Identifying Volatile Numeric Expressions
in OpenCL Applications

Mahsa Bayati, Brian Crafton
and Miriam Leeser
Electrical and Computer Engineering
Northeastern University
Boston, MA 02115

Abstract—The results of numerical computations with
floating-point numbers depend on the execution platform. One
reason is that, even for similar floating point hardware, compilers
have significant freedom in deciding how to evaluate a floating-
point expression, as such evaluation is not standardized. We
call an expression volatile if its value, for a given input, differs
across platforms. Differences can become particularly large across
(heterogeneous) parallel architectures. This may be surprising
to a programmer who conflates the portability promised by
programming standards such as OpenCL with reproducibility.

In this paper we present experiments, conducted on a variety
of platforms including CPUs and GPUs, that showcase the
differences that can occur even for randomly selected inputs.
We present a theoretical technique that determines tight bounds
for volatile expressions, and present experiments that show that
the bounds are indeed observed experimentally. The information
provided by these bounds can be used to direct the programmer
or compiler to focus on those portions of the program where
reproducibility is important.

I. INTRODUCTION

OpenCL promises portability across a wide range of plat-
forms, including CPUs and GPUs. While the same code can
indeed be run, it is common to observe different numerical
results for floating point computations over the same inputs.
We demonstrate this by running SHOC benchmarks as well
as an application (Jacobi Successive Over-relaxation) from the
SciMark Benchmark on different platforms, where we define
each platform as hardware plus compiler. All the hardware
we target is IEEE 754-2008 compliant; however, differences
are observed due to reordering and different usage of fused-
multiply add by different hardware and different compilers.

The main contribution of this research is a method for
identifying volatile expressions, where volatile is defined as
an expression likely to produce different results on different
platforms. Our approach differs from others in that our tools
address differences between platforms rather than differences
between floating point and real numbers. The method, based
on dynamic programming, determines a maximum and a
minimum value for such an expression. If these minimum
and maximum values are not equal, then we have identified
a volatile expression and there is a good possibility that a
programmer will observe different results when evaluating that
volatile expression on different platforms. Our experimental re-
sults show that the bounds discovered by our method are tight,
but do indeed bound the volatility found when running the

Yijia Gu and Thomas Wahl
College of Computer and
Information Science
Northeastern University
Boston, MA 02115

program with the same inputs on different platforms. Armed
with the information about the bounds of different volatile
expressions, the programmer can use this to apply constraints
on compiler optimizations such as expression ordering only to
portions of their programs where the outcome sensitivity has
the greatest impact.

II. DIFFERENT RESULTS ON DIFFERENT MACHINES

For our experiments we target a range of different computer
hardware all compliant with IEEE 754-2008. These target
machines include AMD and Intel CPUs as well as NVIDIA
Tesla GPUs and AMD Radeon APUs. (Details available at [1]]).
We run the same OpenCL code on the same inputs on all these
platforms and observe differences.

We selected three applications from the Scalable HeterO-
geneous Computing (SHOC) Benchmark Suite and ran them
on the hardware platforms:

1. MD: Molecular Dynamics performs an n-body pairwise
computation (the Lennard-Jones potential from molecular dy-
namics).

2. SPMV: Sparse Matrix-Vector Multiplication, multiplies
sparse matrix with a dense vector.

3. Stencil2D: performs a 2D, 9-point single and double preci-
sion stencil computation.

We present the absolute differences for MD in Table [l on
two sets of inputs; for more results visit [1]].

Table 1. LARGEST ABSOLUTE DIFFERENCE, MD
MD-InputSetl | MD-InputSet2
AMDCPU, AMDGPU 9.33E+17 1.53E+14
AMDCPU, Intel 0 0
AMDCPU, NVIDIA 0 2560
AMDGPU, Intel 9.33E+17 1.53E+14
AMDGPU, NVIDIA 9.33E+17 1.53E+14
Intel, NVIDIA 0 2560

III. SOR METHODOLOGY AND RESULTS

Our results show that, while OpenCL is indeed portable
in the sense of being able to run the same code on different
platforms, the results are not reproducible. Our research ad-
dresses the question: “What can we do to give feedback to the
programmer about when these differences matter?”

In earlier work [2], we developed an analysis method
that takes a program P, a fixed input 7 and an expression

Table II. LARGEST ABSOLUTE DIFFERENCE SOR

Input set 1
AMDCPU, AMDGPU 0.0
AMDCPU, Intel 0.0
AMDCPU, NVIDIA 2.38419E-07
AMDGPU, Intel 0.0
AMDGPU, NVIDIA 2.38419E-07
Intel, NVIDIA 2.38419E-07

x representing some intermediate result of the program. The
method determines an upper bound I on the range of values
2(%) program P can produce for x, on input %, across different
computational platforms.

