
Automatic Detection and Repair of Transition-
Based Leakage in Software Binaries

Konstantinos Athanasiou(B), Thomas Wahl, A. Adam Ding, and Yunsi Fei

Northeastern University, Boston, MA, USA
athanasiou.k@northeastern.edu

Abstract. The effectiveness of masking as a countermeasure against information
leakage in cryptographic ciphers is contingent upon individual instructions leak-
ing information independently. An example of dependent leakage is transition-
based leakage: side-channels can leak data proportional to the exclusive-or of the
old and the new value during a register write, despite proper first-order masking.
In this paper we present a technique to detect and repair transition-based leakage.
Our detection technique symbolically executes a binary to relate the old and new
values during a register write. We then combine existing analyses to check for,
and quantify, any leakage caused by the write. Our repair module closes a leak
by flushing the affected register before writing it.

We also present a fully automated detection and repair tool called BATTL,
which is the first to our knowledge to operate at the binary level and is thus
sensitive to decisions at any compilation stage that may affect security. We eval-
uate BATTL against first-order secure implementations of the AES block cipher,
and of a secure multiplicative inversion algorithm. BATTL identified a number of
transition-based leakages, some with high leakage amounts. Our countermeasure
removes all first-order leakages with only moderate runtime overhead.

Keywords: Side channels ·Masking · Transition-based leakage

1 Introduction

The security of cryptographic algorithms, such as block ciphers, against crypto attacks,
i.e. attacks that exploit how differences in the input correlate with the algorithm’s out-
put, is a well-studied problem [20]. Side-channel attacks use physical measurements of
cryptographic implementations, such as timing, power consumption, and electromag-
netic emanations [17,21,22], to recover the ciphers’ secret, demonstrating that “correct”
implementations of the cryptographic algorithms do not guarantee their security.

Countermeasures against such attacks are thus critical. The most widely used such
measure, the masking of software, is a form of secret sharing that splits a secret in d+1
shares such that the joint distribution of any d shares is statistically independent of
the secret. The implementation has to be refactored to compute its results over d + 1
shares. If applied correctly, masking guarantees order-d security: any combination of d
intermediate results of the implementation is statistically independent of the secret.

Work supported by the US National Science Foundation under award no. SaTC-1563697.

c© Springer Nature Switzerland AG 2020
M. Christakis et al. (Eds.): NSV 2020/VSTTE 2020, LNCS 12549, pp. 50–67, 2020.
https://doi.org/10.1007/978-3-030-63618-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63618-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-63618-0_4

Automatic Detection and Repair of Transition-Based Leakage 51

These guarantees rest, however, on the independent leakage assumption [27]: the
intermediate points in the computation should leak independently. Prior work has
established that this assumption does not always hold [1,9]. In software implemen-
tations, physical effects that occur when a register’s old value is overwritten with a
new value give rise to leakage that depends on both values, a phenomenon known as
transition-based leakage (TBL). Balash et al. experimentally demonstrated that a first-
order (d = 1) secure implementation that splits its secret in (d + 1 = 2) shares, leaks
the value of a secret to a first-order attacker (that observes d = 1 intermediate results)
[1]. The leakage assessment required only a small number of power traces, which was
collected and analyzed in a few minutes. Effectively, the paper showed that TBL incurs
a reduction of the security order by a factor of 2: an attacker can now in effect observe
(some) pairs of intermediate results. The same authors suggest that TBL can be averted
simply by doubling the masking order. This approach, although easy to enforce, incurs
a non-trivial performance overhead compared to the original cryptographic algorithm.

Prior work has proposed to instead address this problem using a modified com-
piler [31]: by determining pairs of program values that may cause TBL and taking this
into account when assigning registers, it prevents TBL-inducing overwrites to begin
with. This technique is light-weight and efficient to execute on a given input program.
On the down-side, it comes with a heavy implementation cost: modifying a compiler’s
register allocation is non-trivial and compiler-specific, as it doesn’t readily transfer to
different compilation toolchains. Furthermore, this prior approach cannot account for
leakages introduced during later compilation stages (e.g. linking).

In this paper, instead of analyzing the masked source code or an intermediate rep-
resentation of it, we propose to analyze the compiled binaries of first-order masked
programs. Our technique uses symbolic execution to locate register overwrites whose
combined leakage involves all shares of the secret. We refer to these writes as potential
TBLs. To check for statistical dependence of the potential leakage on the secret, we
employ a secret dependence detection scheme that utilizes existing approaches [18,32]
and quantifies the leakage intensity. If non-zero, we speak of genuine TBL.

Operating at the binary level, our technique detects leakages irrespective of whether
they are present at the source code, or were introduced at some stage during the com-
pilation. As an example, we show in this paper instances of leakage introduced during
compiler optimizations, undetectable for source-code analyses. Our technique is also
compiler-agnostic, allowing us to present experiments with different compilers and to
compare the leakage characteristics of code generated by them. The technique is imple-
mented in a publicly available tool called BATTL (“Binary Analysis Tool for Transition-
based Leakage” [5]), which relies on the angr binary analysis platform [30].

If genuine TBL is detected in the binary, BATTL recompiles the masked program
into assembly code, and applies to it a countermeasure based on register flushing. Given
a register overwrite that causes genuine TBL, we assign a constant value to the regis-
ter before the overwrite. At the end, the detection technique can be re-applied to the
repaired binaries. In our experiments we confirmed that the flushing countermeasures
indeed eliminated the detected leakages, and did not introduce new ones. This is not
possible using the compiler-modification strategy proposed in [31].

