMT solvers. As we do not consider mixed-integer cuts,
the rule described here is somewhat simpler than the one in [7].

Carrying over the approach from [7] to our calculus, and in particular only
considering integral coefficients in constraints, a Gomory cut can be applied if
reasoning has resulted in a sequent?

{lj = x; < O}jes, {xj—u; < O}jex,
@i Xi — Y jey ijXj— D ek @ijXj =0
in which J, K are disjoint sets of indexes, i ¢ J U K, the variables x; are bounded by

the integers {/; | j€ J} C Z and {u; | j € K} C Z, the coefficient a; € Z is positive,
and all of the coefficients {a;; | j € JU K} C Z are non-zero. The equation of the

r, A (12)

2The procedure in [7] normalizes all inequalities to the form /; — x; < 0 or xj — u; < 0 prior to the
actual solving process.

@ Springer



An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic 361

sequent corresponds to a line of a Simplex tableau. Furthermore, we require that the
bounds /;, u; correspond to a non-integral extremal solution:

Zai/lj - Zaiju]‘ =bo+a;by, boefl,...,a; —1},b; € Z.
jel jeK
As [7] shows, in this situation it is sound to introduce the additional constraint

bo Zai/'(lj_xj) — (aii — bo) Zai/'(lj_xj)

jel+ jeJ=
+ (@i —bo) Y ay(xj—u))
jeK*
— by Zal‘j(x/'_uj)f_b()(aii_b()) (13)
jeK—

where the index sets J©, /=, Kt, K~ are defined as follows:
Jt={jeJ|a;=0}, J-={jeJ|a; <0}
K" ={je K|a;=>0}, K~ ={jeK|a; <0}

We can observe that the Gomory cut (13) can also be generated using the rules
presented in this paper, which directly implies that interpolants can be extracted.
This is done by the following sequence of rule applications:

(i) Since the left-hand side of (13) is a positive linear combination of inequalities
in (12), the inequality (13) can be introduced using the rule rM-ELIM followed
by an application of k-STRENGTHEN with k = b (a;; — D).

(ii) In those premises of k-STRENGTHEN that introduce an equality, we can first
distinguish the two cases a;; x; > bo +a;; by and a;; x; < by + a;; b, as discussed
in Section 6.2.1; the cases can subsequently be rounded to a; x; > a; (b + 1)
and a; x; < a; b. The resulting goals can be closed by a sequence of FM-ELIM
and RED-LEFT applications, essentially formalizing the justification for (13) that
is given in [7] in our sequent calculus.

7 Experimental Evaluation

We implemented the presented interpolating calculus on top of the PrINCESS the-
orem prover [20],? including all optimizations described in Section 6. Interpolation
is performed in PRINCESS in two steps: the prover first (internally) generates a non-
interpolating proof, which is then processed using the rules presented in this article to
extract interpolants. To keep the size of proofs manageable, we also implemented a
number of proof reduction heuristics, e.g., eliminating simplification steps that were
later found to be unnecessary.

3http://www.philipp.ruemmer.org/princess.shtml.
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The benchmarks for our experiments are derived from different families of the
SMT-LIB category QF-LIA. Because SMT-LIB benchmarks are usually conjunc-
tions at the outermost level, we can partition them to the form Ty A Ty A--- A T
by choosing the first 10% of the benchmark conjuncts as 77, the second 10% as
T, etc. We then compute chains I, [y, ..., ;o of interpolants from a single proof
of unsatisfiability of Ty A Ty A --- A T)o. Since Iy and Iy are trivial, this yields 9
interpolation problems for each SMT-LIB benchmark. We choose this setup since
model checkers often require the computation of similar chains of interpolants.

We compare our procedure with the following tools:

- SMTIntERPOL,* which is an interpolation engine for quantifier-free linear integer
arithmetic (among others) and thus targets a similar theory as PRINCEss. We are
not aware of a publication that describes the algorithms behind SMTINTERPOL.

— the interpolating version of the OPENSMT [4] solver that was developed in our
previous work [13, together with Jérome Leroux].

— CSIsart [1] (also see [21]), an interpolation procedure for rational arithmetic and
uninterpreted functions that reduces interpolation problems to a set of linear
constraints, which are solved using LP techniques. A comparison with CSISAT is
interesting as it is not based on proof construction; the fact that proofs can get
large is often perceived to be a handicap of proof-based methods.

— the OMEGA quantifier elimination procedure [17], which is used to generate inter-
polants by eliminating all symbols local to the left conjunct A in an interpolation
problem. We use the implementation of OMEGA available in PRINCESS.

Our experimental results are shown in Table 1 and Fig. 8:

— the number of unsatisfiable/satisfiable problems tested, and the number of
SAT/UNSAT results that the tools were able to derive; in the remaining cases,
either a timeout or a memory-out occurred. These data are not provided for QE,
as it does not decide satisfiability of interpolation problems.

