
SatAbs: A Bit-Precise Verifier for C Programs�

(Competition Contribution)

Gérard Basler, Alastair Donaldson1, Alexander Kaiser2, Daniel Kroening2,
Michael Tautschnig2, and Thomas Wahl3

1 Imperial College, London, United Kingdom
2 University of Oxford, United Kingdom

3 Northeastern University, Boston, United States

Abstract. SatAbs is a bit-precise software model checker for ANSI-C
programs. It implements sound predicate-abstraction based algorithms
for both sequential and concurrent software.

1 Verification Approach

SatAbs [7] is a verifier for C programs that uses counterexample-guided abstrac-
tion refinement [8] (Fig. 1), based on predicate abstraction [12], as pioneered by
SLAM [2]. By interpreting variables of the C program as bit-vectors, efficient
SAT procedures are used for abstraction and simulation [6]. This renders the
theorem prover calls that are made during abstraction decidable, and enables
bit-precise verification, which is essential when analysing system-level software.

In [10] the first sound and symmetry-aware predicate abstraction based ap-
proach towards model checking multi-threaded programs was presented. These
results have now been integrated with SatAbs, allowing scalable verification of
concurrent C programs comprised of replicated threads.

1.) Compute
Abstraction

2.) Check
Abstraction

3.) Check
Feasibility

4.) Refine
Predicates

C program

OK

report counterexample

[no error]

[feasible]

Fig. 1. Key components of SatAbs

Efficient symmetry-aware predicate ab-
straction requires amendments in all four
key components of Figure 1: (1) the
Boolean program computed as abstrac-
tion will use passive predicates and broad-
casts [10]; (2) the underlying model
checker for Boolean programs must be
able to make use of symmetry and sup-
port passive predicates, which presently
only Boom [3] does; (3) as adding new
predicates makes Boolean program model
checking more expensive, we primarily
rely on transition refinement (cf. [1]) –
symmetry-aware analysis requires a particular variant that handles both ac-
tive and passive threads; (4) adding new predicates in case of replicated threads
requires extra care (cf. [10]).

� This research is supported by EPSRC projects EP/G026254/1, EP/G051100/1 and
EP/H017585/1 and ERC project 280053.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 552–555, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



SatAbs: A Bit-Precise Verifier for C Programs 553

2 Architecture

SatAbs shares large portions of the underlying C++ framework withCBMC [5],
including the ANSI-C front end, the internal representation as GOTO programs,
and interfaces to decision procedures. The competition candidate is linked with
MiniSat 2.2.0 [11] as SAT solver.

Boolean Program Model Checking. Boolean program model checking is
typically the bottleneck for a CEGAR-based verifier. SatAbs treats the Boolean
program model checker as black box, and can be configured to use any suitable
tool. For the competition, we use either Boom [4] together with a wrapper to
analyse concurrent programs with as few threads as necessary, or Cadence SMV.

Refinement Strategy. SatAbs starts verification with a coarse abstraction,
cheaply computed over predicates derived from assertions appearing in the pro-
gram. The abstraction is refined in response to spurious counterexamples ac-
cording to the following strategy: first, a spurious counterexample is checked for
spurious transitions. If any exist, they are refined away using the technique of
Das and Dill [9], following the approach of SLAM [1]. If no individual transition
is spurious, weakest precondition calculations are used to derive new predicates
from the counterexample, which are used to compute a more precise abstraction.

3 Strengths and Weaknesses

SatAbs supports all categories, including “Concurrency”. In the presence of
replicated concurrent programs, SatAbs exploits symmetry [13] to curb state
explosion. Although the tool can also be applied to asymmetric concurrent pro-
grams, no scalability is expected for this case. As the focus on symmetric threads
is not reflected in the benchmarks, SatAbs timed out on most of the benchmarks
in the category “Concurrency”. In the category “HeapManipulation”, SatAbs
failed because of a bug in the counterexample analysis; this has been fixed and
in future we expect positive results there as well.

Overall, SatAbs proved to be reliable: bit-precise reasoning paired with some
degree of maturity made SatAbs return only a single wrong result, which was
due to bugs that have been fixed in the meantime. Yet we are aware of sev-
eral limitations and weaknesses, which concern both sequential and concurrent
code. Current technical limitations of predicate discovery may lead to SatAbs
reporting “refinement failures”. Furthermore overall efficiency and performance
require closer inspection to reduce the number of timeouts that SatAbs had in
the competition.

4 Tool Setup

SatAbs is hosted at http://www.cprover.org/satabs/ and is available both in bi-
nary form for popular platforms and as source code under a 4-clause BSD license.
A C preprocessor is required (as provided by GCC on Unix-like platforms or

http://www.cprover.org/satabs/


554 G. Basler et al.

Visual Studio on Microsoft Windows). The model checkers Boom and Cadence
SMV were used in the competition – SMV must be downloaded separately.1

The following command-line options were used for the competition, depending
on category: 1) --modelchecker boom: Select Boom as model checker; without this
option, Cadence SMV is used as default. 2) --full-inlining: Inline all functions.
This is required for proper operation when using Boom. 3) --error-label ERROR:
Instead of searching for violated assertions, prove (un)reachability of the label
“ERROR” as specified in the competition rules. 4) --32: Select the basic bit-
width of the architecture; by default, the bit-width of the execution platform
is assumed, but some categories were designated to contain 32-bit benchmarks.
5) --concurrency: Enable use of passive threads and broadcast assignments, as
described above. 6) --max-threads 5: Passed to Boom: only analyse executions
involving no more than 5 concurrently running threads. 7) --iterations 500:
Sets the upper bound on the number of CEGAR iterations to 500.

For categories “ControlFlowInteger” and “SystemC” we used SMV as model
checker, i.e., option 1) was not given. Options 5) and 6) were only used for the
category “Concurrency”.

References

1. Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining Approximations in Software
Predicate Abstraction. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 388–403. Springer, Heidelberg (2004)

2. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: PLDI, pp. 203–213 (2001)

3. Basler, G., Hague, M., Kroening, D., Ong, C.-H.L., Wahl, T., Zhao, H.: Boom:
Taking Boolean Program Model Checking One Step Further. In: Esparza, J., Ma-
jumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 145–149. Springer, Heidelberg
(2010)

4. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Context-aware counter abstrac-
tion. Formal Methods in System Design 36(3), 223–245 (2010)

5. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

6. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI–
C programs using SAT. Formal Methods in System Design (FMSD) 25, 105–127
(2004)

7. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

9. Das, S., Dill, D.L.: Successive approximation of abstract transition relations. In:
LICS (2001)

1 Available at http://www.kenmcmil.com/

http://www.kenmcmil.com/


SatAbs: A Bit-Precise Verifier for C Programs 555

10. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-Aware Predicate
Abstraction for Shared-Variable Concurrent Programs. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg
(2011)

11. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

12. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

13. Wahl, T., Donaldson, A.F.: Replication and abstraction: Symmetry in automated
formal verification. Symmetry 2(2), 799–847 (2010)


	SatAbs: A Bit-Precise Verifier for C Programs
	Verification Approach
	Architecture
	Strengths and Weaknesses
	Tool Setup
	References