52 K. Athanasiou et al.

2 Background and Problem Formalization

2.1 Abstract State Machines

We introduce a simple abstract state machine model, “machine” for short, to study the
different leakage models of software implementations. Let V be a set of values, and
A ⊆ V a set of addresses. A machine state s is a mapping s : A → V from addresses
to values; we denote by S the set of all such states. For s ∈ S and a ∈ A, notation s(a)
therefore denotes the value stored at address a. Let R ⊆ S×S be a transition relation,
formalizing the possible state changes of the machine. An execution of the machine is
a sequence of states s0, s1, s2, . . . such that, for all i ≥ 0, (si , si+1) ∈R. The initial state s0
contains the set of machine inputs I .

2.2 Leakage Modeling

The leakage behavior of a state or a transition is formalized using leakage models: func-
tions assigning to each state, or each transition, a mapping from addresses to leakage
measures. Let � denote bit-wise XOR.

Definition 1. The value-based leakage function VL : S → (A →V) and the transition-
based leakage function TL : R → (A→V) are defined by

VL(s)= {(a, s(a)) : a ∈ A} , and (1)

TL(s, s
′)= {(a, s(a)� s′(a)) : a ∈ A} . (2)

For traceability, we denote XOR used to compute leakage (such as in TL) by �, while
XOR used in source code is denoted ⊕. Our definition of VL above can simply be writ-
ten as the identity function: VL(s) = s; we write it in the form (1) to emphasize the
contrast with (2). In practice, leakage functions often return more abstract measures of
the value s(a) stored at some address a, such as its Hamming weight [23]. Our definition
is stronger, as it assumes the exact value s(a) is leaked.

The (leakage) trace of an execution t = s0, s1, s2, . . . is obtained by lifting the appli-
cation of the leakage function from states to traces for VBL and from pairs of states in
R to traces of TBL, resulting in:

tVL = VL(s0), VL(s1), VL(s2), . . .
tTL = TL(s0, s1), TL(s1, s2), . . .

2.3 Masking and Threat Model

Masking [8] is a form of secret sharing [29] in which a secret k is split into shares that
can be combined using a suitable function to recover the secret. We consider order-d
Boolean masking, which uses d+1 share variables, called (secret) shares, computed by
introducing d shares distributed uniformly at random, and defining the (d +1)st share
as kd = k ⊕ k0 ⊕ . . .⊕ kd−1. The secret thus satisfies k = k0 ⊕ . . .⊕ kd . Masking is a
countermeasure against differential power analysis on cryptographic algorithms [21],
aimed at making every intermediate measure leaked by the machine appear random.

Automatic Detection and Repair of Transition-Based Leakage 53

The plaintext, the secret, the random variables that give rise to the shares, and poten-
tially additional random variables form the input set I of a machine implementing a
cryptographic algorithm.

Definition 2. The result of a leakage function fL statistically depends on the secret if
there exist secret values k,k ′ and a plaintext value p such that the distributions of values
of fL over all choices of the random inputs differ between inputs (k,p) and (k ′,p).

We assume the standard Differential Power Analysis threat model [21]: the adver-
sary has physical access to the machine, can provide plaintext inputs, can measure
power consumption when executing over the secrets, can measure execution time and
knows the implemented algorithm. She does not know the secret values in the imple-
mented algorithm.

Definition 3. An execution of a machine is first-order secure under leakage function fL
if each measure generated by fL along its trace is statistically secret-independent.

In this paper we focus on the problem of determining whether an execution of a
given masked software is first-order secure under TBL. If not, we devise countermea-
sures that repair the leakage, while preserving the functional semantics of the program.

3 Motivating Example

3.1 Transition-Based Leakage

Compilers are known to compromise software security properties, due to the abstraction
gap between source and binary code [12]. Physical resource allocation epitomizes this
gap. The compiler maps program variables to physical locations, e.g. registers, which
are not present in the source code. This has consequences: transition-based leakage
[1,9], a known phenomenon in processors that occurs when a register’s contents is
updated, can accidentally be introduced by a compiler agnostic to the abstraction gap.

We use the secure inversion of a shared secret [28] to demonstrate this phenomenon
in software binaries. Secure inversion, shown in Algorithm 1, is used in software imple-
mentations of the AES S-Box, parameterized by the order d of the masking applied
to the source code. Secure multiplication, shown in Algorithm 2, is used inside secure
inversion to multiply two shared secrets of size 1 byte each.

We consider the first call to SecMul in Algorithm 1 (Line 3) with symbolic argu-
ments z = (x20 ⊕ r,x21 ⊕ r) and x = (x0,x1), where x = x0 ⊕ x1 is the shared secret
and r the random value introduced after the first call to RefreshMasks. We focus on
the first time Line 4 of Algorithm 2 is executed. To illustrate TBL, we inspect the
ARM assembly of the source code, which is shown in Listing 1.1 of Fig. 1: Line 1
sets up the first call to the spamul function, called in Line 2 to compute the product
a0×b1 := (x20⊕r)×x1; Lines 3–5 compute the leftmost XOR prioritized by the paren-
theses, i.e. r0,1⊕ (a0×b1) := r0,1⊕ (x20⊕r)×x1; Lines 6–14 set up the second call to
spamul at Line 15, which computes a1×b0 := (x21⊕r)×x0.

Figure 2 depicts the register file contents after executing Lines 1 and 14 of List-
ing 1.1. Following the ARM calling convention, register r1 holds the second argument

54 K. Athanasiou et al.

Algorithm 1. SecInv: secure inversion of
shared secret x in GF(28).

Require: x= (x0, . . . ,xd) s.t. ⊕i xi = x
Ensure: y= (y0, . . . , yd) s.t. ⊕i yi = x−1
1: for i from 0 to d do zi := x2i
2: RefreshMasks(z)
3: y :=SecMul(z,x)
4: for i from 0 to d do wi := y4i
5: RefreshMasks(w)
6: y :=SecMul(y,w)
7: for i from 0 to d do yi := y16i
8: y :=SecMul(y,w)
9: y :=SecMul(y,z)

Algorithm 2 . SecMul: secure multipli-
cation of shared secrets x and y .