— the total number of quantifier-free interpolants that could be computed. For
OpeENSMT, SMTINTERPOL, and CSIsaT, which compute interpolants on the fly
while solving a problem, this is always 9x the number of UNSAT results.
PrINCESS first constructs a proof for a problem, and afterwards extracts inter-
polants, which means that sometimes not all 9 interpolants can be computed
for a benchmark, due to the potentially high complexity of rewriting a non-
interpolating to an interpolating proof.

— the average time (in seconds) required to solve each benchmark, including the
time to compute the 9 interpolants. For QE, this is simply the average time to
compute 9 interpolants.

— the average size of generated interpolants, in terms of the number of equations,
inequalities, and occurrences of propositional variables in the interpolant. The
sizes of generated interpolants are also compared in the scatter plots in Fig. 8.

Comparison with OpenSMT and SMTInterpol The experiments show that PRINCESS
is overall competitive with OPENSMT and SMTINTERPOL. On benchmarks with a
focus on arithmetic (Multiplier, Bitadder, Rings), PRINCESs can uniformly solve the

4http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol.
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Table 1 Results of applying the compared tools to SMT-LIB benchmarks (times in seconds)

Multiplier Bitadder Mathsat Rings Convert
16 unsat 17 unsat 100 unsat 294 unsat 38 unsat
1 sat 109 sat
172 unkn.
PRINCESS 8/1/41 7/0/63 44/13/396 133/0/183 39/82/334
154/1623 298/76953 106/7007 249/5984 87.8/1
OPENSMT 5/1/45 7/0/63 74/15/666 9/0/81 37/0/333
48.9/2357 103/23362 53.0/2020 59.9/4611 0.08/1
SMTINTERPOL 5/1/45 5/0/45 65/13/585 0/0/— 37/0/333
24.4/48827 8.58/41077 45.7/126705 /- 13.6/2
CSIsAT 4/1/36 1/0/9 25/12/225 1) @)
106/2640 0.56/188 70.8/12683
OmEeGA QE —/-/125 —/-1129 —/-1612 —/-/1474 —/-1297
109/15392 97.8/93181 169/101088 227/55307 15.0/2659

#unsat / #sat / #interpolants / average time (s) / average int. size

Bold numbers highlight the respective best results. Experiments were done on an Intel Xeon X5667
4-core machine with 3.07GHz, heap-space limited to 12 GB, running Linux, with a timeout of 900s. In
(1), no interpolants could be computed, since the benchmarks were found to be rationally satisfiable
by CSIsAT. In (2), CSIsat could not handle large literal constants occurring in the benchmarks

largest number of problems, although usually with a somewhat longer solving time,
and not always being able to extract interpolants from proofs. Comparing the method
from [13] with the procedure introduced in this paper, our calculus allows us to
work with virtually arbitrary cut rules (in the implementation in PRINCESS, this is
the Omega rule), at the cost of worst-case exponential complexity of interpolant
extraction (see Section 6), while [13] uses a branch-and-cut rule that can be inter-
polated with polynomial complexity, but might lead to exponentially larger proofs.
Rings represents an example where our method is often able to construct a proof but
times out when extracting interpolants, while the method from [13] already times out
when constructing a proof.

In the Mathsat family of benchmarks, which test propositional reasoning capability
more than arithmetic performance, PRINCESS can solve fewer problems than the other
tools, but can easily generate interpolants once a proof is found. An explanation for
the performance on Mathsat is that PRINCESs does not learn lemmas during proof
search, in contrast to SMT solvers like OPENSMT and SMTINTERPOL. On Convert,
which contains bitvector problems encoded in integer arithmetic, all tools show a
very similar performance; PRINCESS is able to prove 82 of the benchmarks to be SAT
but usually needs a long time to construct a model, which explains the larger average
solving time compared to the other tools. Looking only at UNSAT problems, the
average solving time needed by PRINCESS is around Is.

Considering the size of generated interpolants (Fig. 8), PRINCESs shows roughly the
same performance as SMTINTERPOL, and tends to generate somewhat larger inter-
polants than OpENSMT. However, OPENSMT computes and outputs interpolants in
DAG representation, while the interpolants produced by the other tools are already
fully expanded to trees, so that the figures are not fully comparable.
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Fig. 8 Comparison of the size of interpolants generated by PriNCEss, OPENSMT, SMTINTERPOL,
CSIsar, and quantifier elimination using the OMEGA procedure

Comparison with CSIsat The rational interpolation tool CSIsaT could be applied to
the benchmarks in Multiplier, Bitadder, Mathsat. Since CSISAT produced a “wrong”
answer (SAT instead of UNSAT) only for a single benchmark in Multiplier, it can
be concluded that most of the reasoning in those benchmark groups is not integer
specific. In contrast, CSIsaT reported SAT (over rationals) for almost all benchmarks
in Rings, which are specifically designed to test integer reasoning. We also observed
that CSIsar has difficulties handling large literals such as 2%, which may arise, e.g.,
in overflow checks, and which occur in the Convert benchmarks.