Since I overapproximates the range, not all values con-
tained in I correspond to values for x that P will actually
produce on input 7, on some platform. The analysis method
used to determine [roughly works as follows (for details, see
[2). Given input ¢ and expression x, we first determine stati-
cally whether z is volatile: this is the case if & contains chains
of operations that are subject to reordering, especially addition,
or if x contains sub-expressions of the form a * b+ c, which on
many platforms can be compiled into a single fused-multiply
add (FMA) instruction, where the intermediate rounding after
the multiplication is avoided. For each volatile expression,
the analysis now computes the minimal and maximal value
x can have, under all possible evaluations. This problem can
be solved using dynamic programming, polynomial in time in
the size of expression x. These minimal and maximal values
form the left and right boundary of interval 1.

Part of the goal of this work is to demonstrate that the
(theoretical) range interval I computed by our analysis method
does not vastly overapproximate this range, but is in fact fairly
tight. This is important information: smaller ranges permit
more reliable estimates for the value of x(4) independently of
the computational platform. This in turn can help determine
whether uses of x, such as in tests like if (x < 0), are
fragile: the test outcome depends on the platform, rendering
the code highly non-portable.

To illustrate our technique we use Jacobi Successive Over-
Relaxation (SOR). The C code is taken from SciMark bench-
mark [3] which we rewrote in OpenCL (listing [TI). SOR is
run on a 100x100 grid and is a stencil computation typical of
finite difference applications. We selected random inputs (e.g.
matrices with random cell contents), and determined, using
our min/max technique, the range interval I for each input. We
then ran these programs on a diverse set of platforms, observed
the resulting differences, and compared them to the predicted
range I. Figure (1| shows a histogram of output differences,
with the maximum 3.5E-07; Table shows the results of
running this code on multiple platforms. The experimental
results are indeed within the tight theoretical bound. In this
particular example, the bounds are very tight, as there are
constraints between different loops which limit the reordering
of expressions. We plan to apply our technique to the SHOC
benchmarks which exhibit larger differences and demonstrate
that our tool does indeed produce tight bounds.

kernel void SOR(global floatsx A, int M, int N, float
w){

int tx = get_global_id(0);

int ty = get_global_id(1l);

Figure 1. Theoretical analysis of Max difference

100

80

60

40

20

int i, j;
for(i=1; i<M-1; i++){
for(j=1; j<N-1; j++){
if(i == tx && j == ty){
ALi*N + j] = (w/4) = (A[isN + (j + 1] + A
[isN + (j — D] +
ALGi+D)#N + j1 + A[(i=DsN + j1) + (1.0-w)
« ALisN + j1;
}orol

Listing 1. SOR OpenCL Kernel Code

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented initial experiments that
quantify differences that numeric programs produce, for the
same input, across computational platforms. These differences
arise due to lax expression evaluation rules in the IEEE
754 floating-point standard, and even in language-specific
standards. The goal of the experiments was to show that these
differences are “real” and occur not only for specific critical
inputs, but in fact even for randomly chosen ones. We also
demonstrated that the range of values predicted by our earlier
(theoretical) method are fairly tight.

Ongoing and future work will lift our technique from a
mere analysis to one that actually aides the programmer in
making their programs more robust against platform changes.
Such robustness can be achieved by inhibiting precision-
enhancing hardware shortcuts like FMA, and by forcing certain
expression evaluation orders. To minimize the impact on
overall program performance, such measures should be applied
only to small regions of the program that contribute most to
the computational differences, leaving the compiler free to
rearrange other parts.

REFERENCES

[1] “Floating point comparison for different platforms,” http://www.coe.neu.
edu/Research/rcl/projects/FloatingpointComparison/index.html.

[2] Y. Gu, T. Wahl, M. Bayati, and M. Leeser, “Behavioral non-portability
in scientific numeric computing,” in Parallel and Distributed Computing
(EURO-PAR), 2015, pp. 558-569.

[3] “Scimark 2.0,” http://math.nist.gov/scimark?2,

http://www.coe.neu.edu/Research/rcl/projects/FloatingpointComparison/index.html
http://www.coe.neu.edu/Research/rcl/projects/FloatingpointComparison/index.html
http://math.nist.gov/scimark2

	Introduction
	Different Results on Different Machines
	SOR Methodology and Results
	Conclusions and Future Work
	References