Require: (a0, . . . ,ad) and (b0, . . . ,bd) s.t.
⊕i ai = a and ⊕i bi = b

Ensure: (c0, . . . ,cd) s.t. ⊕i ci = a×b
1: for i from 0 to d do
2: for j from i +1 to d do
3: ri , j ∈R GF (2n)
4: r j ,i := (ri , j ⊕ai ×b j)⊕a j ×bi
5: for i from 0 to d do
6: ci := ai ×bi
7: for j from 0 to d , j �= i do
8: ci := ci ⊕ ri , j

to spamul, i.e. x1 in Line 3 and x0 in Line 14. The overwrite of register r1 caused by
the mov instruction in Line 14 involves both shares of x in a single instruction. This fact
alone does not yet indicate a secret leakage; we refer to it as a potential leak. To deter-
mine whether the leak is genuine, we use the leakage model function TL (introduced in
Sect. 2.2), i.e. the XOR between the old and new values of the register write [1,9]. The
potential leak observed at Line 14 measures as x1 �x0 = x and constitutes a genuine
leak of the value of x as the secret and the leakage expression are directly related.

To see that the presence of all shares of a secret in a leakage expression is not
sufficient for genuine leakage, consider the first call to spamul: its return value (x20⊕
r)×x1 is stored in register r2 (not shown in Listing 1.1). The load at Line 7 overwrites
r2 with a constant value and forms the potential TBL (x20⊕r)×x1�0x7ffefd74. This
leakage is not genuine since the random variable r eliminates any statistical dependence
between the leakage expression and the secret x. The goal of this paper is to detect
genuine TBL, and to protect against it using countermeasures.

3.2 Complications Ahead: Value-Based Leakage

Ignoring security concerns during compilation can not only introduce TBL, as seen in
Sect. 3.1, but can in fact sabotage the very leakage protection that source-code trans-
formations like masking are supposed to provide. To see this, consider Line 4 of Algo-
rithm 2 and its corresponding optimized ARM assembly, shown in Listing 1.2 of Fig. 1.
The two calls to spamul are inlined and computed in parallel in Lines 1–9. After
executing the load instruction at Line 10, registers r6 and r2 hold the two products
computed in Line 4 of SecMul, namely (x20 ⊕ r)× x1 and (x21 ⊕ r)× x0 respectively,
and register r3 the fresh random value r0,1. In Lines 11 and 12, the compiler decides
to exploit the associativity of XOR and change the order of operations, creating the
expression (x20⊕r)×x1⊕(x21⊕r)×x0 for the symbolic value computed at Line 11. This
expression is statistically dependent on the secret x (the random variable r cancels out
and provides no protection). The resulting VBL demonstrates how the protection pro-
vided by the source-code level masking was inadvertently destroyed by an optimization
that obliviously rewrote an expression.

Automatic Detection and Repair of Transition-Based Leakage 55

Fig. 1. Assembly code for Line 4 of Algorithm 2 (SecMul) generated by default compiler flags
(left) and optimization flags (right)

Fig. 2. (a) Code segment of Listing 1.1 causing transition-based leakage after executing the
instruction highlighted red. (b) Register file contents after executing the first mov instruction
(left), and after executing the highlighted mov instruction (right), which ultimately causes the
leakage. (Color figure online)

While VBL due to compiler optimizations is not the main object of our study,
it has important repercussions on the detection and repair of TBL: Line 14 of List-
ing 1.2 loads the constant value 0x7ffefd74 to register r2 and produces the TBL
(x20⊕r)×x1⊕(x21⊕r)×x0�0x7ffefd74, which is statistically dependent on x. While
technically a TBL, the leakage is already present in the value stored in register r2
and is unrelated to the confluence of all shares of a secret during the overwrite. We
require for a potential TBL to be genuine, not only that the � between the old and the
new value of the register be statistically dependent on the secret, but also that neither
value have genuine value-based leakage. Line 9 of Listing 1.2 is an example of a gen-
uine TBL as it satisfies all these conditions. We formally define all these concepts in
Sect. 4. This distinction also becomes relevant when it comes to eliminating the leakage
as the TBL countermeasure we present in Sect. 5 is designed to disrupt said conflu-
ence of shares and will thus not repair TBLs that are in fact due to value-based leaks.

56 K. Athanasiou et al.

The latter type must be repaired using its own dedicated techniques, e.g. by preventing
the above-mentioned unsafe expression rewriting.

4 Detection of Transition-Based Leakage

4.1 Potential and Genuine Leakage

We extend the definition of the abstract machine of Sect. 2.1 to a symbolic machine: let
Vsym denote the set of symbolic values (expressions) over program inputs, Asym the set
of symbolic addresses (address variables), Ssym the set of symbolic states and Rsym the
set of symbolic transitions. Let Sh(k) be the set of shares into which the secret k is split,
i.e. such that

⊕
ki∈Sh(k)ki = k. The shares are part of the symbolic input variables Isym,

i.e. Sh(k)⊆ Isym. Let vars(v) be the set of symbolic variables in expression v .

Definition 4. A potential value-based leakage (PVBL) is a pair (s,a) ∈ Ssym × Asym

such that Sh(k)⊆ vars(s(a)). A genuine value-based leakage (GVBL) is a PVBL (s,a)
such that VL(s)(a) statistically depends on k.

Definition 4 captures the intuition that a VBL satisfies the necessary leakage condi-
tion of being share-complete: it must contain all secret shares. Our motivation to dis-
tinguish between potential and genuine is to have a sound and quick (although partial)
way of checking statistical independence: it is implied by share-incompleteness.

We revisit some examples of leakages presented in Sect. 3. For a shared secret x
such that x0⊕x1 = x and a random value r, (x20⊕r)×x1 is a PVBL since it is share-
complete, but it is not genuine since it is statistically independent of x. In contrast, the
PVBL (x20 ⊕r)×x1 ⊕ (x21 ⊕r)×x0 is a GVBL: it does statistically depend on x. We
discuss in Sect. 6 how to check this dependence condition.