The experiments show that CSIsAT could solve fewer problems than PRINCESS,
OpPENSMT, and SMTINTERPOL, While requiring a similar amount of time and pro-
ducing larger interpolants. We suspect that constraint-based interpolation tends to
generate larger interpolants than proof-based methods on our benchmarks. Since
it was shown that the performance of CSIsAT is comparable or better than that of
other standard interpolation procedures for rational arithmetic [1], it seems that the
overhead of reasoning in integer arithmetic (for problems that can be interpolated
even in rational arithmetic) is negligible.
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Comparison with Quantifier Elimination QE is able to generate a large number
of interpolants in the families Multiplier, Bitadder, Mathsat, and Rings, albeit the
generation is slow and the interpolants are large, on average. We observed that QE
typically performs well (and produces small interpolants) when the left conjunct A
only contains few local symbols, i.e., when few quantifiers need to be eliminated.
With an increasing number of local symbols, the performance of QE quickly de-
grades. In contrast, with proof-based approaches the number of A-local symbols is
less relevant for performance or the size of interpolants. A more detailed discussion
of quantifier elimination-based interpolation can be found in [3].

8 Related Work and Concluding Discussions

Interpolation for propositional logic, linear rational arithmetic, and uninterpreted
functions is a well-explored field. In particular, McMillan presents an interpolating
theorem prover for rational arithmetic and uninterpreted functions [15]; an inter-
polating SMT solver for the same logic has been developed by Beyer et al. [1]
(see Section 7 for a comparison). Rybalchenko et al. [21] introduce an interpolation
procedure for this logic that works without constructing proofs.

Interpolation has also been investigated in several fragments of integer arithmetic.
McMillan considers the logic of difference-bound constraints [16], which is decidable
by reduction to rational arithmetic. As an extension, Cimatti et al. [S] present
an interpolation procedure for the U7 VPZ fragment of linear integer arithmetic.
Both fragments allow efficient reasoning and interpolation, but are not sufficient to
express many typical program constructs, such as integer division. In [10], separate
interpolation procedures for two theories are presented, namely (i) QFPA restricted
to conjunctions of integer linear (dis)equalities and (ii) QFPA restricted to conjunc-
tions of stride constraints. The combination of both fragments with integer linear
inequalities is, however, not supported.

The first complete interpolation methods (other than by quantifier elimination)
for quantifier-free Presburger arithmetic are [3], of which the present paper is an
extended version, and [13]. The latter proposes an approach based on the Simplex
method to solve a decision problem over the rationals, combined with a branch-
and-cut rule that can be interpolated efficiently. Recently, a new method to extract
interpolants in the presence of ordinary Gomory cuts was presented [9]. Avoiding
the otherwise high complexity of interpolating mixed cuts, this method relies on an
extended language for interpolants; also see Section 6.1 for a discussion. The SMT
solver SMTINTERPOL decides and interpolates problems in linear integer arithmetic,
apparently using an architecture similar to the one in [15]. To the best of our knowl-
edge, the precise design and calculus of SMTINTERPOL has not been documented in
publications yet.

Kapur et al. [12] prove that full QFPA is closed under interpolation (as an instance
of a more general result about recursively enumerable theories), but their proof does
not directly give rise to an efficient interpolation procedure. Lynch et al. [14] define
an interpolation procedure for linear rational arithmetic, and extend it to integer
arithmetic by means of Gomory cuts. No interpolating rule is provided for mixed
cuts, however, which means that sometimes formulae are generated that are not true
interpolants because they violate the vocabulary condition (i.e., contain symbols that
are not common to A and B).
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In conclusion, we have presented a sound and complete interpolating sequent
calculus for quantifier-free Presburger arithmetic. We have shown that the resulting
interpolation approach is flexible and can be combined with a variety of decision
procedures for full quantifier-free Presburger arithmetic, including the ones common
in modern SMT solvers. The interpolation procedure also guarantees the chain
interpolation property that is important for model checking applications. We have
implemented the interpolation procedure on top of the PRINCESs theorem prover
and demonstrated experimentally that the procedure is competitive with available
interpolation tools.

We are integrating our interpolation procedure into a software model checker
based on lazy abstraction [16]. The model checker uses interpolation to refine
the abstraction and avoids the expensive image computation required by predicate
abstraction. When using our QFPA interpolation procedure, we expect to be able to
verify software with more complex numerical features than other model checkers.

Acknowledgements We thank Jérome Leroux, Vijay D’Silva, Georg Weissenbacher, and the
anonymous referees for their comments.
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