Definition 5. A potential transition-based leakage (PTBL) is a triple (si−1, si ,a) ∈
Rsym× Asym such that

(i) Sh(k)⊆ vars(si−1(a))∪vars(si (a)) , and
(ii) neither (si−1,a) nor (si ,a) is a GVBL.

A genuine transition-based leakage (GTBL) is a PTBL (si−1, si ,a) such that the term
TL(si−1, si)(a) statistically depends on k.

Note how we design our notion of (P)TBL to depend on GVBL, in order to exclude
leakages attributable to VBL (see Sect. 3.2). Under the above definitions, the leakage
(x20⊕r)×x1⊕ (x21⊕r)×x0�0x7ffefd74 from the overwrite of register r2 discussed
in Sect. 3.2 is not a GTBL since the lhs of � (the old value of r2) is (already) a GVBL.

4.2 Detection of Genuine Transition-Based Leakage

Following the definitions of Sect. 4.1, our TBL detection must be able to decide share-
completeness and statistical dependence. We make use of forward symbolic execu-
tion to check for share-completeness by keeping track of the symbolic transitions, i.e.
pairs containing the symbolic values of a location at two consecutive symbolic states.

Automatic Detection and Repair of Transition-Based Leakage 57

Table 1. Symbolic transitions generated
by executing Listing 1.3. Address is the
address of an instruction in the listing,
Location is the name of the instruction’s
target register. Symbols c1,c2,c3 denote
constants.

Consider Listing 1.3, the two secrets $a and $b and their corresponding sets of shares
Sh($a)= {$a0,$a1}, Sh($b)= {$b0,$b1}. Table 1 lists the transitions generated by sym-
bolically executing Listing 1.3. The instructions at Lines 2,3,6 don’t generate interesting
transitions because their target registers r0,r1,r4 contain constants before the instruc-
tion and thus no shares. The target registers of instructions at Lines 4 and 8 hold secret
shares both before and after the transition; however, the before and the after value
together do not involve all shares of secret $a, nor all shares of $b. Only instructions
at Lines 5 and 7 involve all shares of one of the secrets (in red) and qualify as share-
complete. Application of a leakage function to the contents of an address of a symbolic
state generates a symbolic leakage expression. We need a leakage analysis method that
can decide whether this expression statistically depends on the secret variable. Vari-
ous techniques and metrics for qualitative and quantitative analysis of statistical depen-
dence have been proposed in the literature [7,16,18,19]. For now we present our GTBL
detection method in a form parametric in the dependence analysis; we instantiate this
parameter in Sect. 6.

Algorithm 3 shows our GTBL detection scheme implementing Definition 5. It uses
the abstract predicate SecretDep(l) that decides whether a given symbolic leakage
expression l statistically depends on the secret. The algorithm is lazy in the sense that it
delays the (potentially expensive) secret dependence checks, in favor of the (syntactic)
share-completeness checks: Line 1 checks condition (i) in Definition 5. The symmet-
ric blocks starting in Lines 3 and 6 check condition (ii), by first determining share-
completeness of the respective VBL expression and then, if necessary, check for statis-
tical dependence on the secret, still for VBL. In Line 9 we know the TBL is potential;
to determine its genuineness we must perform a secret dependence check.

Algorithm 3 is used at every step of the forward symbolic execution, to classify
whether the location that is written to during that step constitutes a GTBL. The number
of GTBL checks is thus linear in the number of states along the execution (instead
of quadratic, as it would be for the alternative method of checking for second-order

58 K. Athanasiou et al.

Algorithm 3. GTBL checker

Require: Symbolic state si and its predecessor si−1, address a written at si .
Ensure: True if (si−1, si ,a) is a GTBL; False otherwise.
1: if (si−1(a), si (a)) is share-incomplete then
2: return False
3: if si−1(a) is share-complete then
4: if SecretDep(VL(si−1)(a)) then
5: return False
6: if si (a) is share-complete then
7: if SecretDep(VL(si)(a)) then
8: return False
9: return SecretDep(TL(si−1, si)(a))

protection, by considering all possible pairs of states). Absence of GTBLs along the
execution implies that the latter is first-order secure under TBL.

5 Repair of Transition-Based Leakage

TBL violates the independent leakage assumption via a register overwrite that com-
bines the value computed at the current step and the value last stored in the register. To
eliminate the TBL, it therefore suffices to disconnect the confluence of the two values
by flushing the contents of the overwritten register. The flushing countermeasure has to
be applied before the register write (i.e. before the definition, in compiler terminology)
that manifests the leakage, yet after the previous definition of the same register. We
refer to the TBL-inducing register as TBL register. Additionally, to guarantee that the
original program’s I/O semantics is maintained (correctness requirement), flushing has
to be applied after the last read (i.e. use) of the TBL register, to ensure that uses see the
original contents instead of the flushed ones.

Simply inserting a flushing instruction, such as one that sets the contents of the
TBL register to 0 right before the leaky instruction, guarantees in most cases that the
above conditions are met, and results in a straightforward and efficient countermeasure.
Listing 1.4 shows how a flushing instruction eliminates the GTBL described in Sect. 3.1.

The flushing instruction approach assumes that the last use of the TBL register
occurs at a different, earlier instruction in the program. This assumption is violated in
the case of instructions that both use and define the TBL register, which we refer to as
update instructions. Listing 1.5 shows a flushing gadget for repairing the TBL of the

Automatic Detection and Repair of Transition-Based Leakage 59

Algorithm 4. Flushing Countermeasure

Require: Instruction I whose target register is to be flushed.
Ensure: Sequence of instructions that is I/O equivalent to I and GTBL-free.
1: rd :=Def(I)
2: if rd �∈Use(I) then
3: return Flush(rd); I
4: else
5: rt := Dead()
6: I0;I1 := Split(I,rt)
7: return Flush(rt); I0; Flush(rd); I1; Flush(rt)

update instruction mul r6, r6, r2 at Line 8 of Listing 1.2. The gadget splits the
instruction and eliminates the use of the TBL register r6, as follows. First, it transfers
the old contents of r6 to an unused register, namely r7, in Line 9 of Listing 1.5.1 Sec-
ond, it performs the flush of the TBL register (Line 10). Third, it modifies the original
leaky instruction, by replacing r6 on the right-hand side (the use) by r7 (Line 11), so
that the modified instruction is equivalent to the original update. Finally, and critically,
the gadget must rule out that r7 accidentally introduce leakage through its previous or
future contents. Therefore, r7 is flushed at Lines 8 and 12.

We formalize our flushing countermeasure in Algorithm 4, which takes as input an
instruction I whose target register is to be flushed, and makes use of the following
subroutines:

Def(I): the register instruction I defines;
Use(I): the set of registers instruction I uses;

Flush(r): given register r , return the instruction mov r, #0;
Split(I,rt): given an update instruction I (opc ra,ra,rb) and a temporary

register rt, return an I/O-equivalent sequence of two instructions
(mov rt,ra; opc ra,rt,rb) that eliminate the use of
the target register of I, by using the temporary register instead;

Dead(): an available register, i.e. one that is not used along any path between
the instruction we are flushing and its next definition.

Theorem 6. Application of the flushing countermeasure (Algorithm 4) to each GTBL-
induc-ing instruction of an assembly program P results in an I/O-equivalent and GTBL-
free assembly program Pf .

Proof (Sketch): I/O-equivalence follows easily from the subroutine specifications
given above. Flushing eliminates each GTBL (si−1, si ,a) by splitting it into its cor-
responding non-genuine VBLs (si−1,a) and (si ,a), and the zero leakage VBL (s f ,a),
where s f is the state introduced by Flush.
�

1 If an unused register is not available, we free a used register, by spilling its contents to memory.

60 K. Athanasiou et al.

Fig. 3. BATTL’s GTBL detection and repair pipeline. Arrows indicate the invocation of the com-
ponents mentioned above them; boxes indicate the intermediate results produced by BATTL’s
flow.

6 BATTL: Binary Analysis for Transition-Based Leakage

6.1 Implementation

We have implemented the detection and repair of transition-based leakage in BATTL,
our BINARY ANALYSIS TOOL FOR TRANSITION-BASED LEAKAGE [5], written in
Python and C. Figure 3 shows the toolflow of BATTL. It expects a masked C program,
compiles it to binary, reports the detected GTBLs, and outputs an I/O-equivalent and
TBL-free masked assembly (asm) program. BATTL is parametric to the compiler used
for generating the binary and asm programs, and requires no compiler modifications.

Detection. BATTL’s symbolic execution component (SymEx) is built on top of the
angr binary analysis platform [30] and uses the latter’s symbolic execution engine on
the compiled binaries to generate symbolic transitions. BATTL is imported as a library
in user provided drivers, which are python programs specifying the inputs and secrets of
the binary. We use two complementary techniques, in order of increasing hardness and
precision, for the implementation of SecretDep. First, we adapt the rule-based approach
of Gao et al. [18] to operate on bitvector expressions. This rule-based system (RBS)
statically checks the symbolic leakage expressions for semantic properties that imply
the distribution class they fall into, namely one of three classes: (i) RUD, denoting a
random-uniform distribution; (ii) SID, denoting a secret-independent distribution, or
(iii) UKD, denoting an unknown distribution. Class RUD is a subset of SID; both permit
the conclusion of leakage-freedom. A UKD expression, however, may or may not leak;
in this sense, RBS is incomplete.

To resolve this incompleteness, our implementation of SecretDep resorts to a sec-
ond technique, the Information Leakage Amount (ILA) metric function [32]. ILA quan-
tifies how much one secret value is distinguishable from the remaining secret values,
by computing the averaged square of the L2-distances of the Hamming weights of the
fL-measures that each different value of the secret gives rise to. ILA maps a symbolic
expression to a real number in the range [0,4] that signifies its leakage intensity. Zero
ILA implies that the expression doesn’t statistically depend on the secret; in this case
SecretDep returns False. Positive ILA implies dependence on the secret; higher values
indicate more leakage and thus easier exploitability. The upper bound of 4 derives from
the number of bits of the secret variable divided by 2: we have 1-byte secrets, stored in
32-bit machine integers.

The calculation of ILA involves exhaustive enumeration of the possible values of
the secret and random variables of the leakage expression and can therefore be expen-
sive. Our implementation of SecretDep, which returns the ILA value (rather than just a

Automatic Detection and Repair of Transition-Based Leakage 61

Boolean value, as suggested by Algorithm 3), uses a sampling-based approach to com-
pute ILA for expressions with 4 or more variables. The ILA computation component is
implemented as a C embedding in the original source code of the analyzed program.

Repair. The flushing countermeasure of Sect. 5 is implemented as a component of
BATTL named CM. In BATTL’s pipeline we instruct the compiler to generate the (possi-
bly optimized) assembly code to which we add debug information and then compile to
an executable binary. BATTL detects the binary’s GTBLs and using debug information
it reports the asm source lines and instruction that cause the GTBLs. The instructions
and the assembly code are the input of CM, which applies the flushing countermeasure.
To accommodate the Dead subroutine required by the flushing gadgets without the need
of spilling, we perform a register liveness analysis during the SymEx phase.

6.2 Evaluation

We evaluate BATTL by attempting to validate the following hypotheses.

H1: Genuine TBLs naturally occur in first-order secure implementations;
H2: GTBL is not restricted to specific compilation toolchains or options;
H3: GVBLs appear in binaries obtained from masked source code due to “careless”

optimizations; they influence the number of reported GTBLs;
H4: Flushing countermeasures are effective and incur only small overhead on the orig-

inal implementation.

We present a thorough analysis of the above hypotheses using BATTL. We are not aware
of other tools that are able to identify TBL at the binary level. The prior work on
compiler-based elimination of TBL [31], which operates on llvm IR, does not offer
a publicly available implementation.

Benchmarks. We test these hypotheses against benchmarks from two algorithms:
SecInv [28] (shown in Sect. 3) and a masked version of AES [10,11,33]. Both algo-
rithms are parametric in the protection order d , which we set to d = 1 since we focus
on the detection of first-order TBL. While SecInv is nominally part of the AES SBox,
the implementation of AES used in the evaluation of BATTL makes use of the common
share [10] and randomness reduction [33] approaches and performs improved mask
refreshing [11].2 The SecInv benchmark is therefore not part of the AES benchmark.

Our benchmarks consist of binaries generated from C implementations of SecInv
(≈100 LOC) and AES (≈500 LOC) that target the ARM Cortex-M3 family of micro-
processors and vary along two orthogonal axes: the optimization level (O0–O2) and the
compilation toolchain (gcc, llvm). SecInv operates on 1 secret key byte, and AES on
16 secret key bytes. We instruct BATTL to symbolically execute the full SecInv binaries
and identify leaks of its secret key. In the case of the AES binaries we stop after exe-
cuting the first AES round (the algorithm consists of 10 rounds in total) and check for
leaks stemming from the first key byte.3

2 https://github.com/knarfrank/Higher-Order-Masked-AES-128.
3 BATTL can be configured by the user to check for any number of bytes of the secret key. We
choose one, the first, for presentation purposes.

https://github.com/knarfrank/Higher-Order-Masked-AES-128

62 K. Athanasiou et al.

Table 2. Rows 1–4: Potential and genuine TBL summary for SecInv and AES. #PTBL is the
total number of PTBLs. The fraction of PTBLs shown to be secret-independent using the RBS is
given in row #RUD/SID, that of PTBLs shown secret-independent using the ILA metric in row
#ILA=0, and that of PTBLs shown to leak genuinely on account of a positive ILA in row #GTBL.
Rows #RUD/SID, #ILA=0, #GTBL add up to row #PTBL. Rows 5–7: Wall-clock running time
of BATTL’s components. Rows RBS and ILA report the total runtime spent on the analysis of all
PTBLs of each benchmark.

Fig. 4. Scatter plots of GTBLs and GVBLs for SecInv and AES benchmarks; each point repre-
sents a genuine leakage with the ILA value reported on the vertical axis.

Experimental Results. Table 2 summarizes the numbers of TBL leaks reported by
BATTL across all benchmarks. It confirmsH1 andH2 and shows that first-order source-
code protection does not avert first-order TBL, as BATTL identified GTBLs across all
configurations of optimization options and compiler toolchains. Figure 4 displays the
distribution of different leakage amounts across the different experiments and different
leakage points (code locations). We see that in most benchmarks the manifested leak-
age can be large. All of the SecInv benchmarks except for llvm-O2 have at least one
GTBL case near the maximum ILA value of 4, which is easily exploitable by an adver-
sary [32]. For AES, 2/6 benchmarks show ILA values of 4, with the rest having a large
count of GTBLs with ILA ≈ 0.1. Our experiments also suggest that llvm-generated
binaries show fewer TBL points, with smaller ILA values, than those generated by
gcc, for both algorithms across all flags, essentially providing a more narrow attack
surface. As a possible explanation, we observed on our benchmarks that llvm aggres-
sively unrolled loops and generated larger basic blocks and, therefore, altogether larger

Automatic Detection and Repair of Transition-Based Leakage 63

Table 3. Performance analysis of repaired benchmarks. Columns FI, FG show the number of
flushing instructions and flushing gadgets per benchmark, respectively. Columns CC show the
number of clock cycles of the repaired benchmarks. Columns (%) show the percentage increase
in cycles between the original and the repaired benchmarks.

binaries. We believe this code layout approach leads to fewer TBLs as it (accidentally)
promotes the use of more registers in a basic block.

Our experiments were performed on first-order source-code secure implementations
and might therefore be expected by the unaware programmer to be free of value-based
leakage. Our findings contradict this expectation and confirm H3: for SecInv the two
points with ILA≈ 0.12 in Fig. 4c for gcc-O1/O2 correspond to the VBL due to expres-
sion reordering (explained in Sect. 3.2). llvm-O1/O2 also shows measurable leakage
with ILA≈ 0.02. For AES, Fig. 4d gcc-O1/O2 shows full leakage of the secret due to
VBLwith ILA≈ 4. The remaining points in Fig. 4d have very small ILA values obtained
via sampling, indicating that they might in fact be leak-free. The llvm compiler fares
strictly better than gcc, regarding re-introduction of VBL. We attribute this to differ-
ently implemented expression rewriting (-ftree-reassoc, -reassociate flags)
in the two toolchains.

Analysis Performance. Table 2 summarizes BATTL’s performance. For each bench-
mark, we execute BATTL on a single core of a desktop Intel-i7-4770@3.40GHz with
16GB RAM. Block cipher code consists of loops with a constant number of iterations
and lacks input-dependent control-flow variations. As a result, SymEx doesn’t suffer
from path explosion; its runtime variations across benchmarks result from the different
program sizes. angr’s engine scaled well with increasing expression size: no bench-
mark required more than 6GB of RAM for its analysis.

BATTL spends a negligible amount of time on the RBS module; the ILA module
dominates the time required for deciding SecretDep for PTBLs. For each benchmark,
the number of ILA checks is equal to the sum of i) #PTBL− #RUD/SID and ii) the
number of ILA checks performed when determining the set of PTBLs caused by GVBL.
The runtime of each ILA check depends on the number of variables present in the
leakage expression (see Sect. 6.1).

Flushing Countermeasure and Overhead. We have used CM to flush all the GTBLs
of our benchmarks in the compiler-generated assembly. We use the internal clock cycle

64 K. Athanasiou et al.

counter of ARM Cortex-M3 [24] to measure the number of clock cycles of one invoca-
tion of SecInv and one round of AES, shown in Table 3. CM eliminates GTBLs with-
out an increase in the masking order and incurs small performance overhead, confirm-
ing H4. For comparison, we have measured second-order (d = 2) implementations to
incur more than a 100% overhead. The difference in clock cycles between SecInv and
AES is due to the larger size of the latter, which naturally results in longer execution
times. SecInv is subject to larger overheads (%) compared to AES. Per Table 2, SecInv
has a larger amount of GTBLs and consequently requires more flushing instructions
and flushing gadgets, to eliminate the leakage. Spilling was required in 14/24 of the
flushing gadgets applied to the AES benchmarks (it was never required in SecInv).

The slowdown (%) incurred by our countermeasure is comparable to that reported
by the earlier compiler-based approach [31]. In contrast to that work, we can apply
BATTL to the final repaired binary to confirm the effectiveness of our countermeasure.
(Note that Theorem 6 applies only to the repaired assembly (ASM’ in Fig. 3) and does
not account for possible interference by later compilation stages, such as the linker.)

7 Related Work

The majority of related work targets the VBL model. They use formal techniques
to verify the correctness of masking countermeasures [3,7,13,15,18] and correct-by-
construction approaches that automatically mask the source code, either at compile
time [4,6,25], or synthesized independently [14]. Some of the verification techniques
can in principle be extended to the TBL model by verifying second-order masking
(since a second-order secure implementation is free of first-order TBL, as shown in [1]),
although their experimental evaluations show that the analysis does not scale [7,18].

One can think of our technique, dedicated to TBL, as a focused second-order analy-
sis: instead of considering all pairs of intermediate variables, only those that constitute
consecutive assignments to the same register are investigated. This vastly reduces the
complexity of the analysis from quadratic to linear in the length of the execution path.
Based on forward symbolic execution, our technique is a form of (path-)bounded anal-
ysis: it reports all leakages up to the point of the symbolic execution. It is suitable for
code with modest control-flow variations, or code with loops of a constant number of
iterations. Block ciphers, the main target of power attacks, enjoy such characteristics.

Only recent work has considered the issue of TBL explicitly [2,26,31]. The work
closest to ours is the correct-by-construction approach of Wang et al. [31]. They present
a sound static analysis (based on the same rule system [18] used in BATTL) that is
applied on the llvm IR. To avoid considering all pairs of instructions in the IR (which
lacks register information) they use additional static analysis to overapproximate pairs
of instructions that share registers, and apply the rule system to these pairs. Any pair
classified as UKD is considered sensitive. To eliminate leaks that could arise from sensi-
tive pairs, they add constraints to the register allocation and DAG combination passes of
llvm to disallow register overwrites and to eliminate update instructions respectively.

The notion of sensitive pair [31] is an overapproximation of our notion of PTBL (the
latter are precise in terms of register overwrites) and can thus not prove the existence
of leakages, only their absence. Being a purely static analysis, their approach favors

Automatic Detection and Repair of Transition-Based Leakage 65

efficiency over precision. Their technique incurs small, if any, performance overhead.
However, it is (i) susceptible to interference from the compilation framework after the
countermeasure passes are applied, and (ii) bound to their modified llvm compiler. As
our analysis is performed on binaries, BATTL doesn’t suffer from the above issues: it can
be run on the repaired binaries to confirm the absence of compiler interference, and it is
compiler agnostic. The refined definition of a GTBL that accounts for leakages due to
GVBLs and is unique to our methodology, crucially influences the security guarantees
of countermeasures specialized for TBL. BATTL reports such cases to the user and
doesn’t apply countermeasures to them, since they would anyway be ineffective. The
user is responsible for eliminating the GVBL that induces the TBL, before starting a
fresh round of detection and repair. Wang et al. do not distinguish cases of TBL due
to VBL that cannot be eliminated by TBL-specific countermeasures and as a result the
binaries they produce are subject to leakage.

MaskVerif [2], a tool based on a relational verification approach [3], is aimed at the
analysis of (very) high-order software implementations under VBL and TBL. It requires
transformation of the masking algorithm to some intermediate representation, contrary
to our approach that operates directly on binary programs. It is geared towards circuit
implementations that operate on Boolean variables and therefore doesn’t handle soft-
ware implementations. These shortcomings are common among previously proposed
methods: they operate on intermediate representations such as llvm IR [7,18,31] or
other internal languages [2] and target Boolean programs [2,18]. Work that, like ours,
operates on ARM assembly does not handle TBL or high-order implementations [13].

ASCOLD [26] is a tool for detecting transition-based leakages in AVR assembly.
It keeps track of register overwrites and conservatively reports all cases that are share-
complete. This leads to a vast amount of false positive leakage reports and unnecessary
overhead when attempting to apply countermeasures. ASCOLD is restricted in the pro-
grams it can handle. It has been used on hand-written assembly code and supports but
a fragment of the AVR assembly instruction set and it cannot be applied to arbitrary,
compiler-generated binaries. Both MaskVerif and ASCOLD rely on manual insertion
of countermeasures to TBL.

8 Conclusion and Future Work

We have presented a technique for the automated detection of transition-based leak-
age in software binaries, and a countermeasure for their repair. Our analysis showed
that such leakage is prevalent in block ciphers and of high intensity among different
compiler configurations. Our countermeasure was able to eliminate the reported leak-
ages with a moderate performance overhead. By operating on binaries, our detection
approach is sensitive to any leaks introduced by a leakage-oblivious compilation chain.

We leave the detection of transition effects through memory writes, in addition to
register writes, as an immediate step for future work. In terms of repair, we believe that
by using information provided by the forward symbolic execution we can devise even
smaller gadgets that don’t require flushing of registers used to temporarily hold values.

66 K. Athanasiou et al.

References

1. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of lazy
engineering for masked software implementations. In: Joye, M., Moradi, A. (eds.) CARDIS
2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-16763-3_5

2. Barthe, G., Belaïd, S., Cassiers, G., Fouque, P.-A., Grégoire, B., Standaert, F.-X.: maskVerif:
automated verification of higher-order masking in presence of physical defaults. In: Sako,
K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 300–318.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_15

3. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.: Verified
proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46800-5_18

4. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pp. 116–129. ACM (2016)

5. BATTL: Binary Analysis Tool for Transition-Based Leakage. https://gitlab.com/athanasiou.
k/BATTL

6. Bayrak, A.G., Regazzoni, F., Brisk, P., Standaert, F.X., Ienne, P.: A first step towards auto-
matic application of power analysis countermeasures. In: Proceedings of the 48th Design
Automation Conference, pp. 230–235. ACM (2011)

7. Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P.: Sleuth: automated verification of software
power analysis countermeasures. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol.
8086, pp. 293–310. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-
1_17

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-
analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26

9. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conversion of
security proofs from one leakage model to another: a new issue. In: Schindler, W., Huss, S.A.
(eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29912-4_6

10. Coron, J.-S., Greuet, A., Prouff, E., Zeitoun, R.: Faster evaluation of SBoxes via common
shares. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 498–514.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_24

11. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and mask
refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-43933-3_21

12. D’Silva, V., Payer, M., Song, D.: The correctness-security gap in compiler optimization. In:
2015 IEEE Security and Privacy Workshops (SPW), pp. 73–87. IEEE (2015)

13. El Ouahma, I.B., Meunier, Q.L., Heydemann, K., Encrenaz, E.: Symbolic approach for side-
channel resistance analysis of masked assembly codes. In: Security Proofs for Embedded
Systems (2017)

14. Eldib, H., Wang, C.: Synthesis of masking countermeasures against side channel attacks.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 114–130. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9_8

15. Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermeasures against
side-channel attacks. ACM Trans. Softw. Eng. Methodol. (TOSEM) 24(2), 11 (2014)

https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://gitlab.com/athanasiou.k/BATTL
https://gitlab.com/athanasiou.k/BATTL
https://doi.org/10.1007/978-3-642-40349-1_17
https://doi.org/10.1007/978-3-642-40349-1_17
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-642-29912-4_6
https://doi.org/10.1007/978-3-642-29912-4_6
https://doi.org/10.1007/978-3-662-53140-2_24
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-319-08867-9_8

Automatic Detection and Repair of Transition-Based Leakage 67

16. Eldib, H., Wang, C., Taha, M., Schaumont, P.: QMS: evaluating the side-channel resistance of
masked software from source code. In: Proceedings of the 51st Annual Design Automation
Conference, pp. 1–6. ACM (2014)

17. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç,
Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21

18. Gao, P., Zhang, J., Song, F., Wang, C.: Verifying and quantifying side-channel resistance of
masked software implementations. ACM Trans. Softw. Eng. Methodol. (TOSEM) 28(3), 16
(2019)

19. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85053-3_27

20. Knudsen, L.R., Robshaw, M.: The Block Cipher Companion. Springer Science & Business
Media, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17342-4

21. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48405-1_25

22. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Hei-
delberg (1996). https://doi.org/10.1007/3-540-68697-5_9

23. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart
Cards, vol. 31. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-38162-6

24. Cortex-M4 Technical Reference Manual: Data watchpoint and trace unit. http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/BIIFBHIF.html

25. Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler Assisted Masking. In: Prouff, E.,
Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 58–75. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8_4

26. Papagiannopoulos, K., Veshchikov, N.: Mind the gap: towards secure 1st-order masking in
software. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 282–297. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-64647-3_17

27. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A formal study
of power variability issues and side-channel attacks for nanoscale devices. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4_8

28. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. Cryptology ePrint
Archive, Report 2010/441 (2010), https://eprint.iacr.org/2010/441

29. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/
10.1145/359168.359176

30. Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in binary anal-
ysis. In: IEEE Symposium on Security and Privacy (2016)

31. Wang, J., Sung, C., Wang, C.: Mitigating Power Side Channels during Compilation. arXiv
preprint arXiv:1902.09099 (2019)

32. Zhang, L., Ding, A.A., Fei, Y., Luo, P.: A unified metric for quantifying information leakage
of cryptographic devices under power analysis attacks. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9453, pp. 338–360. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48800-3_14

33. Zhang, R., Qiu, S., Zhou, Y.: Further improving efficiency of higher order masking schemes
by decreasing randomness complexity. IEEE Trans. Inf. Forensics Secur. 12(11), 2590–2598
(2017)

https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-642-17342-4
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-0-387-38162-6
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/BIIFBHIF.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/BIIFBHIF.html
https://doi.org/10.1007/978-3-642-33027-8_4
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-642-20465-4_8
https://eprint.iacr.org/2010/441
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
http://arxiv.org/abs/1902.09099
https://doi.org/10.1007/978-3-662-48800-3_14
https://doi.org/10.1007/978-3-662-48800-3_14

	Automatic Detection and Repair of Transition- Based Leakage in Software Binaries
	1 Introduction
	2 Background and Problem Formalization
	2.1 Abstract State Machines
	2.2 Leakage Modeling
	2.3 Masking and Threat Model

	3 Motivating Example
	3.1 Transition-Based Leakage
	3.2 Complications Ahead: Value-Based Leakage

	4 Detection of Transition-Based Leakage
	4.1 Potential and Genuine Leakage
	4.2 Detection of Genuine Transition-Based Leakage

	5 Repair of Transition-Based Leakage
	6 Battl: Binary Analysis for Transition-Based Leakage
	6.1 Implementation
	6.2 Evaluation

	7 Related Work
	8 Conclusion and Future Work
	References

